A NOTE ON CYCLES IN LOCALLY HAMILTONIAN AND LOCALLY HAMILTON-CONNECTED GRAPHS

LONG TANG

College of Mathematics and System Sciences,
Xinjiang University
Urumqi 830046, P.R. China
e-mail: 1048794282@qq.com

AND

ELKIN VUMAR

College of Mathematics and System Sciences,
Xinjiang University
Urumqi 830046, P.R. China
e-mail: elkin1226@sina.com

Abstract

Let \(\mathcal{P} \) be a property of a graph. A graph \(G \) is said to be locally \(\mathcal{P} \), if the subgraph induced by the open neighbourhood of every vertex in \(G \) has property \(\mathcal{P} \). Ryjáček conjectures that every connected, locally connected graph is weakly pancyclic. Motivated by the above conjecture, van Aardt et al. [S.A.van Aardt, M. Frick, O.R. Oellermann and J.P.de Wet, Global cycle properties in locally connected, locally traceable and locally Hamiltonian graphs, Discrete Appl. Math. 205 (2016) 171–179] investigated the global cycle structures in connected, locally traceable/Hamiltonian graphs. Among other results, they proved that a connected, locally Hamiltonian graph \(G \) with maximum degree at least \(|V(G)|−5\) is weakly pancyclic. In this note, we improve this result by showing that such a graph with maximum degree at least \(|V(G)|−6\) is weakly pancyclic. Furthermore, we show that a connected, locally Hamilton-connected graph with maximum degree at most 7 is fully cycle extendable.

Keywords: locally connected, locally Hamiltonian, locally Hamilton-connected, fully cycle extendability, weakly pancyclicity.

2010 Mathematics Subject Classification: 05C38; 05C45.

1Corresponding author.
REFERENCES

Received 22 June 2017
Revised 5 February 2018
Accepted 5 February 2018