MINIMUM COVERINGS OF CROWNS WITH CYCLES AND STARS

JENQ-JONG LIN

Department of Finance
Ling Tung University, Taichung 40852, Taiwan
e-mail: jjlin@teamail.ltu.edu.tw

AND

MIN-JEN JOU1

Department of Information Technology
Ling Tung University, Taichung 40852, Taiwan
e-mail: mjjou@teamail.ltu.edu.tw

Abstract

Let F, G and H be graphs. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable.

1Corresponding author.

Keywords: cycle, star, covering, decomposition, crown.

2010 Mathematics Subject Classification: 05C51, 05C70.

1. INTRODUCTION

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable. A (G, H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G, H)-decomposition, we say that F is (G, H)-decomposable.
A \((G, H)\)-decomposition of \(F\) may not exist, a natural question of interest is to see: What is the minimum number of edges needed to be added to the edge set of \(F\) so that the resulting graph is \((G, H)\)-decomposable, and what does the collection of added edges look like? For \(R \subseteq F\), a \((G, H)\)-covering of \(F\) with \(padding\) \(R\) is a \((G, H)\)-decomposition of \(F + E(R)\). A \((G, H)\)-covering of \(F\) with the smallest cardinality is a minimum \((G, H)\)-covering. Moreover, the cardinality of the minimum \((G, H)\)-covering of \(F\) is called the \((G, H)\)-covering number of \(F\), denoted by \(c(F; G, H)\).

As usual \(K_n\) denotes the complete graph with \(n\) vertices and \(K_{m,n}\) denotes the complete bipartite graph with parts of sizes \(m\) and \(n\). A \(k\)-star, denoted by \(S_k\), is the complete bipartite graph \(K_{1,k}\). The vertex of degree \(k\) in \(S_k\) is the center of \(S_k\) and any vertex of degree 1 is an end-vertex of \(S_k\). Let \((y_1, y_2, \ldots, y_k)_{x}\) denote the \(k\)-star with center \(x\) and end-vertices \(y_1, y_2, \ldots, y_k\). A \(k\)-cycle (respectively, \(k\)-path), denoted by \(C_k\) (respectively, \(P_k\)), is a cycle (respectively, path) with \(k\) edges. Let \((v_1, v_2, \ldots, v_k)\) and \(v_1v_2 \cdots v_k\) denote the \(k\)-cycle and \((k-1)\)-path through vertices \(v_1, \ldots, v_k\) in order, respectively. A spanning subgraph \(H\) of a graph \(G\) is a subgraph of \(G\) with \(V(H) = V(G)\). A 1-factor of \(G\) is a spanning subgraph of \(G\) with each vertex incident with exactly one edge. For positive integers \(\ell\) and \(n\) with 1 \(\leq \ell \leq n\), the crown \(C_{n,\ell}\) is a bipartite graph with bipartition \((A, B)\) where \(A = \{a_0, a_1, \ldots, a_{n-1}\}\) and \(B = \{b_0, b_1, \ldots, b_{n-1}\}\), and edge set \(\{a_ib_j : i = 0, 1, \ldots, n-1, \ j \equiv i + 1, i + 2, \ldots, i + \ell \ (\text{mod } n)\}\). In the sequel of the paper, \((A, B)\) always means the bipartition of \(C_{n,\ell}\) defined here. Note that \(C_{n,n-1}\) is the graph obtained from the complete bipartite graph \(K_{n,n}\) with a 1-factor removed.

The existence problems for \((C_k, S_k)\)-decomposition of \(K_{m,n}\) and \(C_{n,n-1}\) have been completely settled by Lee [1] and Lee and Lin [4], respectively. Lee [2] obtained the maximum packing and minimum covering of the balanced complete bipartite multigraph \(\lambda K_{n,n}\) with \((C_k, S_k)\). Lee and Chen [3] gave the maximum packing and minimum covering of \(\lambda K_n\) with \((P_k, S_k)\). This paper gives the solution of finding the minimum \((C_k, S_k)\)-covering of the crown \(C_{n,n-1}\).

