MINIMUM COVERINGS OF CROWNS WITH CYCLES AND STARS

JENQ-JONG LIN

Department of Finance
Ling Tung University, Taichung 40852, Taiwan

e-mail: jjlin@teamail.ltu.edu.tw

AND

MIN-JEN JOU

Department of Information Technology
Ling Tung University, Taichung 40852, Taiwan

e-mail: mjjou@teamail.ltu.edu.tw

Abstract

Let \(F, G \) and \(H \) be graphs. A \((G,H)\)-decomposition of \(F \) is a partition of the edge set of \(F \) into copies of \(G \) and copies of \(H \) with at least one copy of \(G \) and at least one copy of \(H \). If \(F \) has a \((G,H)\)-decomposition, we say that \(F \) is \((G,H)\)-decomposable. A \((G,H)\)-decomposition of \(F \) with the smallest cardinality is a minimum \((G,H)\)-covering. This paper gives the solution of finding the minimum \((C_k,S_k)\)-covering of the crown \(C_{n,n-1} \).

Keywords: cycle, star, covering, decomposition, crown.

2010 Mathematics Subject Classification: 05C51, 05C70.

1. Introduction

Let \(F, G \) and \(H \) be graphs. A \(G \)-decomposition of \(F \) is a partition of the edge set of \(F \) into copies of \(G \). If \(F \) has a \(G \)-decomposition, we say that \(F \) is \(G \)-decomposable. A \((G,H)\)-decomposition of \(F \) is a partition of the edge set of \(F \) into copies of \(G \) and copies of \(H \) with at least one copy of \(G \) and at least one copy of \(H \). If \(F \) has a \((G,H)\)-decomposition, we say that \(F \) is \((G,H)\)-decomposable.
A \((G, H)\)-decomposition of \(F\) may not exist, a natural question of interest is to see: What is the minimum number of edges needed to be added to the edge set of \(F\) so that the resulting graph is \((G, H)\)-decomposable, and what does the collection of added edges look like? For \(R \subseteq F\), a \((G, H)\)-covering of \(F\) with *padding* \(R\) is a \((G, H)\)-decomposition of \(F + E(R)\). A \((G, H)\)-covering of \(F\) with the smallest cardinality is a minimum \((G, H)\)-covering. Moreover, the cardinality of the minimum \((G, H)\)-covering of \(F\) is called the \((G, H)\)-covering number of \(F\), denoted by \(c(F; G, H)\).

As usual \(K_n\) denotes the complete graph with \(n\) vertices and \(K_{m,n}\) denotes the complete bipartite graph with parts of sizes \(m\) and \(n\). A \(k\)-star, denoted by \(S_k\), is the complete bipartite graph \(K_{1,k}\). The vertex of degree \(k\) in \(S_k\) is the *center* of \(S_k\) and any vertex of degree 1 is an *end-vertex* of \(S_k\). Let \((y_1, y_2, \ldots, y_k)_x\) denote the \(k\)-star with center \(x\) and end-vertices \(y_1, y_2, \ldots, y_k\). A \(k\)-cycle (respectively, \(k\)-path), denoted by \(C_k\) (respectively, \(P_k\)), is a cycle (respectively, path) with \(k\) edges. Let \((v_1, v_2, \ldots, v_k)\) and \(v_1v_2 \cdots v_k\) denote the \(k\)-cycle and \((k-1)\)-path through vertices \(v_1, \ldots, v_k\) in order, respectively. A *spanning subgraph* \(H\) of a graph \(G\) is a subgraph of \(G\) with \(V(H) = V(G)\). A *1-factor* of \(G\) is a spanning subgraph of \(G\) with each vertex incident with exactly one edge. For positive integers \(\ell\) and \(n\) with \(1 \leq \ell \leq n\), the *crown* \(C_{n,\ell}\) is a bipartite graph with bipartition \((A, B)\) where \(A = \{a_0, a_1, \ldots, a_{n-1}\}\) and \(B = \{b_0, b_1, \ldots, b_{n-1}\}\), and edge set \(\{a_ib_j : i = 0, 1, \ldots, n-1, j \equiv i + 1, i + 2, \ldots, i + \ell \text{ (mod } n)\}\). In the sequel of the paper, \((A, B)\) always means the bipartition of \(C_{n,\ell}\) defined here. Note that \(C_{n,n-1}\) is the graph obtained from the complete bipartite graph \(K_{n,n}\) with a 1-factor removed.

The existence problems for \((C_k, S_k)\)-decomposition of \(K_{m,n}\) and \(C_{n,n-1}\) have been completely settled by Lee [1] and Lee and Lin [4], respectively. Lee [2] obtained the maximum packing and minimum covering of the balanced complete bipartite multigraph \(\lambda K_{n,n}\) with \((C_k, S_k)\). Lee and Chen [3] gave the maximum packing and minimum covering of \(\lambda K_{n}\) with \((P_k, S_k)\). This paper gives the solution of finding the minimum \((C_k, S_k)\)-covering of the crown \(C_{n,n-1}\).

2. Preliminaries

Let \(G = (V, E)\) be a graph. For sets \(A \subseteq V(G)\) and \(B \subseteq E(G)\), we use \(G[A]\) to denote the subgraph of \(G\) induced by \(A\) and \(G - B\) (respectively, \(G + B\)) to denote the subgraph obtained from \(G\) by deleting (respectively, adding) the edges in \(B\). When \(G_1, \ldots, G_t\) are graphs, not necessarily disjoint, we write \(G_1 \cup \cdots \cup G_t\) or \(\bigcup_{i=1}^t G_i\) for the graph with vertex set \(\bigcup_{i=1}^t V(G_i)\) and edge set \(\bigcup_{i=1}^t E(G_i)\). When the edge sets are disjoint, \(G = \bigcup_{i=1}^t G_i\) expresses the decomposition of \(G\) into \(G_1, \ldots, G_t\). For a graph \(G\) and a positive integer \(\lambda \geq 2\), we use \(\lambda G\) to denote
the multigraph obtained from G by replacing each edge e by λ edges, each of which has the same ends as e.

