ON TOTAL H-IRREGULARITY STRENGTH OF THE DISJOINT UNION OF GRAPHS

FARAH A SHRAF
Abdus Salam School of Mathematical Sciences
GC University, Lahore, Pakistan

SUSANA CLARA LÓPEZ
Dept. Matemàtiques, Universitat Politècnica de Catalunya
C/Estève Terrades 5, 08860 Castelldefels, Spain

FRANCESC ANTONI MUNTANER-BATLE, AKITO OSHIMA
Graph Theory and Applications Research Group, School of Electrical Engineering and Computer Science, Faculty of Engineering and Built Environment
The University of Newcastle, Newcastle, Australia

AND

MARTIN BAČA1, ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ
Department of Applied Mathematics and Informatics
Technical University, Košice, Slovakia

Abstract

A simple graph G admits an H-covering if every edge in $E(G)$ belongs to at least one subgraph of G isomorphic to a given graph H. For the subgraph $H \subseteq G$ under a total k-labeling we define the associated H-weight as the sum of labels of all vertices and edges belonging to H. The total k-labeling is called the H-irregular total k-labeling of a graph G admitting

1Corresponding author.
an H-covering if all subgraphs of G isomorphic to H have distinct weights. The total H-irregularity strength of a graph G is the smallest integer k such that G has an H-irregular total k-labeling.

In this paper, we estimate lower and upper bounds on the total H-irregularity strength for the disjoint union of multiple copies of a graph and the disjoint union of two non-isomorphic graphs. We also prove the sharpness of the upper bounds.

Keywords: H-covering, H-irregular labeling, total H-irregularity strength, copies of graphs, union of graphs.

2010 Mathematics Subject Classification: 05C78, 05C70.

References

doi:10.1007/s00224-011-9350-7

doi:10.7151/dmgt.1337

doi:10.1016/j.endm.2007.01.041

doi:10.1016/j.disc.2009.03.006

doi:10.1002/jgt.21748

doi:10.1137/070707385

Received 12 April 2017
Revised 5 February 2018
Accepted 22 February 2018