2. Preliminaries

Let \(G = (V, E)\) be a graph. For sets \(A \subseteq V(G)\) and \(B \subseteq E(G)\), we use \(G[A]\) to denote the subgraph of \(G\) induced by \(A\) and \(G - B\) (respectively, \(G + B\)) to denote the subgraph obtained from \(G\) by deleting (respectively, adding) the edges in \(B\). When \(G_1, \ldots, G_t\) are graphs, not necessarily disjoint, we write \(G_1 \cup \cdots \cup G_t\) or \(\bigcup_{i=1}^t G_i\) for the graph with vertex set \(\bigcup_{i=1}^t V(G_i)\) and edge set \(\bigcup_{i=1}^t E(G_i)\). When the edge sets are disjoint, \(G = \bigcup_{i=1}^t G_i\) expresses the decomposition of \(G\) into \(G_1, \ldots, G_t\). For a graph \(G\) and a positive integer \(\lambda \geq 2\), we use \(\lambda G\) to denote
the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The following results are essential to our proof.

Lemma 1 [7]. For integers m and n with $m \geq n \geq 1$, the graph $K_{m,n}$ is S_k-decomposable if and only if $m \geq k$ and

\[
\begin{align*}
m &\equiv 0 \pmod{k} & \text{if } n < k, \\
mn &\equiv 0 \pmod{k} & \text{if } n \geq k.
\end{align*}
\]

Lemma 2 [5]. $\lambda C_{n,\ell}$ is S_k-decomposable if and only if $k \leq \ell$ and $\lambda nm \equiv 0 \pmod{k}$.

Lemma 3 [5]. Let $\{a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}\}$ be the vertex set of the multicrown $\lambda C_{n,\ell}$. Suppose that p and q are positive integers such that $q < p \leq \ell$. If $\lambda nq \equiv 0 \pmod{p}$, then there exists a spanning subgraph G of $\lambda C_{n,\ell}$ such that $\deg_G b_j = \lambda q$ for $0 \leq j \leq n-1$ and G has an S_p-decomposition.

Lemma 4 [6]. For positive integers k and n, $C_{n,n-1}$ is C_k-decomposable if and only if n is odd, k is even, $4 \leq k \leq 2n$, and $n(n-1) \equiv 0 \pmod{k}$.

3. Covering numbers

In this section the covering number of $C_{n,n-1}$ with k-cycles and k-stars is determined.

Lemma 5 [4]. If k is an even integer with $k \geq 4$, then $C_{k+1,k}$ is not (C_k, S_k)-decomposable.

Lemma 6. If k is an even integer with $k \geq 4$, then $C_{2k,2k-1}$ has a (C_k, S_k)-covering with padding S_k.

Proof. By Lemma 4, we have that $C_{k+1,k}$ is C_k-decomposable. Define a k-star $R = \langle b_1, b_2, \ldots, b_k \rangle a_0$. Clearly, $C_{k+1,k} + E(R)$ is a (C_k, S_k)-covering with padding R.

We obtain the following result by Lemmas 5 and 6.

Corollary 7. $c(C_{k+1,k}; C_k, S_k) = k + 2$.

Lemma 8 [4]. If k is an even integer with $k \geq 4$, then $C_{2k,2k-1}$ is (C_k, S_k)-decomposable.

Lemma 9. For integers r and k with $r \geq 3$ and $k > r(r+1)$, $C_{k+r+1,k+r}$ can be decomposed into one copy of $r(r+1)$-cycle and $k + 2r + 1$ copies of k-stars.
Proof. Let \(s = r(r + 1)/2 \). Trivially, \(k + r + 1 > s \). Let \(A_0 = \{a_0, a_1, \ldots, a_{s-1}\} \), \(B_0 = \{b_0, b_1, \ldots, b_{s-1}\} \), \(H_0 = C_{n,n-1}[A_0 \cup B_0] \), \(H_1 = C_{n,n-1}[(A \setminus A_0) \cup B_0] \), and \(H_2 = C_{n,n-1}[A \cup (B \setminus B_0)] \). Clearly, \(C_{k+r+1,k+r} = H_0 \cup H_1 \cup H_2 \). Note that \(H_0 \) is isomorphic to \(C_{s,s-1} \), \(H_1 \) is isomorphic to \(K_{k+r+1-s,s} \), and \(H_2 \) is isomorphic to \(C_{k+r+1-s,k+r-s} \cup K_{s,k+r+1-s} \). Let

