ON THE METRIC DIMENSION OF DIRECTED AND UNDIRECTED CIRCULANT GRAPHS

TOMÁŠ VETRÍK

Department of Mathematics and Applied Mathematics
University of the Free State
Bloemfontein, South Africa

e-mail: vetrikt@ufs.ac.za

Abstract

The undirected circulant graph $C_n(±1, ±2, \ldots, ±t)$ consists of vertices $v_0, v_1, \ldots, v_{n-1}$ and undirected edges v_iv_{i+j}, where $0 \leq i \leq n-1, 1 \leq j \leq t$ ($2 \leq t \leq \frac{n}{2}$), and the directed circulant graph $C_n(1, t)$ consists of vertices $v_0, v_1, \ldots, v_{n-1}$ and directed edges v_iv_{i+1}, v_iv_{i+t}, where $0 \leq i \leq n-1$ ($2 \leq t \leq n-1$), the indices are taken modulo n. Results on the metric dimension of undirected circulant graphs $C_n(±1, ±t)$ are available only for special values of t. We give a complete solution of this problem for directed graphs $C_n(1, t)$ for every $t \geq 2$ if $n \geq 2t^2$. Grigorious et al. [On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54] presented a conjecture saying that $\dim(C_n(±1, ±2, \ldots, ±t)) = t + p - 1$ for $n = 2tk + t + p$, where $3 \leq p \leq t + 1$. We disprove it by showing that $\dim(C_n(±1, ±2, \ldots, ±t)) \leq t + \frac{p+1}{2}$ for $n = 2tk + t + p$, where $t \geq 4$ is even, p is odd, $1 \leq p \leq t + 1$ and $k \geq 1$.

Keywords: metric dimension, resolving set, circulant graph, distance.

2010 Mathematics Subject Classification: 05C35, 05C12.

1. Introduction

Let $V(G)$ be vertex set of a connected (undirected or directed) graph G. The distance $d(u, v)$ between two vertices u, v in an undirected graph is the number of edges in a shortest path between u and v. In a directed graph G the distance $d(u, v)$ from a vertex $u \in V(G)$ to a vertex $v \in V(G)$ is the length of a shortest directed path from u to v.

A vertex w resolves two vertices u and v if $d(u, w) \neq d(v, w)$. For an ordered set of vertices $W = \{w_1, w_2, \ldots, w_z\}$, the representation of distances of v with respect to W is the ordered z-tuple

$$r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_z)).$$

A set $W \subset V(G)$ is a resolving set of G if every two distinct vertices of G have different representations of distances with respect to W (if every two vertices of G are resolved by some vertex in W). The metric dimension of G is the number of vertices in a smallest resolving set and it is denoted by $\text{dim}(G)$. The i-th coordinate in $r(v|W)$ is 0 if and only if $v = w_i$. Thus in order to prove that W is a resolving set of G, it suffices to show that $r(u|W) \neq r(v|W)$ for every two different vertices $u, v \in V(G) \setminus W$.

The metric dimension is an invariant, which has applications in robot navigation [9], pharmaceutical chemistry [2], pattern recognition and image processing [10]. It has been extensively studied. For example, Imran [5] studied barycentric subdivision of Cayley graphs and Saputro et al. [12] gave bounds on the metric dimension of the lexicographic product of graphs.

Let n, m and a_1, a_2, \ldots, a_m be positive integers such that $1 \leq a_1 < a_2 < \cdots < a_m \leq \frac{n}{2}$. The undirected circulant graph $C_n(\pm a_1, \pm a_2, \ldots, \pm a_m)$ consists of the vertices $v_0, v_1, \ldots, v_{n-1}$ and undirected edges $v_iv_{i+a_j}$, where $0 \leq i \leq n-1$, $1 \leq j \leq m$; the indices are taken modulo n.

For generators a_1, a_2, \ldots, a_m such that $1 \leq a_1 < a_2 < \cdots < a_m \leq n-1$, the directed circulant graph $C_n(a_1, a_2, \ldots, a_m)$ consists of the vertices $v_0, v_1, \ldots, v_{n-1}$ and directed edges $v_iv_{i+a_j}$, where $0 \leq i \leq n-1$, $1 \leq j \leq m$; the indices are taken modulo n. The directed circulant graph $C_n(-a_1, -a_2, \ldots, -a_m)$ contains the directed edges $v_iv_{i+a_j}$.

