MINIMUM COVERINGS OF CROWNS WITH CYCLES AND STARS

JENQ-JONG LIN

Department of Finance
Ling Tung University, Taichung 40852, Taiwan

E-mail: jjlin@teamail.ltu.edu.tw

AND

MIN-JEN JOU

Department of Information Technology
Ling Tung University, Taichung 40852, Taiwan

E-mail: mjjou@teamail.ltu.edu.tw

Abstract

Let F, G and H be graphs. A (G,H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G,H)-decomposition, we say that F is (G,H)-decomposable. A (G,H)-covering of F with the smallest cardinality is a minimum (G,H)-covering. This paper gives the solution of finding the minimum (C_k,S_k)-covering of the crown $C_{n,n-1}$.

Keywords: cycle, star, covering, decomposition, crown.

2010 Mathematics Subject Classification: 05C51, 05C70.

1. Introduction

Let F, G and H be graphs. A G-decomposition of F is a partition of the edge set of F into copies of G. If F has a G-decomposition, we say that F is G-decomposable. A (G,H)-decomposition of F is a partition of the edge set of F into copies of G and copies of H with at least one copy of G and at least one copy of H. If F has a (G,H)-decomposition, we say that F is (G,H)-decomposable.

1Corresponding author.
A \((G, H)\)-decomposition of \(F\) may not exist, a natural question of interest is to see: What is the minimum number of edges needed to be added to the edge set of \(F\) so that the resulting graph is \((G, H)\)-decomposable, and what does the collection of added edges look like? For \(R \subseteq F\), a \((G, H)\)-covering of \(F\) with padding \(R\) is a \((G, H)\)-decomposition of \(F + E(R)\). A \((G, H)\)-covering of \(F\) with the smallest cardinality is a minimum \((G, H)\)-covering. Moreover, the cardinality of the minimum \((G, H)\)-covering of \(F\) is called the \((G, H)\)-covering number of \(F\), denoted by \(c(F; G, H)\).

As usual \(K_n\) denotes the complete graph with \(n\) vertices and \(K_{m,n}\) denotes the complete bipartite graph with parts of sizes \(m\) and \(n\). A \(k\)-star, denoted by \(S_k\), is the complete bipartite graph \(K_{1,k}\). The vertex of degree \(k\) in \(S_k\) is the center of \(S_k\) and any vertex of degree 1 is an end-vertex of \(S_k\). Let \((y_1, y_2, \ldots, y_k)_x\) denote the \(k\)-star with center \(x\) and end-vertices \(y_1, y_2, \ldots, y_k\). A \(k\)-cycle (respectively, \(k\)-path), denoted by \(C_k\) (respectively, \(P_k\)), is a cycle (respectively, path) with \(k\) edges. Let \((v_1, v_2, \ldots, v_k)\) and \(v_1 v_2 \cdots v_k\) denote the \(k\)-cycle and \((k - 1)\)-path through vertices \(v_1, \ldots, v_k\) in order, respectively. A spanning subgraph \(H\) of a graph \(G\) is a subgraph of \(G\) with \(V(H) = V(G)\). A 1-factor of \(G\) is a spanning subgraph of \(G\) with each vertex incident with exactly one edge. For positive integers \(\ell\) and \(n\) with \(1 \leq \ell \leq n\), the crown \(C_{n,\ell}\) is a bipartite graph with bipartition \((A, B)\) where \(A = \{a_0, a_1, \ldots, a_{n-1}\}\) and \(B = \{b_0, b_1, \ldots, b_{n-1}\}\), and edge set \(\{a_i b_j : i = 0, 1, \ldots, n - 1, j \equiv i + 1, i + 2, \ldots, i + \ell \ (\text{mod} \ n)\}\). In the sequel of the paper, \((A, B)\) always means the bipartition of \(C_{n,\ell}\) defined here. Note that \(C_{n,n-1}\) is the graph obtained from the complete bipartite graph \(K_{n,n}\) with a 1-factor removed.

