ON THE MINIMUM NUMBER OF SPANNING TREES IN CUBIC MULTIGRAPHS

Zbigniew R. Bogdanowicz

Armament Research, Development and Engineering Center
Picatinny, NJ 07806, USA

e-mail: zbigniew.bogdanowicz.civ@mail.mil

Abstract

Let G_{2n}, H_{2n} be two non-isomorphic connected cubic multigraphs of order $2n$ with parallel edges permitted but without loops. Let $t(G_{2n}), t(H_{2n})$ denote the number of spanning trees in G_{2n}, H_{2n}, respectively. We prove that for $n \geq 3$ there is the unique G_{2n} such that $t(G_{2n}) < t(H_{2n})$ for any H_{2n}. Furthermore, we prove that such a graph has $t(G_{2n}) = 5^22^{n-3}$ spanning trees. Based on our results we give a conjecture for the unique r-regular connected graph H_{2n} of order $2n$ and odd degree r that minimizes the number of spanning trees.

Keywords: cubic multigraph, spanning tree, regular graph, enumeration.

2010 Mathematics Subject Classification: 05C05, 05C38.
References

Received 18 October 2016
Revised 20 February 2018
Accepted 21 February 2018