Circulant graphs form an important family of Cayley graphs. The metric dimension of undirected circulant graphs $C_n(\pm 1, \pm t)$ was studied for special values of t. Javaid, Rahim and Ali [8] proved that if $n \equiv 0, 2, 3 \pmod{4}$, then $\text{dim}(C_n(\pm 1, \pm 2)) = 3$. Borchert and Gosselin [1] showed that if $n \equiv 1 \pmod{4}$, then $\text{dim}(C_n(\pm 1, \pm 2)) = 4$. The undirected circulant graphs $C_n(\pm 1, \pm 3)$ were considered in [7] and the graphs $C_n(\pm 1, \pm \frac{m}{2})$ for even n were investigated in [11]. We study the metric dimension for directed circulant graphs with 2 generators. We give a complete solution of this problem for directed graphs $C_n(1, t)$ for every $t \geq 2$ if $n \geq 2t^2$.

Exact values of the metric dimension of undirected graphs $C_n(\pm 1, \pm 2, \pm 3)$ were given in [1] and [6]. Grigorious et al. [4] showed that $t+1$ vertices v_0, v_1, \ldots, v_t resolve the graph $C_n(\pm 1, \pm 2, \ldots, \pm t)$ if $n \equiv r \pmod{2t}$, where $2 \leq r \leq t+2$ and they gave the bound $\text{dim}(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq r-1$ if $n \equiv r \pmod{2t}$, where $t+3 \leq r \leq 2t+1$. They presented a conjecture saying that $\text{dim}(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t+p-1$ for $n = 2tk + t + p$, where
3 ≤ p ≤ t + 1. We disprove it for even t ≥ 4 and odd p ≥ 5 by showing that
\(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2} \) for \(n = 2tk + t + p \) where \(t \geq 4 \) is even, \(p \) is odd,
1 ≤ p ≤ t + 1 and \(k \geq 1 \). Note that Chau and Gosselin [3] recently proved that
\(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + 1 \) if \(n = 2 \) (mod \(2t \)) and \(n = t + 1 \) (mod \(2t \)). They also showed that
\(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = \dim(C_{n+2}(\pm 1, \pm 2, \ldots, \pm t)) \) for
large \(n \), which implies that the metric dimension of the graphs \(C_n(\pm 1, \pm 2, \ldots, \pm t) \)
is completely determined by the congruence class of \(n \) modulo \(2t \).

2. DIRECTED CIRCULANT GRAPHS

We study the metric dimension of directed circulant graphs \(C_n(1, t) \). It is easy to see that the graph \(C_n(1, t) \) is isomorphic to the graph \(C_n(-1, -t) \) for \(2 \leq t \leq n - 1 \).

We present Theorems 1 and 2 for the graph \(C_n(-1, -t) \), because it is easier to express distances from vertices in a graph to vertices in chosen resolving sets if we consider \(C_n(-1, -t) \) (especially in the proof of Theorem 2).

The distance from the vertex \(v_j \) to the vertex \(v_i \) in \(C_n(-1, -t) \), where \(i, j \in \{0, 1, \ldots, n - 1\} \), is

\[
\begin{align*}
(1) & \quad d(v_j, v_i) = \begin{cases}
\left\lfloor \frac{j-i}{t} \right\rfloor + p, & p \equiv (j-i) \pmod{t}, \quad \text{if } j \geq i, \\
\left\lfloor \frac{n+j-i}{t} \right\rfloor + p, & p \equiv (n+j-i) \pmod{t}, \quad \text{if } j < i,
\end{cases} \\
(2) & \quad \text{where } 0 \leq p \leq t - 1.
\end{align*}
\]

Theorem 1. Let \(t \geq 2 \) and \(n \geq 2t^2 \). Then \(\dim(C_n(-1, -t)) \geq t \).