\[
C = (b_1, a_0, b_2, a_1, b_3, a_2, \ldots, b_{s-1}, a_{s-2}, b_0, a_{s-1})
\]

and \(H = H_0 - E(C) \). Trivially, \(C \) is an \(r(r+1) \)-cycle in \(H_0 \) and \(H = C_{s,s-3} \). Note that \(r - 2 < s - r - 1 \) for \(r \geq 3 \) and \(s(r-2) = rs - r(r+1) = r(s-r-1) \). By Lemma 3, there exists a spanning subgraph \(X \) of \(H \) such that \(\deg_X b_j = r - 2 \) for \(0 \leq j \leq s-1 \) and \(X \) has an \(S_{s-r-1} \)-decomposition \(\mathcal{H} \) with \(|\mathcal{H}| = r \). Furthermore, each \(S_{s-r-1} \) has its center in \(A_0 \) since \(\deg_X b_j = r - 2 < s - r - 1 \). Suppose that the centers of the \((s-r-1)\)-stars in \(\mathcal{H} \) are \(a_1, \ldots, a_{r} \). Let \(S(u) \) be the \((s-r-1)\)-star with center \(a_u \) in \(\mathcal{H} \), and let \(Y = H - E(X) \cup H_1 \). Note that \(\deg_Y b_j = (s - 3 - (r - 2)) + (k + r + 1 - s) = k \) for \(0 \leq j \leq s-1 \). Hence \(Y \) has an \(S_k \)-decomposition \(\mathcal{H}'(1) \) with \(|\mathcal{H}'(1)| = s \). For \(u \in \{1, \ldots, r\} \), define \(S'(u) = H_2[a_u \cup (B \setminus B_0)] \) and \(Z = H_2 - E(\bigcup_{u=1}^r S'(u)) \). Clearly, \(S'(u) \) is a \((k + r - 1 - s)\)-star with center \(a_u \) in \(H_2 \), and \(S(u) \cup S'(u) \) is a \(k \)-star. There are \(r \) copies of such \(k \)-stars. Moreover, \(\deg_Z b_j = k + r - r = k \) for \(s \leq j \leq k + r \), and it follows that \(Z \) has an \(S_k \)-decomposition \(\mathcal{H}'(2) \) with \(|\mathcal{H}'(2)| = k + r - s + 1 \). Thus there are \(s + r + k + r - s + 1 = k + 2r + 1 \) copies of \(k \)-stars. This completes the proof.

Lemma 10. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(4 \leq k < n - 1 < 2k - 1 \). If \((n-k)(n-k-1) < k\), then \(C_{n,n-1} \) has a \((C_k, S_k)\)-covering with padding \(P_{k-\min(n-k),(n-k-1)} \).

Proof. Let \(n - 1 = k + r \). From the assumption \(k < n - 1 < 2k - 1 \), we have \(0 < r < k - 1 \). The proof is divided into two parts according to the value of \(r \).

Case 1. \(r \leq 2 \). Let \(A'_0 = \{a_0, a_1, \ldots, a_{k+1}\} \), \(A'_1 = \{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\} \), \(B'_0 = \{b_0, b_1, \ldots, b_{k}\} \), \(B'_1 = \{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\} \). Let \(D_0 = C_{n,n-1}[A'_0 \cup \{a_k\}] \cup (B'_0 \cup \{b_k\}) \), \(D_1 = C_{n,n-1}[A'_0 \cup B'_1] \), \(D_2 = C_{n,n-1}[A'_1 \cup B'_0] \) and \(D_3 = C_{n,n-1}[A'_1 \cup \{a_k\}] \cup (B'_1 \cup \{b_k\}) \). Clearly, \(C_{n,n-1} = D_0 \cup D_1 \cup D_2 \cup D_3 \). Note that \(D_0 \) is isomorphic to \(C_{k+1,k} \), \(D_1 \) is isomorphic to \(K_{k,r} \), \(D_2 \) is isomorphic to \(K_{r,k} \) and \(D_3 \) is isomorphic to \(C_{r+1,r} \). By Lemma 2, we have that \(D_0 \) has a \(k \)-star decomposition \(\{b_{j+1}, \ldots, b_{j+k}\} \) for \(0 \leq j \leq k \), where the subscripts of b's are taken modulo \(k + 1 \) in the set of numbers \(\{0, 1, \ldots, k\} \). By Lemma 1, we obtain that \(D_1 \) and \(D_2 \) have \(k \)-star decompositions \(\{a_0, a_1, \ldots, a_{k-1}\} \) and \(\{b_0, b_1, \ldots, b_{k-1}\} \) for \(0 \leq i \leq k, j \leq k + r \), respectively.