The existence problems for \((C_k, S_k)\)-decomposition of \(K_{m,n}\) and \(C_{n,n-1}\) have been completely settled by Lee [1] and Lee and Lin [4], respectively. Lee [2] obtained the maximum packing and minimum covering of the balanced complete bipartite multigraph \(\lambda K_{n,n}\) with \((C_k, S_k)\). Lee and Chen [3] gave the maximum packing and minimum covering of \(\lambda K_n\) with \((P_k, S_k)\). This paper gives the solution of finding the minimum \((C_k, S_k)\)-covering of the crown \(C_{n,n-1}\).

2. Preliminaries

Let \(G = (V, E)\) be a graph. For sets \(A \subseteq V(G)\) and \(B \subseteq E(G)\), we use \(G[A]\) to denote the subgraph of \(G\) induced by \(A\) and \(G - B\) (respectively, \(G + B\)) to denote the subgraph obtained from \(G\) by deleting (respectively, adding) the edges in \(B\). When \(G_1, \ldots, G_t\) are graphs, not necessarily disjoint, we write \(G_1 \cup \cdots \cup G_t\) or \(\bigcup_{i=1}^t G_i\) for the graph with vertex set \(\bigcup_{i=1}^t V(G_i)\) and edge set \(\bigcup_{i=1}^t E(G_i)\). When the edge sets are disjoint, \(G = \bigcup_{i=1}^t G_i\) expresses the decomposition of \(G\) into \(G_1, \ldots, G_t\). For a graph \(G\) and a positive integer \(\lambda \geq 2\), we use \(\lambda G\) to denote
the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The following results are essential to our proof.

Lemma 1 [7]. For integers m and n with $m \geq n \geq 1$, the graph $K_{m,n}$ is S_k-decomposable if and only if $m \geq k$ and

\[
\begin{align*}
&\left\{ \begin{array}{ll}
m \equiv 0 \pmod{k} & \text{if } n < k, \\
mn \equiv 0 \pmod{k} & \text{if } n \geq k.
\end{array} \right.
\]

Lemma 2 [5]. $\lambda C_{n,\ell}$ is S_k-decomposable if and only if $k \leq \ell$ and $\lambda n \ell \equiv 0 \pmod{k}$.

Lemma 3 [5]. Let $\{a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}\}$ be the vertex set of the multicrown $\lambda C_{n,\ell}$. Suppose that p and q are positive integers such that $q < p \leq \ell$. If $\lambda n q \equiv 0 \pmod{p}$, then there exists a spanning subgraph G of $\lambda C_{n,\ell}$ such that $\deg_G b_j = \lambda q$ for $0 \leq j \leq n-1$ and G has an S_p-decomposition.

Lemma 4 [6]. For positive integers k and n, $C_{n,n-1}$ is C_k-decomposable if and only if n is odd, k is even, $4 \leq k \leq 2n$, and $n(n-1) \equiv 0 \pmod{k}$.

3. Covering numbers

In this section the covering number of $C_{n,n-1}$ with k-cycles and k-stars is determined.

Lemma 5 [4]. If k is an even integer with $k \geq 4$, then $C_{k+1,k}$ is not (C_k, S_k)-decomposable.

Lemma 6. If k is an even integer with $k \geq 4$, then $C_{k+1,k}$ has a (C_k, S_k)-covering with padding S_k.

Proof. By Lemma 4, we have that $C_{k+1,k}$ is C_k-decomposable. Define a k-star $R = \langle b_1, b_2, \ldots, b_k \rangle a_0$. Clearly, $C_{k+1,k} + E(R)$ is a (C_k, S_k)-covering with padding R.

We obtain the following result by Lemmas 5 and 6.

Corollary 7. $c(C_{k+1,k}; C_k, S_k) = k + 2$.

Lemma 8 [4]. If k is an even integer with $k \geq 4$, then $C_{2k,2k-1}$ is (C_k, S_k)-decomposable.