Proof. We prove the result by contradiction. Assume that \(\dim(C_n(-1, -t)) \leq t - 1 \). Let \(W = \{v_{i_1}, v_{i_2}, \ldots, v_{i_{t-1}}\} \) be a resolving set of \(C_n(-1, -t) \), where \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_{t-1} \). Since we have at most \(t - 1 \) different vertices in \(W \) and the graph \(C_n(-1, -t) \) has at least \(2t^2 \) vertices, \(C_n(-1, -t) \) contains a set of \(2t \) consecutive vertices \(V' = \{v_j, v_{j+1}, \ldots, v_{j+2t-1}\} \), where \(0 \leq j \leq n - 1 \), such that no vertex of \(W \) is in \(V' \). Without loss of generality we can assume that \(j = n - 2t \), which means that \(V' = \{v_{n-2t}, v_{n-2t+1}, \ldots, v_{n-1}\} \) and \(i_{t-1} < n - 2t \).

Since \(|W| \leq t - 1 \), there is a \(k \in \{0, 1, \ldots, t - 1\} \), such that no vertex \(v_i \in W \) satisfies \(i \equiv k \pmod{t} \). So we can write any vertex of \(W \) in the form \(v_{lr+s} \), where \(0 \leq s \leq t - 1 \), \(s \neq k \) and \(r \geq 0 \).

Let \(v_l \) be any vertex in the set of \(t \) vertices \(\{v_{n-2t}, v_{n-2t+1}, \ldots, v_{n-t-1}\} \), such that \(l \equiv k \pmod{t} \). Then we can write \(l = tx + k \), where \(0 \leq k \leq t - 1 \). We show that the vertices \(v_{lx+k}, v_{lx+k+t-1} \in V' \) are not resolved by \(W \). Note that
$tx + k > tr + s$. By (1) we have

$$d(v_{tx+k}, v_{tr+s}) = \begin{cases} \left\lfloor \frac{tx+k-(tr+s)}{t} \right\rfloor + k - s = x - r + \left\lfloor \frac{k-s}{t} \right\rfloor + k - s & \text{if } k > s, \\ x - r + k - s & \text{if } k < s, \end{cases}$$

and

$$d(v_{tx+k+t-1}, v_{tr+s}) = \begin{cases} \left\lfloor \frac{tx+k+t-1-(tr+s)}{t} \right\rfloor + k - 1 - s & \text{if } k > s, \\ x + 1 - r + \left\lfloor \frac{k-1-s}{t} \right\rfloor + k - 1 - s + t & \text{if } k < s. \end{cases}$$

Since $d(v_{tx+k}, v_{tr+s}) = d(v_{tx+k+t-1}, v_{tr+s})$ for any vertex $v_{tr+s} \in W$, the graph $C_n(-1, -t)$ is not resolved by W. A contradiction.

Let us present an upper bound on the metric dimension of directed circulant graphs with 2 generators.

Theorem 2. Let $2 \leq t < n$. Then $\dim(C_n(-1, -t)) \leq t$.

Proof. We prove that $W = \{v_0, v_1, \ldots, v_{t-1}\}$ is a resolving set of $C_n(-1, -t)$. First we find all vertices v_j ($1 \leq j \leq n-1$) of $C_n(-1, -t)$ such that $d(v_j, v_0) = x$ for any $x \geq 1$. We can write $j = tr + p$ where $r \geq 0$ and $0 \leq p \leq t - 1$. Since by (1), $d(v_{tr+p}, v_0) = r + p$, we have $r + p = x$. Thus $r = x - p$ (≥ 0) and then $v_0(p-x-p) + p$ for $0 \leq p \leq t - 1$ and $1 \leq l(x-p) + p \leq n - 1$ are the vertices of $C_n(1, t)$ such that $d(v_0(p-x-p), v_0) = x$.

It remains to show that these vertices are resolved by v_i, $i = 1, 2, \ldots, t - 1$. It suffices to consider only those vertices $v_0(p-x-p) + p$ which are not in W, so we can assume that $l(x-p) + p > i$. For $i = 1, 2, \ldots, t - 1$, by (1),

$$(3) \quad d(v_0(p-x-p), v_i) = \begin{cases} x - p + \left\lfloor \frac{p-i}{t} \right\rfloor + p - i = x - i & \text{if } p \geq i, \\ x - p + \left\lfloor \frac{p-i}{t} \right\rfloor + p - i + t = x + t - 1 - i & \text{if } p < i. \end{cases}$$

We know that the first entry of $r(v_0(p-x-p)+p|W)$ is x. From (3) it follows that the next p entries (where $0 \leq p \leq t - 1$) are $x - i$ and the last $t - 1 - p$ entries of $r(v_0(p-x-p)+p|W)$ are $x + t - 1 - i$.