Subcase 1.1. \(r = 1 \). Define a \((k-2)\)-path \(R_1 \) as follows.

\[
R_1 = a_{k+1}b_1a_0b_2a_1b_3a_2 \cdots a_{k-3}b_ka_k.
\]
where the subscripts of a’s and b’s are taken modulo n. Then

$$
(b_0, b_1, \ldots, b_{k-1})_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-1} \rangle_{a_{k+1}} \cup D_3 \cup R_1
$$

$$= (b_0, b_1, \ldots, b_{k-1})_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-1} \rangle_{a_{k+1}} \cup \{a_k b_{k+1}, a_k b_k\} \cup R_1
$$

Note that $a_k b_{k-1} a_{k+1} \cup R_1$ is a k-cycle. Hence $C_{k+2,k+1} + E(R_1)$ can be decomposed into $k + 3$ copies of k-stars and one copy of k-cycle, that is, $C_{k+2,k+1}$ has a (C_k, S_k)-covering \mathcal{E}_1 with $|\mathcal{E}_1| = k + 4$ and padding R_1.

Subcase 1.2. $r = 2$. Define a $(k - 6)$-path R_2 as follows.

$$R_2 = b_1 a_0 b_2 a_1 \cdots b_{\frac{k}{2} - 3} a_{\frac{k}{2} - 4} b_{k+1},$$

where the subscripts of a’s and b’s are taken modulo n. Then

$$
(b_0, b_1, \ldots, b_{k-1})_{a_{k+2}} \cup D_3 \cup R_2
$$

$$= (b_0, b_1, \ldots, b_{k-1})_{a_{k+2}} \cup \{a_k b_{k+1}, a_k b_k, a_{k+1} b_k, a_{k+1} b_{k+2}, a_{k+2} b_{k+2}, a_{k+2} b_{k+1}\} \cup R_2
$$

Note that $b_{k+1} a_k b_{k+2} a_{k+1} b_k a_{k+2} b_1 \cup R_2$ is a k-cycle. Hence $C_{k+3,k+2} + E(R_2)$ can decomposed into $k + 5$ copies of k-stars and one copy of k-cycle, that is, $C_{k+3,k+2}$ has a (C_k, S_k)-covering \mathcal{E}_2 with $|\mathcal{E}_2| = k + 6$ and padding R_2.

Case 2. $r \geq 3$. Let $s = r(r + 1)/2$ and H_0, H_1 and H_2 be the graphs defined in the proof of Lemma 9. Define a $(k - 2s)$-path R_3 as follows.

$$R_3 = a_{s-1} b_{s+1} a_s b_{s+2} \cdots b_{\frac{k}{2} - 3} a_{\frac{k}{2} - 4} a_{k+r},$$

where the subscripts of a’s and b’s are taken modulo n.

Let S be the k-star with center b_1 and C be the $2s$-cycle mentioned in Lemma 9. Then

$$S \cup C \cup R_3
$$

$$= (S - a_{k+r} b_1 + a_{s-1} b_1) \cup a_k + b_1 a_0 b_2 a_1 b_3 a_2 \cdots b_{s-1} a_{s-2} b_0 a_{s-1} \cup R_3.
$$

Note that $a_{k+r} b_1 a_0 b_2 a_1 b_3 a_2 \cdots b_{s-1} a_{s-2} b_0 a_{s-1} \cup R_3$ is a k-cycle. Hence $C_{k+r+1,k+r} + E(R_3)$ can be decomposed into $k + 2r + 1$ copies of k-stars and one copy of k-cycle, that is, $C_{k+r+1,k+r}$ has a (C_k, S_k)-covering \mathcal{E}_3 with $|\mathcal{E}_3| = k + 2r + 2$ and padding R_3. This settles Case 2.