Lemma 9. For integers r and k with $r \geq 3$ and $k > r(r+1)$, $C_{k+r+1,k+r}$ can be decomposed into one copy of $r(r+1)$-cycle and $k + 2r + 1$ copies of k-stars.
Proof. Let \(s = r(r + 1)/2 \). Trivially, \(k + r + 1 > s \). Let \(A_0 = \{a_0, a_1, \ldots, a_{s-1}\} \), \(B_0 = \{b_0, b_1, \ldots, b_{s-1}\} \), \(H_0 = C_{n-1}[A_0 \cup B_0] \), \(H_1 = C_{n-1}[(A \setminus A_0) \cup B_0] \), and \(H_2 = C_{n-1}[A \cup (B \setminus B_0)] \). Clearly, \(C_{k+r+1,k+r} = H_0 \cup H_1 \cup H_2 \). Note that \(H_0 \) is isomorphic to \(C_{s,s-1} \), \(H_1 \) is isomorphic to \(K_{k+r+1-s,s} \), and \(H_2 \) is isomorphic to \(C_{k+r+1-s,k+r-s} \cup K_{s,k+r+1-s} \). Let
\[
C = (b_1, a_0, b_2, a_1, b_3, a_2, \ldots, b_{s-1}, a_{s-2}, b_0, a_{s-1})
\]
and \(H = H_0 - E(C) \). Trivially, \(C \) is an \(r(r + 1) \)-cycle in \(H_0 \) and \(H = C_{s,s-3} \).

Note that \(r - 2 < s - r - 1 \) for \(r \geq 3 \) and \(s(r - 2) = rs - r(r + 1) = r(s - r - 1) \). By Lemma 3, there exists a spanning subgraph \(X \) of \(H \) such that \(\deg_X b_j = r - 2 \) for \(0 \leq j \leq s - 1 \) and \(X \) has an \(S_{s-r-1} \)-decomposition \(\mathscr{H} \) with \(\mathcal{H} = r \). Furthermore, each \(S_{s-r-1} \) has its center in \(A_0 \) since \(\deg_X b_j = r - 2 < s - r - 1 \). Suppose that the centers of the \((s-r-1)\)-stars in \(\mathscr{H} \) are \(a_{i_1}, \ldots, a_{i_r} \). Let \(S(u) \) be the \((s-r-1)\)-star with center \(a_{i_n} \) in \(\mathscr{H} \), and let \(Y = H - E(X) \cup H_1 \). Note that \(\deg_Y b_j = (s - 3 - (r - 2)) + (k + r + 1 - s) = k \) for \(0 \leq j \leq s - 1 \). Hence \(Y \) has an \(S_k \)-decomposition \(\mathscr{H}(1) \) with \(|\mathscr{H}(1)| = s \). For \(u \in \{1, \ldots, r\} \), define \(S'(u) = H_2[[a_{i_u}] \cup (B \setminus B_0)] \) and \(Z = H_2 - E(\bigcup_{u=1}^r S'(u)) \). Clearly, \(S'(u) \) is a \((r + r + 1 - s)\)-star with center \(a_{i_u} \) in \(H_2 \), and \(S(u) \cup S'(u) \) is a \(k \)-star. There are \(r \) copies of such \(k \)-stars. Moreover, \(\deg_Z b_j = k + r - r = k \) for \(s \leq j \leq k + r \), and it follows that \(Z \) has an \(S_k \)-decomposition \(\mathscr{H}(2) \) with \(|\mathscr{H}(2)| = k + r - s + 1 \). Thus there are \(s + r + k + r - s + 1 = k + 2r + 1 \) copies of \(k \)-stars. This completes the proof.

Lemma 10. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(4 \leq k < n - 1 < 2k - 1 \). If \((n-k)(n-k-1) < k \), then \(C_{n,n-1} \) has a \((C_k, S_k)\)-covering with padding \(P_{k-(n-k)(n-k-1)} \).

Proof. Let \(n - l = k + r \). From the assumption \(k < n - 1 < 2k - 1 \), we have \(0 < r < k - 1 \). The proof is divided into two parts according to the value of \(r \).