So if $p = 0$ (and if v_0 exists), the first entry of $r(v_0|W)$ is x and the other entries are $x + t - 1 - i$ which means that $r(v_0|W) = (x, x + t - 2, x + t - 3, \ldots, x + t - 1 - (t - 1))$. If $p = 1$, the first entry of $r(v_0(x-1)+1|W)$ is x, the second entry is $x - 1$ and the other entries are $x + t - 1 - i$, so $r(v_0(x-1)+1|W) = (x, x + t - 2, x + t - 3, \ldots, x + t - 1 - (t - 1))$. If $p > 1$, the first entry of $r(v_0(p-x-p)+p|W)$ is x, the second entry is $x - i$ and the other entries are $x + t - 1 - i$.
On the Metric Dimension of Circulant Graphs

\((x, x-1, x+t-3, x+t-4, \ldots, x+t-1-(t-1)) \). Similarly \(r(v_{t(x-2)+2}|W) = (x, x-1, x-2, x+t-4, \ldots, x+t-1-(t-1)), \ldots, r(v_{t(x-(t-1))+(t-1)}|W) = (x, x-1, x-2, \ldots, x-(t-1)) \).

Since all vertices \(v_j, 1 \leq j \leq n-1 \), such that \(d(v_j, v_0) = x \) are resolved by \(W \), we have \(\text{dim}(C_n(-1, -t)) \leq |W| = t \).

From Theorems 1 and 2 we obtain Corollary 3.

Corollary 3. Let \(t \geq 2 \) and \(n \geq 2t^2 \). Then \(\text{dim}(C_n(-1, -t)) = t \).

Since the graphs \(C_n(-1, -t) \) and \(C_n(1, t) \) are isomorphic, we get the following corollary.

Corollary 4. Let \(t \geq 2 \) and \(n \geq 2t^2 \). Then \(\text{dim}(C_n(1, t)) = t \).

3. Undirected Circulant Graphs

We give an upper bound on the metric dimension of undirected circulant graphs \(C_n(\pm 1, \pm 2, \ldots, \pm t) \) for \(n \equiv r \mod 2t \), where \(r = 1 \) and \(r = t+1, t+3, \ldots, 2t-1 \).

The distance between two vertices \(v_i \) and \(v_j \) in \(C_n(\pm 1, \pm 2, \ldots, \pm t) \), where \(0 \leq i < j < n \), is

\[
d(v_i, v_j) = \min \left\{ \left\lfloor \frac{j-i}{t} \right\rfloor, \left\lfloor \frac{n-(j-i)}{t} \right\rfloor \right\}.
\]

This equation can be simplified as

\[
d(v_i, v_j) = \begin{cases}
\left\lfloor \frac{j-i}{t} \right\rfloor & \text{if } 0 \leq j-i \leq \frac{n}{2}, \\
\left\lfloor \frac{n-(j-i)}{t} \right\rfloor & \text{if } \frac{n}{2} < j-i < n.
\end{cases}
\]

Theorem 5. Let \(n = 2tk + t + p \) where \(t \geq 4 \) is even, \(p \) is odd, \(1 \leq p \leq t+1 \) and \(k \geq 1 \). Then

\[
\text{dim}(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2}.
\]

Proof. Let \(n = 2tk + t + p \) where \(k \geq 1, t \geq 4 \) is even and \(p = 1, 3, \ldots, t+1 \). Let

\[
W_1 = \{v_0, v_2, \ldots, v_{t-2}\}, \ W_2 = \{v_{t-1}, v_{t+1}, \ldots, v_{2t-3}\}, \\
W_3 = \{v_{tk+t-1}, v_{tk+t+1}, \ldots, v_{tk+t+p-2}\}.
\]