Before plunging into the proof of the case of $(n - k)(n - k - 1) \geq k$, a result due to Lee and Lin [4] is needed.
Lemma 11. If k is an even integer with $k \geq 4$, then there exist $k/2 - 1$ edge-disjoint k-cycles in $C_{k/2,k/2-1} \cup K_{k/2,k/2}$.

Lemma 12. Let k be a positive even integer and let n be a positive integer with $4 \leq k < n - 1 < 2k - 1$. If $(n-k)(n-k-1) \geq k$, then $C_{n,n-1}$ has a (C_k, S_k)-covering \mathcal{C} with $|\mathcal{C}| = [n(n-1)/k]$.

Proof. Let $n-1 = k + r$. From the assumption $k < n - 1 < 2k - 1$, we have $0 < r < k - 1$. Since $(n-k)(n-k-1) \geq k$, we assume that $r(r+1) = ak + \beta$, where $\alpha \geq 1$ and $0 \leq \beta \leq k - 1$. Let $A'_0 = \{a_0, a_1, \ldots, a_{k-1}\}$, $A'_1 = \{a_0, a_{k+1}, \ldots, a_{k-k}\}$, $A'_2 = A \setminus (A'_0 \cup A'_1)$, $B'_0 = \{b_0, b_1, \ldots, b_{k-1}\}$, $B''_1 = B \setminus B'_0$. Let $G_i = C_{n,n-1}[A'_i \cup B'_0]$ for $i \in \{0,1,2\}$ and $G_3 = C_{n,n-1}[A \cup B''_1]$. Clearly, $C_{n,n-1} = G_0 \cup G_1 \cup G_2 \cup G_3$. Note that G_0 and G_1 are isomorphic to $C_{k/2,k/2-1} \cup K_{k/2,k/2}$, G_2 is isomorphic to $K_{r+1,k}$, which is S_k-decomposable by Lemma 1, and G_3 is isomorphic to $K_{k,r+1} \cup C_{r+1,r}$. Let $p_0 = [\alpha/2]$ and $p_1 = [\alpha/2]$. In the following, we will show that, for each $i \in \{0,1\}$, G_i can be decomposed into p_i copies of C_k and $k/2$ copies of S_{k-2p_i-1}, and G_3 can be decomposed into $k/2$ copies of S_{2p_i+1} and $r+1$ copies of $S_{k'}$, $k' \leq k$, such that the $(k-2p_i-1)$-stars and $(2p_i+1)$-stars have their centers in A'_i.

We first show the required decomposition of G_i for $i \in \{0,1\}$. Since $r < k - 1$, we have $r + 1 < k$, and in turn $\alpha < r$. Thus, $p_0 = \lceil \frac{\alpha}{2} \rceil \leq \frac{\alpha + 1}{2} \leq \frac{r+1}{2} = \frac{k}{2} - 1$, which implies $p_i \leq k/2 - 1$ for $i \in \{0,1\}$. This assures us that there exist p_i edge-disjoint k-cycles in G_i by Lemma 11. Suppose that $Q_{i,0}, \ldots, Q_{i,p_i-1}$ are edge-disjoint k-cycles in G_i. Let $F_i = G_i - E \left(\bigcup_{h=0}^{p_i-1} Q_{i,h} \right)$ and $X_{i,j} = F_i \left(\{a_{ik/2+j}\} \cup B'_0 \right)$ for $i \in \{0,1\}$, $j \in \{0, \ldots, k/2 - 1\}$. Since $\deg_{G_i} a_{ik/2+j} = k - 1$ and each $Q_{i,h}$ uses two edges incident with $a_{ik/2+j}$ for each i and j, we have $\deg_{F_i} a_{ik/2+j} = k - 2p_i - 1$. Hence $X_{i,j}$ is a $(k - 2p_i - 1)$-star with center $a_{ik/2+j}$.