Case 1. \(r \leq 2 \). Let \(A'_0 = \{a_0, a_1, \ldots, a_k\} \), \(A'_1 = \{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\} \), \(B'_0 = \{b_0, b_1, \ldots, b_k\} \), \(B'_1 = \{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\} \). Let \(D_0 = C_{n-1}[A'_0 \cup \{a_k\}] \cup (B'_0 \cup \{b_k\}) \), \(D_1 = C_{n-1}[A'_0 \cup \{a_k\}] \cup (B'_1 \cup \{b_k\}) \), \(D_2 = C_{n-1}[A'_1 \cup B'_0] \), and \(D_3 = C_{n-1}[A'_1 \cup \{a_k\}] \cup (B'_1 \cup \{b_k\}) \). Clearly, \(C_{n,n-1} = D_0 \cup D_1 \cup D_2 \cup D_3 \). Note that \(D_0 \) is isomorphic to \(C_{k+1,k} \), \(D_1 \) is isomorphic to \(K_{k,k} \), \(D_2 \) is isomorphic to \(K_{r,k} \), and \(D_3 \) is isomorphic to \(C_{r+1,r} \). By Lemma 2, we have that \(D_0 \) has a \(k \)-star decomposition \(\langle b_{j_1}, b_{j_2}, \ldots, b_{j_k} \rangle_{a_j} \) for \(0 \leq j \leq k \), where the subscripts of \(b \)'s are taken modulo \(k + 1 \) in the set of numbers \(\{0, 1, \ldots, k\} \). By Lemma 1, we obtain that \(D_1 \) and \(D_2 \) have \(k \)-star decompositions \(\langle a_0, a_1, \ldots, a_{k-1}, b_j \rangle \) and \(\langle b_0, b_1, \ldots, b_{k-1} \rangle_{a_i} \), for \(k + 1 \leq i, j \leq k + r \), respectively.

Subcase 1.1. \(r = 1 \). Define a \((k-2)\)-path \(R_1 \) as follows.
\[
R_1 = a_{k+1}b_1a_0b_2a_1b_3a_2 \cdots a_{k-2}b_{k-1}a_k,
\]
where the subscripts of \(a\)'s and \(b\)'s are taken modulo \(n\). Then

\[
\langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+1}} \cup D_3 \cup R_1 \\
= \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+1}} \cup \{a_k b_{k+1}, a_k b_k\} \cup R_1 \\
= \langle b_0, b_1, \ldots, b_{k-2}, b_{k+1}\rangle_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-2}, b_k\rangle_{a_{k+1}} \cup a_k b_{k-1} a_{k+1} \cup R_1.
\]

Note that \(a_k b_{k-1} a_{k+1} \cup R_1\) is a \(k\)-cycle. Hence \(C_{k+2,k+1} + E(R_1)\) can be decomposed into \(k + 3\) copies of \(k\)-stars and one copy of \(k\)-cycle, that is, \(C_{k+2,k+1}\) has a \((C_k, S_k)\)-covering \(\mathcal{C}_1\) with \(|\mathcal{C}_1| = k + 4\) and padding \(R_1\).

Subcase 1.2. \(r = 2\). Define a \((k - 6)\)-path \(R_2\) as follows.

\[
R_2 = b_1 a_0 b_2 a_1 \cdots b_{k-2} a_{k-4} b_k 1,
\]

where the subscripts of \(a\)'s and \(b\)'s are taken modulo \(n\). Then

\[
\langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+2}} \cup D_3 \cup R_2 \\
= \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+2}} \cup \{a_k b_{k+1}, a_k b_k, a_{k+1} b_k, a_k b_{k+1} b_{k+2}, a_k b_{k+2}, a_{k+1} b_{k+2} b_{k+1}\} \cup R_2 \\
= \langle b_0, b_2, b_3, \ldots, b_{k-1}, b_{k+1}\rangle_{a_{k+2}} \cup b_{k+1} a_k b_{k+2} a_{k+1} b_{k+1} \cup R_2.
\]

Note that \(b_{k+1} a_k b_{k+2} a_{k+1} b_{k+1} \cup R_2\) is a \(k\)-cycle. Hence \(C_{k+3,k+2} + E(R_2)\) can decomposed into \(k + 5\) copies of \(k\)-stars and one copy of \(k\)-cycle, that is, \(C_{k+3,k+2}\) has a \((C_k, S_k)\)-covering \(\mathcal{C}_2\) with \(|\mathcal{C}_2| = k + 6\) and padding \(R_2\).

Case 2. \(r \ge 3\). Let \(s = r(r + 1)/2\) and \(H_0, H_1\) and \(H_2\) be the graphs defined in the proof of Lemma 9. Define a \((k - 2s)\)-path \(R_3\) as follows.

\[
R_3 = a_{s-1} b_{s+1} a_s b_{s+2} \cdots a_{k-2} a_k a_{k+r},
\]

where the subscripts of \(a\)'s and \(b\)'s are taken modulo \(n\).

