BOUNDS ON THE LOCATING-TOTAL DOMINATION NUMBER IN TREES

KUN WANG

School of Mathematical Sciences
Anhui University
Hefei 230601, China

e-mail: wangkun26@163.com

WENJIE NING

College of Science
China University of Petroleum (East China)
Qingdao 266580, China

e-mail: ningwenjie-0501@163.com

AND

MEI LU

Department of Mathematical Sciences
Tsinghua University
Beijing 100084, China

e-mail: mlu@math.tsinghua.edu.cn

Abstract

Given a graph $G = (V, E)$ with no isolated vertex, a subset S of V is called a total dominating set of G if every vertex in V has a neighbor in S. A total dominating set S is called a locating-total dominating set if for each pair of distinct vertices u and v in $V \setminus S$, $N(u) \cap S \neq N(v) \cap S$. The minimum cardinality of a locating-total dominating set of G is the locating-total domination number, denoted by $\gamma_{Lt}(G)$. We show that, for a tree T of order $n \geq 3$ and diameter d, \(\frac{d+1}{2} \leq \gamma_{Lt}(T) \leq n - \frac{d-1}{2} \), and if T has l leaves, s support vertices and s_1 strong support vertices, then $\gamma_{Lt}(T) \geq \max \left\{ \frac{n+l-s+1}{2}, \frac{2(n+1)+3(l-s)-s_1}{5} \right\}$. We also characterize the extremal trees achieving these bounds.

Keywords: tree, total dominating set, locating-total dominating set, locating-total domination number.

2010 Mathematics Subject Classification: 05C69.
References

doi:10.7151/dmgt.1538

doi:10.7151/dmgt.1414

doi:10.1016/j.dam.2006.01.002

doi:10.1016/j.dam.2012.04.004

doi:10.1016/j.dam.2015.06.029

Received 22 May 2017
Revised 10 January 2018
Accepted 10 January 2018