Next we show the required star decomposition of G_3. For $j \in \{0, \ldots, k/2 - 1\}$, let

$$X'_{i,j} = \begin{cases} \{b_{k+(2p_0+1)}; b_{k+(2p_0+1)+1}; \ldots, b_{k+(2p_0+1)+p_0} \}_{a_{jk/2}} & \text{if } i = 0, \\ \{b_{(p_0+3/2)k+(2p_1+1)}; b_{(p_0+3/2)k+(2p_1+1)+1}; \ldots, b_{(p_0+3/2)k+(2p_1+1)+p_2} \}_{a_{jk/2}} & \text{if } i = 1, \end{cases}$$

where the subscripts of b's are taken modulo $r+1$ in the set of numbers $\{k, k+1, \ldots, k+r\}$. Since $2p_1 + 1 \leq 2p_0 + 1 \leq \alpha + 2 \leq r + 1$, this assures us that there are enough edges for the construction of $X'_{0,j}$ and $X'_{1,j}$. Note that $X'_{i,j}$ is a $(2p_1 + 1)$-star and $X_{i,j} \cup X'_{i,j}$ is a k-star for $i \in \{0,1\}$, $j \in \{0, \ldots, k/2 - 1\}$.

On the other hand, let $k - \beta = \tau(r+1) + \rho$ where $\tau \geq 0$ and $0 \leq \rho \leq r$. We have that
\[|E(G_3)| - |E\left(\bigcup_{i\in\{0,1\}} \bigcup_{j\in\{0,\ldots,k/2-1\}} X_{i,j}'\right)| = (k+r)(r+1) - (2p_0 + 2p_1 + 2)(k/2) = (k+r)(r+1) - (\alpha + 1)k = (k+r)(r+1) - r(r+1) - (k - \beta) = k(r+1) - \tau(r+1) - \rho = (k - \tau)(r+1) - \rho = (k - \tau - 1)\rho + (k - \tau)(r+1 - \rho).\]

Hence there exists a decomposition \(\mathcal{G} \) of \(G_3 - E\left(\bigcup_{i\in\{0,1\}} \bigcup_{j\in\{0,\ldots,k/2-1\}} X_{i,j}'\right) \) into \(\rho \) copies of \((k - \tau - 1)\)-star with center \(b_w \) for \(w = k, k+1, \ldots, k+\rho - 1 \) and \(r+1 - \rho \) copies of \((k - \tau)\)-star with center \(b_w \) for \(w = k+\rho, k+\rho + 1, \ldots, k+r \), that is,

\[
Y_w = \begin{cases}
S_{k-r-1}, & \text{if } w \in \{k, k+1, \ldots, k+\rho - 1\}, \\
S_{k-r}, & \text{if } w \in \{k+\rho, k+\rho + 1, \ldots, k+r\}.
\end{cases}
\]

Define a star \(Y_w' \) as follows.

\[
Y_w' = \begin{cases}
\langle a_{w_1}, a_{w_2}, \ldots, a_{w_\tau}, a_{w_\tau+1}\rangle_{b_w}, & \text{if } w \in \{k, k+1, \ldots, k+\rho - 1\}, \\
\langle a_{w_1}, a_{w_2}, \ldots, a_{w_\tau}\rangle_{b_w}, & \text{if } w \in \{k+\rho, k+\rho + 1, \ldots, k+r\},
\end{cases}
\]

where \(b_w a_{w_1} \in E(X_{i,j}') \) for \(1 \leq t \leq \tau + 1 \). Since \(|E\left(\bigcup_{i\in\{0,1\}} \bigcup_{j\in\{0,\ldots,k/2-1\}} X_{i,j}'\right)| = (\alpha+1)k, \) \(|B_{1,\tau}'| = r+1 \) and \((\tau+1)(r+1) = \tau(r+1) + (r+1) = (k - \beta - \rho) + (r+1) < 2k \leq (\alpha+1)k; \) it follows that \(\tau + 1 < (\alpha+1)k/(r+1) \). This assures us that there are enough edges for the construction of \(Y_w' \). Note that \(Y_w + E(Y_w') \) is a \(k \)-star. Hence \(C_{n,n-1} \) has a \((C_k, S_k)\)-covering \(\mathcal{C}_4 \) with padding \(\bigcup_{w\in\{k,k+1,\ldots,k+r\}} Y_w' \) and \(|\mathcal{C}_4| = (k+r+1) + (r+1) + \alpha = k + 2r + 2 + \alpha = [n(n-1)/k] \). This completes the proof.