Let \(S\) be the \(k\)-star with center \(b_1\) and \(C\) be the \(2s\)-cycle mentioned in Lemma 9. Then

\[
S \cup C \cup R_3 \\
= (S - a_k b_1 + a_{s-1} b_1) \cup a_{k+r} b_1 a_0 b_2 a_1 b_3 a_2 \cdots b_{s-1} a_{s-2} b_0 a_{s-1} \cup R_3.
\]

Note that \(a_{k+r} b_1 a_0 b_2 a_1 b_3 a_2 \cdots b_{s-1} a_{s-2} b_0 a_{s-1} \cup R_3\) is a \(k\)-cycle. Hence \(C_{k+r+1,k+r} + E(R_3)\) can be decomposed into \(k + 2r + 1\) copies of \(k\)-stars and one copy of \(k\)-cycle, that is, \(C_{k+r+1,k+r}\) has a \((C_k, S_k)\)-covering \(\mathcal{C}_3\) with \(|\mathcal{C}_3| = k + 2r + 2\) and padding \(R_3\). This settles Case 2. }

Before plunging into the proof of the case of \((n - k)(n - k - 1) \ge k\), a result due to Lee and Lin [4] is needed.
Lemma 11 [4]. If k is an even integer with $k \geq 4$, then there exist $k/2 - 1$ edge-disjoint k-cycles in $C_{k/2,k/2-1} \cup K_{k/2,k/2}$.

Lemma 12. Let k be a positive even integer and let n be a positive integer with $4 \leq k < n - 1 < 2k - 1$. If $(n - k)(n - k - 1) \geq k$, then $C_{n,n-1}$ has a (C_k, S_k)-covering \mathcal{C} with $|\mathcal{C}| = \lceil n(n-1)/k \rceil$.

Proof. Let $n - 1 = k + r$. From the assumption $k < n - 1 < 2k - 1$, we have $0 < r < k - 1$. Since $(n - k)(n - k - 1) \geq k$, we assume that $r(r + 1) = \alpha k + \beta$, where $\alpha \geq 1$ and $0 \leq \beta < k - 1$. Let $A_0' = \{a_0, a_1, \ldots, a_{k-1}/2\}$, $A_1' = \{a_{k-1}/2, a_{k-1}/2+1, \ldots, a_{k-1}\}$, $A_2' = A \setminus (A_0' \cup A_1')$, $B_0'' = \{b_0, b_1, \ldots, b_{k-1}\}$, $B_1'' = B \setminus B_0''$. Let $G_i = C_{n,n-1}[A_0' \cup B_0'']$ for $i \in \{0, 1\}$ and $G_3 = C_{n,n-1}[A \cup B_1'']$. Clearly, $C_{n,n-1} = G_0 \cup G_1 \cup G_2 \cup G_3$. Note that G_0 and G_1 are isomorphic to $C_{k/2,k/2-1} \cup K_{k/2,k/2}$, G_2 is isomorphic to $K_{r+1,k}$, which is isomorphic to S_k, G_3 is isomorphic to $K_{k,r+1} \cup G_{r+1}$, r. Let $p_0 = \lfloor \alpha/2 \rfloor$ and $p_1 = \lfloor \alpha/2 \rfloor$. In the following, we will show that, for each $i \in \{0, 1, \}$, G_i can be decomposed into p_i copies of G_k and $k/2$ copies of S_{k-2p_i-1}, and G_3 can be decomposed into $k/2$ copies of S_{2p_i} and $r + 1$ copies of S_k, with $k' \leq k$, such that the $(k - 2p_i - 1)$-stars and $(2p_i + 1)$-stars have their centers in A''_0.