We have \(|W_1| = |W_2| = \frac{t}{2} \) and \(|W_3| = \frac{p+1}{2} \). Let us prove that \(W = W_1 \cup W_2 \cup W_3 \) is a resolving set of the graph \(C_n(1, 2, \ldots, t) \).
We divide the vertex set of $C_n(±1,±2,\ldots,±t)$ into four disjoint sets:

\[V_1 = \{v_0, v_1, \ldots, v_t\}, \quad V_2 = \{v_{t+1}, v_{t+2}, \ldots, v_{tk+t}\}, \]
\[V_3 = \{v_{tk+t+1}, v_{tk+t+2}, \ldots, v_{tk+t+p-1}\}, \quad V_4 = \{v_{tk+t+p}, v_{tk+t+p+1}, \ldots, v_{n-1}\}. \]

First we prove that any two vertices of V_2 have different representations of distances with respect to W. For $x = 1, 2, \ldots, k-1; j = 1, 2, \ldots, t; i = 0, 2, \ldots, t-2$, we have $v_i \in W_1$ and by (5),

\[
d(v_{tx+j}, v_i) = \left\lfloor \frac{j-i}{t} \right\rfloor = \begin{cases} x+1 & \text{if } i < j, \\ x & \text{if } i \geq j, \end{cases}
\]

and if $x = k; j = 1, 2, \ldots, t$, by (4), we get

\[
d(v_{tk+j}, v_i) = \min\left\{ \left\lfloor \frac{tk+j-i}{t} \right\rfloor, \left\lfloor \frac{n-[(tk+j)-i]}{t} \right\rfloor \right\},
\]
\[
= \min\left\{ k + \left\lfloor \frac{j-i}{t} \right\rfloor, k + 1 + \left\lfloor \frac{p+i-j}{t} \right\rfloor \right\} = \begin{cases} k+1 & \text{if } i < j, \\ k & \text{if } i \geq j. \end{cases}
\]

Since j (where $1 \leq j \leq t$) is greater than $\left\lfloor \frac{j}{2} \right\rfloor$ elements from the set $\{0, 2, \ldots, t-2\}$, the first $\left\lfloor \frac{j}{2} \right\rfloor$ entries of $r(v_{tx+j}|W_1)$ for $x = 1, 2, \ldots, k$ are equal to $x+1$ and the other $\frac{j}{2} - \left\lfloor \frac{j}{2} \right\rfloor$ entries are $x; r(v_{tx+j}|W_1) = (x+1, \ldots, x+1, x, \ldots, x)$. Therefore the only vertices in V_2 with the same representations of distances with respect to W_1 are the pairs $(v_{t+1}, v_{t+2}), (v_{t+3}, v_{t+4}), \ldots, (v_{tk+t-1}, v_{tk+t})$. But since for $x = 1, 2, \ldots, k$ and $j = 1, 3, \ldots, t-3$, we obtain $v_{t+j} \in W_2$ and by (5),

\[
d(v_{tx+j}, v_{t+j}) = x-1, \quad d(v_{tx+j+1}, v_{t+j}) = x-1 + \left\lfloor \frac{1}{t} \right\rfloor = x,
\]

and for $v_{t-1} \in W_2$, we have

\[
d(v_{tx+t-1}, v_{t-1}) = x, \quad d(v_{tx+t}, v_{t-1}) = x + \left\lfloor \frac{1}{t} \right\rfloor = x+1,
\]

vertices in W_2 resolve the pairs $(v_{t+1}, v_{t+2}), (v_{t+3}, v_{t+4}), \ldots, (v_{tk+t-1}, v_{tk+t})$. Thus no two vertices in V_2 have the same representations of distances with respect to W.

Let us study representations of distances of the vertices in V_4. For $x = 1, 2, \ldots, k-1; j = 0, 1, \ldots, t-1; i = 0, 2, \ldots, t-2$; we have $v_i \in W_1$ and by (6),

\[
d(v_{n-tx+j}, v_i) = \left\lfloor \frac{n-[(n-tx+j)-i]}{t} \right\rfloor = x + \left\lfloor \frac{i-j}{t} \right\rfloor = \begin{cases} x & \text{if } i \leq j, \\ x+1 & \text{if } i > j, \end{cases}
\]
and if \(x = k \), we get
\[
d(v_{n-2k+j}, v_i) = \min\left\{ \left\lceil \frac{(n-2k+j)-i}{t} \right\rceil, \left\lceil \frac{(n-2k+j)-i}{t} \right\rceil \right\}
\]
\[
= \min\left\{ k + 1 + \left\lceil \frac{p+j-i}{t} \right\rceil, k + \left\lceil \frac{i-j}{t} \right\rceil \right\} = \begin{cases} k & \text{if } i \leq j, \\ k + 1 & \text{if } i > j. \end{cases}
\]

