ON THE METRIC DIMENSION OF DIRECTED AND UNDIRECTED CIRCULANT GRAPHS

TOMÁŠ VETRÍK

Department of Mathematics and Applied Mathematics
University of the Free State
Bloemfontein, South Africa

e-mail: vetrikt@ufs.ac.za

Abstract

The undirected circulant graph $C_n(\pm 1, \pm 2, \ldots, \pm t)$ consists of vertices $v_0, v_1, \ldots, v_{n-1}$ and undirected edges $v_i v_{i+j}$, where $0 \leq i \leq n-1$, $1 \leq j \leq t$ ($2 \leq t \leq \frac{n}{2}$), and the directed circulant graph $C_n(1, t)$ consists of vertices $v_0, v_1, \ldots, v_{n-1}$ and directed edges $v_i v_{i+1}, v_i v_{i+t}$, where $0 \leq i \leq n-1$ ($2 \leq t \leq n-1$), the indices are taken modulo n. Results on the metric dimension of undirected circulant graphs $C_n(\pm 1, \pm t)$ are available only for special values of t. We give a complete solution of this problem for directed graphs $C_n(1, t)$ for every $t \geq 2$ if $n \geq 2t^2$. Grigorious et al. [On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54] presented a conjecture saying that $\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + p - 1$ for $n = 2tk + t + p$, where $3 \leq p \leq t + 1$. We disprove it by showing that $\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2}$ for $n = 2tk + t + p$, where $t \geq 4$ is even, p is odd, $1 \leq p \leq t + 1$ and $k \geq 1$.

Keywords: metric dimension, resolving set, circulant graph, distance.

2010 Mathematics Subject Classification: 05C35, 05C12.

References

Received 25 May 2017
Revised 23 January 2018
Accepted 23 January 2018