We first show the required decomposition of G_i for $i \in \{0, 1\}$. Since $r < k - 1$, we have $r + 1 < k$, and in turn $\alpha < r$. Thus, $p_0 = \lceil r/2 \rceil \leq \alpha + 1 < \frac{(r-1)+1}{2} \leq \frac{k-2}{2} = \frac{k}{2} - 1$, which implies $p_i \leq k/2 - 1$ for $i \in \{0, 1\}$. This assures us that there exist p_i edge-disjoint k-cycles in G_i by Lemma 11. Suppose that $Q_{i,0}, \ldots, Q_{i,p_i-1}$ are edge-disjoint k-cycles in G_i. Let $F_i = G_i - E\left(\bigcup_{h=0}^{p_i-1} Q_{i,h}\right)$ and $X_{i,j} = F_i\left[\{a_{k/2+j}\} \cup B_0''\right]$ where $i \in \{0, 1\}$, $j \in \{0, \ldots, k/2 - 1\}$. Since $\text{deg}_{G_i} a_{k/2+j} = k - 1$ and each $Q_{i,h}$ uses two edges incident with $a_{k/2+j}$ for each i and j, we have $|\text{deg}_{F_i} a_{k/2+j}| = k - 2p_i - 1$. Hence $X_{i,j}$ is a $(k - 2p_i - 1)$-star with center $a_{k/2+j}$.

Next we show the required star decomposition of G_3. For $j \in \{0, \ldots, k/2 - 1\}$, let

$$X'_{i,j} = \begin{cases} \langle b_{k+(2p_0+1)j}, b_{k+(2p_0+1)j+1}, \ldots, b_{k+(2p_0+1)j+2p_0} \rangle_{a_j}, & \text{if } i = 0, \\ \langle b_{(p_0+3/2)k+(2p_1+1)j}, b_{(p_0+3/2)k+(2p_1+1)j+1}, \ldots, b_{(p_0+3/2)k+(2p_1+1)j+2p_1} \rangle_{a_{k/2+j}}, & \text{if } i = 1, \end{cases}$$

where the subscripts of b's are taken modulo $r + 1$ in the set of numbers $\{k, k + 1, \ldots, k + r\}$. Since $2p_1 + 1 \leq 2p_0 + 1 \leq \alpha + 2 \leq r + 1$, this assures us that there are enough edges for the construction of $X'_{i,j}$ and $X''_{i,j}$. Note that $X''_{i,j}$ is a $(2p_1 + 1)$-star and $X_{i,j} \cup X'_{i,j}$ is a k-star for $i \in \{0, 1\}$, $j \in \{0, \ldots, k/2 - 1\}$.

On the other hand, let $k - \beta = \tau(r + 1) + \rho$ where $\tau \geq 0$ and $0 \leq \rho \leq r$. We have that
|$E(G_3)| - |E\left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\ldots,k/2-1\}} X'_{i,j}\right)|$

\[= (k + r)(r + 1) - (2p_0 + 2p_1 + 2)(k/2)\]

\[= (k + r)(r + 1) - (\alpha + 1)k\]

\[= (k + r)(r + 1) - r(r + 1) - (k - \beta)\]

\[= k(r + 1) - \tau(r + 1) - \rho = (k - \tau)(r + 1) - \rho\]

\[= (k - \tau - 1)\rho + (k - \tau)(r + 1 - \rho).\]

Hence there exists a decomposition \mathcal{D} of $G_3 - E\left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\ldots,k/2-1\}} X'_{i,j}\right)$ into ρ copies of $(k - \tau - 1)$-star with center b_w for $w = k, k + 1, \ldots, k + \rho - 1$ and $r + 1 - \rho$ copies of $(k - \tau)$-star with center b_w for $w = k + \rho, k + \rho + 1, \ldots, k + r$, that is,

\[Y_w = \begin{cases} S_{k-r-1}, & \text{if } w \in \{k, k + 1, \ldots, k + \rho - 1\}, \\ S_{k-r}, & \text{if } w \in \{k + \rho, k + \rho + 1, \ldots, k + r\}. \end{cases}\]

Define a star Y'_w as follows.

\[Y'_w = \begin{cases} \langle a_{w_1}, a_{w_2}, \ldots, a_{w_{r+1}} \rangle_{b_w}, & \text{if } w \in \{k, k + 1, \ldots, k + \rho - 1\}, \\ \langle a_{w_1}, a_{w_2}, \ldots, a_{w_r} \rangle_{b_w}, & \text{if } w \in \{k + \rho, k + \rho + 1, \ldots, k + r\}, \end{cases}\]

