Let \mathcal{P} be a property of a graph. A graph G is said to be locally \mathcal{P}, if the subgraph induced by the open neighbourhood of every vertex in G has property \mathcal{P}. Ryjáček conjectures that every connected, locally connected graph is weakly pancyclic. Motivated by the above conjecture, van Aardt et al. [S.A. van Aardt, M. Frick, O.R. Oellermann and J.P. de Wet, *Global cycle properties in locally connected, locally traceable and locally Hamiltonian graphs*, Discrete Appl. Math. 205 (2016) 171–179] investigated the global cycle structures in connected, locally traceable/Hamiltonian graphs. Among other results, they proved that a connected, locally Hamiltonian graph G with maximum degree at least $|V(G)| - 5$ is weakly pancyclic. In this note, we improve this result by showing that such a graph with maximum degree at least $|V(G)| - 6$ is weakly pancyclic. Furthermore, we show that a connected, locally Hamilton-connected graph with maximum degree at most 7 is fully cycle extendable.

Keywords: locally connected, locally Hamiltonian, locally Hamilton-connected, fully cycle extendability, weakly pancyclicity.

2010 Mathematics Subject Classification: 05C38; 05C45.

\(^1\)Corresponding author.
References

[9] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian, J. Graph Theory 3 (1979) 351–356. doi:10.1002/jgt.3190030405

Received 22 June 2017
Revised 5 February 2018
Accepted 5 February 2018