Since \(j \) (where \(0 \leq j \leq t-1 \)) is greater than or equal to \(\left\lceil \frac{2}{t} \right\rceil + 1 \) elements from the set \(\{0, 2, \ldots, t-2\} \), the first \(\left\lceil \frac{2}{t} \right\rceil + 1 \) entries of \(r(v_{n-2t+j}W_1) \) (for \(x = 1, 2, \ldots, k \)) are equal to \(x \) and the other entries are \(x+1 \). The only vertices in \(V_4 \) with the same representations of distances with respect to \(W_1 \) are the pairs \((v_{n-2t}, v_{n-2t+1}), (v_{n-2t+2}, v_{n-2t+3}), \ldots, (v_{n-2}, v_{n-1})\). We show that most of these pairs are resolved by vertices in \(W_2 \). For \(x = 1, 2, \ldots, k-1 \) and \(j = 1, 3, \ldots, t-3 \), we have \(v_{i+j} \in W_2 \) and by (6),
\[
d(v_{n-2tx+j}, v_{i+j}) = x + 1, \quad d(v_{n-2tx_{j-2}}, v_{i+j}) = x + 1 + \left\lceil \frac{1}{t} \right\rceil = x + 2,
\]
and for \(v_{i-1} \in W_2, x = 1, 2, \ldots, k \), by (6),
\[
d(v_{n-2tx_{j+1}}, v_{i-1}) = x, \quad d(v_{n-2tx_{j+1-2}}, v_{i-1}) = x + \left\lceil \frac{1}{t} \right\rceil = x + 1,
\]
so vertices of \(W_2 \) resolve all pairs of vertices \((v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-1}}), (v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-2}}), \ldots, (v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-3}})\), which are the pairs \((v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-1}}), (v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-2}})\). It remains to resolve the pairs \((v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-1}}), (v_{n-2tx_{j+1}}, v_{n-2tx_{j+1-2}})\).

For \(j = 0, 2, \ldots, t-2 \), we have \(v_{i+p+j} \in W_2 \) and by (5),
\[
d(v_{n-2tx_i+j}, v_{i+p+j}) = k, \quad d(v_{n-2tx_i}, v_{i+p+j}) = k + \left\lceil \frac{1}{t} \right\rceil = k + 1,
\]
so the pairs \((v_{n-2tx_i}, v_{n-2tx_i+1}), \ldots, (v_{n-2tx_i}, v_{n-2tx_i+3})\) are resolved by \(W_2 \).

For \(j = t-2 \), we have \(v_{i+p+j} \in W_3 \) and by (5),
\[
d(v_{n-2tx_{j-1}}, v_{i+p+j}) = 1, \quad d(v_{n-2tx_{j-1}}, v_{i+p+j}) = 1 + \left\lceil \frac{1}{t} \right\rceil = 2,
\]
so the pairs \((v_{n-2tx_{j-1}}, v_{n-2tx_{j-1}+1}), \ldots, (v_{n-2tx_{j-1}}, v_{n-2tx_{j-1}+3})\) are resolved by \(W_3 \). Thus all pairs of vertices in \(V_4 \) are resolved by \(W \).