where $b_w a_{w_1} \in E(X'_{i,j})$ for $1 \leq t \leq \tau + 1$. Since $|E\left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\ldots,k/2-1\}} X'_{i,j}\right)| = (\alpha + 1)k$, $|B''_w| = r + 1$ and $(\alpha + 1)(r + 1) = \tau(r + 1) + (r + 1) = (k - \beta - \rho) + (r + 1) < 2k \leq (\alpha + 1)k$; it follows that $\tau + 1 < (\alpha + 1)k/(r + 1)$. This assures us that there are enough edges for the construction of Y'_w. Note that $Y_w + E(Y''_w)$ is a k-star. Hence $C_{n,n-1}$ has a (C_k, S_k)-covering \mathcal{C}_4 with padding $\bigcup_{w \in \{k, k + 1, \ldots, k + r\}} Y'_w$ and $|\mathcal{C}_4| = (k + r + 1) + (r + 1) + \alpha = k + 2r + 2 + \alpha = \lceil n(n - 1)/k \rceil$. This completes the proof. \hfill \blacksquare

Now, we are ready for the main result of this section.

Theorem 13. Let k be a positive even integer and let n be a positive integer with $4 \leq k \leq n - 1$. Then

\[c(C_{n,n-1}; C_k, S_k) = \begin{cases} \lceil n(n - 1)/k \rceil, & \text{if } k < n - 1, \\ k + 2, & \text{if } k = n - 1. \end{cases}\]

Proof. Since $|E(C_{n,n-1})| = n(n - 1)$, we have that $c(C_{n,n-1}; C_k, S_k) \geq \lceil n(n - 1)/k \rceil$. Let $n - 1 = qk + r$, where q and r are integers with $q \geq 1$, $0 \leq r \leq k - 1$. We consider the following two cases.

Case 1. $q = 1$. For $r = 0$, the result follows from Corollary 7. If $r \neq 0$, by Lemmas 8, 10 and 12, $C_{k-r+1,k+r}$ has a (C_k, S_k)-covering \mathcal{C} with $|\mathcal{C}| = \lceil (k + r + 1)(k + r)/k \rceil$.
Case 2. $q \geq 2$. Note that
\[C_{n,n-1} = C_{qk+r+1,qk+r} = C_{(q-1)k+1,(q-1)k} \cup C_{k+r+1,k+r} \cup K_{(q-1)k,k+r} \cup K_{k+r,(q-1)k}. \]
Trivially, $|E(C_{(q-1)k+1,(q-1)k})|$, $|E(K_{(q-1)k,k+r})|$ and $|E(K_{k+r,(q-1)k})|$ are multiples of k, by Lemmas 1 and 2, we have that $C_{(q-1)k+1,(q-1)k}$, $K_{(q-1)k,k+r}$ and $K_{k+r,(q-1)k}$ have S_k-decompositions $\mathcal{A}^{(1)}$, $\mathcal{A}^{(2)}$ and $\mathcal{A}^{(3)}$ with $|\mathcal{A}^{(1)}| = (q-1)((q-1)k+1)$, $|\mathcal{A}^{(2)}| = |\mathcal{A}^{(3)}| = (k+r)(q-1)$. For the case of $r = 0$, by Lemma 4, $C_{k+1,k}$ has a C_k-decomposition \mathcal{C} with $|\mathcal{C}| = k + 1$. Hence $C_{n,n-1}$ is (C_k, S_k)-decomposable, that is, $C_{n,n-1}$ has a (C_k, S_k)-covering $\bigcup_{i=1}^3 \mathcal{A}^{(i)} \cup \mathcal{C}$ with cardinality $(q-1)((q-1)k+1)+k(q-1)+k(q-1)+k+1 = q(qk+1) = n(n-1)/k$. For the other case of $r \neq 0$, by Lemmas 10 and 12, $C_{k+r+1,k+r}$ has a (C_k, S_k)-covering \mathcal{C}' with $|\mathcal{C}'| = [(k+r+1)(k+r)/k]$. Hence $\bigcup_{i=1}^3 \mathcal{A}^{(i)} \cup \mathcal{C}'$ is a (C_k, S_k)-covering of $C_{n,n-1}$ with cardinality $(q-1)((q-1)k+1)+(k+r)(q-1)+(k+r)(q-1)+[(k+r+1)(k+r)/k] = [(qk+r+1)(qk+r)/k] = [n(n-1)/k]$. This completes the proof.

References

Received 22 October 2018
Revised 7 July 2019
Accepted 7 July 2019