Now, we are ready for the main result of this section.

Theorem 13. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(4 \leq k \leq n-1 \). Then

\[
c(C_{n,n-1}; C_k, S_k) = \begin{cases}
[n(n-1)/k], & \text{if } k < n - 1, \\
k + 2, & \text{if } k = n - 1.
\end{cases}
\]

Proof. Since \(|E(C_{n,n-1})| = n(n-1) \), we have that \(c(C_{n,n-1}; C_k, S_k) \geq [n(n-1)/k] \). Let \(n-1 = qk + r \), where \(q \) and \(r \) are integers with \(q \geq 1, 0 \leq r \leq k-1 \). We consider the following two cases.

Case 1. \(q = 1 \). For \(r = 0 \), the result follows from Corollary 7. If \(r \neq 0 \), by Lemmas 8, 10 and 12, \(C_{k+r+1,k+r} \) has a \((C_k, S_k)\)-covering \(\mathcal{C} \) with \(|\mathcal{C}| = [(k+r+1)(k+r)/k] \).
Case 2. \(q \geq 2 \). Note that
\[C_{n,n-1} = C_{qk+r+1,qk+r} = C_{(q-1)k+1,(q-1)k} \cup C_{k+r+1,k+r} \cup K_{(q-1)k,k+r} \cup K_{k+r,(q-1)k}. \]
Trivially, \(|E(C_{(q-1)k+1,(q-1)k})|, |E(K_{(q-1)k,k+r})| \) and \(|E(K_{k+r,(q-1)k})| \) are multiples of \(k \), by Lemmas 1 and 2, we have that \(C_{(q-1)k+1,(q-1)k}, K_{(q-1)k,k+r} \) and \(K_{k+r,(q-1)k} \) have \(S_k \)-decompositions \(\mathcal{A}(1), \mathcal{A}(2) \) and \(\mathcal{A}(3) \) with \(|\mathcal{A}(1)| = (q - 1)((q - 1)k + 1), |\mathcal{A}(2)| = |\mathcal{A}(3)| = (k + r)(q - 1)\). For the case of \(r = 0 \), by Lemma 4, \(C_{k+1,k} \) has a \(C_k \)-decomposition \(\mathcal{C} \) with \(|\mathcal{C}| = k + 1\). Hence \(C_{n,n-1} \) is \((C_k,S_k)\)-decomposable, that is, \(C_{n,n-1} \) has a \((C_k,S_k)\)-covering \(\bigcup_{i=1}^{3} \mathcal{A}(i) \cup \mathcal{C} \) with cardinality \((q - 1)((q - 1)k + 1) + k(q - 1) + k(q - 1) + k + 1 = q(kq + 1) = n(n-1)/k \).
For the other case of \(r \neq 0 \), by Lemmas 10 and 12, \(C_{k+r+1,k+r} \) has a \((C_k,S_k)\)-covering \(\mathcal{C}' \) with \(|\mathcal{C}'| = [(k + r + 1)(k + r)/k]\). Hence \(\bigcup_{i=1}^{3} \mathcal{A}(i) \cup \mathcal{C}' \) is a \((C_k,S_k)\)-covering of \(C_{n,n-1} \) with cardinality \((q - 1)((q - 1)k + 1) + (k + r)(q - 1) + (k + r)(q - 1) + [(k + r + 1)(k + r)/k] = [(qk + r + 1)(qk + r)/k] = [n(n-1)/k] \). This completes the proof. \(\square \)

References

Received 22 October 2018
Revised 7 July 2019
Accepted 7 July 2019