A vertex \(v \in V_2 \) and a vertex in \(V_1 \) can have the same representations of distances with respect to \(W_1 \) only if all entries of \(r(v|W_1) \) are the same numbers. For \(x = 1, 2, \ldots, k \), we have \(v_{n-2tx+t}, v_{n-2tx+t} \in V_2 \) and \(r(v_{n-2tx+t}|W_1) = r(v_{n-2tx+t}|W_1) = (x+1, \ldots, x+1) \). For \(v_{n-2tx+t-2}, v_{n-2tx+t-1} \in V_4 \) we have \(r(v_{n-2tx+t-2}|W_1) = r(v_{n-2tx+t-2}|W_1) = (x, \ldots, x) \), which implies that for \(x = 1, 2, \ldots, k-1 \), we obtain \(r(v_{n-2tx+t}|W_1) = r(v_{n-2tx+t}|W_1) = r(v_{n-2tx+t}|W_1) = r(v_{n-2tx+t}|W_1) = r(v_{n-2tx+t}|W_1) \). Since for \(v_{2t-3} \in W_2 \), by (5),
\[
d(v_{n-2tx+t-1}, v_{2t-3}) = x - 1 + \left\lceil \frac{2}{t} \right\rceil = x, \quad d(v_{n-2tx+t}, v_{2t-3}) = x - 1 + \left\lceil \frac{3}{t} \right\rceil = x,
\]
and by (6),
\[d(v_{n-tx-2}, v_{2t-3}) = x + 2 + \left\lceil \frac{1}{t} \right\rceil = x + 2, \]
\[d(v_{n-tx-1}, v_{2t-3}) = x + 2 + \left\lfloor \frac{2}{t} \right\rfloor = x + 2, \]
any vertex in \(V_2 \) and any vertex in \(V_4 \) have different representations of distances with respect to \(W \).

We study representations of the vertices in \(V_3 \). For \(j = 1, 2, \ldots, p - 1 \) and \(i = 0, 2, \ldots, t - 2 \), we have \(v_i \in W_1 \) and by (4),
\[d(v_{tk+t+j}, v_i) = \min \left\{ k + 1 + \left\lceil \frac{j-i}{t} \right\rceil, k + \left\lfloor \frac{p+j-i}{t} \right\rfloor \right\} = k + 1, \]
thus \(r(v_{tk+t+j}|W_2) = (k + 1, \ldots, k + 1) \). The only vertices in \(V_2 \cup V_4 \) with the same representations of distances with respect to \(W_1 \) are \(v_{tk+t-1} \) and \(v_{tk+t} \).

Let us prove that any two vertices in \(V_3 \cup \{ v_{tk+t-1}, v_{tk+t} \} \) have different representations with respect to \(W \). It suffices to consider the vertices in \(V' = (V_3 \cup \{ v_{tk+t-1}, v_{tk+t} \}) \setminus W_3 = \{ v_{tk+t}, v_{tk+t+2}, \ldots, v_{tk+t+p-1} \} \). For \(j = 0, 2, \ldots, p - 1 \) and \(i = 1, 3, \ldots, t - 3 \), we have \(v_{t+i} \in W_2 \) and by (5)
\[d(v_{tk+t+j}, v_{t+i}) = k + \left\lceil \frac{j-i}{t} \right\rceil = \begin{cases} k & \text{if } i \geq j, \\ k + 1 & \text{if } i < j. \end{cases} \]
Since \(j \) (for \(j \leq t - 2 \)) is greater than \(\frac{t}{2} \) elements from the set \(\{1, 3, \ldots, t - 3\} \), the first \(\frac{t}{2} \) entries of \(r(v_{tk+t+j}|W_2') \) where \(W_2' = W_2 \setminus \{v_{tk+t-1}\} \) are equal to \(k + 1 \) and the other \(\frac{t}{2} - \frac{t}{2} - 1 \) entries are \(k \). If \(p = t + 1 \) and \(j = t \), we obtain \(r(v_{tk+t+j}|W_2') = r(v_{tk+2t}|W_2') = (k + 1, \ldots, k + 1) \). It follows that the only vertices of \(V' \) having the same representations of distances with respect to \(W_2' \) are \(v_{tk+2t} \) and \(v_{tk+2t-2} \) if \(p = t + 1 \). These vertices are resolved by \(v_{tk+t-1} \in W_3 \), since by (5), \(d(v_{tk+2t}, v_{tk+t-1}) = 1 + \left\lfloor \frac{t}{2} \right\rfloor = 2 \) and \(d(v_{tk+2t-2}, v_{tk+t-1}) = 1 + \left\lceil \frac{t}{2} \right\rceil = 1 \).

Thus all vertices of \(V_3 \) are resolved by \(W \).

We consider the vertices in \(V_1 \). For \(j = 1, 3, \ldots, t - 1 \) and \(t; i = 0, 2, \ldots, t - 2 \), we have \(v_i \in W_1 \) and \(d(v_j, v_i) = \left\lceil \frac{j-i}{t} \right\rceil = 1 \), thus \(r(v_j|W_1) = (1, \ldots, 1) \) for \(v_j \in V_1 \setminus W_1 \). From the previous part of this proof we know that the only vertices in \(V_2 \cup V_3 \cup V_4 \) having the representation with respect to \(W_1 \) equal to \((1, \ldots, 1) \) are \(v_{n-2} \) and \(v_{n-1} \). Since \(v_{t-1} \in W_2 \), it remains to resolve all pairs of vertices in the set \(V'' = \{v_1, v_3, \ldots, v_{t-3}; v_t, v_{n-2}, v_{n-1}\} \).

We study their representations with respect to \(W_2 \). For \(j = 1, 3, \ldots, t - 3 \) and \(i = -1, 1, \ldots, t - 3 \), we have \(v_{t+i} \in W_2 \) and by (5),
\[d(v_j, v_{t+i}) = 1 + \left\lceil \frac{j-i}{t} \right\rceil = \begin{cases} 1 & \text{if } i \leq j, \\ 2 & \text{if } i > j. \end{cases} \]
Since \(j \) is greater than or equal to \(\frac{t+3}{2} \) elements from the set \(\{-1, 1, \ldots, t - 3\} \), the first \(\frac{t+3}{2} \) entries of \(r(v_j|W_2) \) are equal to \(1 \) and the other \(\frac{t}{2} - \frac{t+3}{2} \) entries
are 2. The first two entries of \(r(v_j|W_3) \) are always 1. For \(v_t \) and any \(v_{t+i} \in W_2 \),
d\((v_t, v_{t+i}) = \left\lceil \frac{|i|}{t} \right\rceil = 1 \), therefore \(r(v_t|W_2) = (1, \ldots, 1) \).

For \(i = -1, 1, \ldots, t - 3 \), by (6),

\[
d(v_{n-1}, v_{t+i}) = 1 + \left\lceil \frac{i+1}{t} \right\rceil = \begin{cases} 1 & \text{if } i = -1, \\ 2 & \text{if } i \geq 1, \end{cases}
\]

so \(r(v_{n-1}|W_2) = (1, 2, \ldots, 2) \). We have \(d(v_{n-2}, v_{t+i}) = 1 + \left\lceil \frac{i+2}{t} \right\rceil = 2 \), thus
\(r(v_{n-2}|W_2) = (2, \ldots, 2) \).

The only pair of vertices in \(V'' \) having the same representations with respect to \(W_2 \) is \((v_{t-3}, vt)\), which is resolved by \(v_{tk+t-1} \in W_3 \), since by (5) we have
\(d(v_{t-3}, v_{tk+t-1}) = k + \left\lfloor \frac{2}{t} \right\rfloor = k + 1 \) and \(d(v_t, v_{tk+t-1}) = \frac{k}{k+1} = k \).

Every two distinct vertices of the graph \(C_n(\pm 1, \pm 2, \ldots, \pm t) \) have different representations of distances with respect to \(W \), thus \(W \) is a resolving set of \(C_n(\pm 1, \pm 2, \ldots, \pm t) \). Hence \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq |W| = t + \frac{p+1}{2} \).

4. Conclusion

We studied the metric dimension of undirected and directed circulant graphs. Results on the metric dimension of undirected circulant graphs \(C_n(\pm 1, \pm t) \) are available only for special values of \(t \). In Section 2 we found exact values of the metric dimension for directed circulant graphs \(C_n(1, t) \) by showing that if \(t \geq 2 \) and \(n \geq 2t^2 \), then \(\dim(C_n(1, t)) = t \).

In Section 3 we presented a bound on the metric dimension of undirected circulant graphs. We proved that for \(n = 2tk + t + p \), where \(t \geq 4 \) is even, \(p \) is odd, \(1 \leq p \leq t + 1 \) and \(k \geq 1 \), \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2} \). Note that by [13], \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p}{2} \) if \(t \) and \(p \) are even, \(2 \leq p \leq t \), thus we have \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p}{2} \) for \(n = 2tk + t + p \), where \(t \geq 4 \) is even, \(1 \leq p \leq t + 1 \) and \(k \geq 1 \).

Acknowledgments

This work has been supported by the National Research Foundation of South Africa; grant numbers: 112122, 90793.

References

Received 25 May 2017
Revised 23 January 2018
Accepted 23 January 2018