The following results are essential to our proof.

Lemma 1 [7]. For integers m and n with $m \geq n \geq 1$, the graph $K_{m,n}$ is S_k-decomposable if and only if $m \geq k$ and

$$
\begin{align*}
 m &\equiv 0 \pmod{k} \quad \text{if } n < k, \\
 mn &\equiv 0 \pmod{k} \quad \text{if } n \geq k.
\end{align*}
$$

Lemma 2 [5]. $\lambda C_{n,\ell}$ is S_k-decomposable if and only if $k \leq \ell$ and $\lambda n \ell \equiv 0 \pmod{k}$.

Lemma 3 [5]. Let $\{a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1}\}$ be the vertex set of the multicrown $\lambda C_{n,\ell}$. Suppose that p and q are positive integers such that $q < p \leq \ell$. If $\lambda n q \equiv 0 \pmod{p}$, then there exists a spanning subgraph G of $\lambda C_{n,\ell}$ such that $\deg_G b_j = \lambda q$ for $0 \leq j \leq n-1$ and G has an S_p-decomposition.

Lemma 4 [6]. For positive integers k and n, $C_{n,n-1}$ is C_k-decomposable if and only if n is odd, k is even, $4 \leq k \leq 2n$, and $n(n-1) \equiv 0 \pmod{k}$.

3. Covering Numbers

In this section the covering number of $C_{n,n-1}$ with k-cycles and k-stars is determined.

Lemma 5 [4]. If k is an even integer with $k \geq 4$, then $C_{k+1,k}$ is not (C_k, S_k)-decomposable.

Lemma 6. If k is an even integer with $k \geq 4$, then $C_{2k,2k-1}$ is (C_k, S_k)-decomposable.

Proof. By Lemma 4, we have that $C_{k+1,k}$ is C_k-decomposable. Define a k-star $R = \langle b_1, b_2, \ldots, b_k \rangle_{a_0}$. Clearly, $C_{k+1,k} + E(R)$ is a (C_k, S_k)-covering with padding R.

We obtain the following result by Lemmas 5 and 6.

Corollary 7. $c(C_{k+1,k}; C_k, S_k) = k + 2$.

Lemma 8 [4]. If k is an even integer with $k \geq 4$, then $C_{2k,2k-1}$ is (C_k, S_k)-decomposable.

Lemma 9. For integers r and k with $r \geq 3$ and $k > r(r+1)$, $C_{k+r+1,k+r}$ can be decomposed into one copy of $r(r+1)$-cycle and $k + 2r + 1$ copies of k-stars.
Proof. Let \(s = r(r + 1)/2 \). Trivially, \(k + r + 1 > s \). Let \(A_0 = \{a_0, a_1, \ldots, a_{s-1}\}, \ B_0 = \{b_0, b_1, \ldots, b_{s-1}\}, \ H_0 = C_{n,n-1}[A_0 \cup B_0], \ H_1 = C_{n,n-1}[\{A \setminus A_0\} \cup B_0], \) and \(H_2 = C_{n,n-1}[A \cup (B \setminus B_0)] \). Clearly, \(C_{k+r+1,k+r} = H_0 \cup H_1 \cup H_2 \). Note that \(H_0 \) is isomorphic to \(C_{s,s-1} \), \(H_1 \) is isomorphic to \(K_{k+r+1-s,s} \), and \(H_2 \) is isomorphic to \(C_{k+r+1-s,k+r-s} \cup K_{s,k+r+1-s} \). Let

\[
C = (b_1, a_0, b_2, a_1, b_3, a_2, \ldots, b_{s-1}, a_{s-2}, b_0, a_{s-1})
\]

and \(H = H_0 - E(C) \). Trivially, \(C \) is an \(r(r+1) \)-cycle in \(H_0 \) and \(H = C_{s,s-3} \). Note that \(r - 2 < s - r - 1 \) for \(r \geq 3 \) and \(s(r-2) = rs-r(r+1) = r(s-r-1) \). By Lemma 3, there exists a spanning subgraph \(X \) of \(H \) such that \(\text{deg}_X b_j = r - 2 \) for \(0 \leq j \leq s - 1 \) and \(X \) has an \(S_{s-r-1} \)-decomposition \(\mathcal{H} \) with \(|\mathcal{H}| = r \). Furthermore, each \(S_{s-r-1} \) has its center in \(A_0 \) since \(\text{deg}_X b_j = r - 2 < s - r - 1 \). Suppose that the centers of the \((s-r-1)\)-stars in \(\mathcal{H} \) are \(a_1, \ldots, a_n \). Let \(S(u) \) be the \((s-r-1)\)-star with center \(a_u \) in \(\mathcal{H} \), and let \(Y = H - E(X) \cup H_1 \). Note that \(\text{deg}_Y b_j = (s - 3 - (r - 2)) + (k + r + 1 - s) = k \) for \(0 \leq j \leq s - 1 \). Hence \(Y \) has an \(S_k \)-decomposition \(\mathcal{H}(1) \) with \(|\mathcal{H}(1)| = s \). For \(u \in \{1, \ldots, r\}, \) define \(S'(u) = H_2[\{a_u\} \cup (B \setminus B_0)] \) and \(Z = H_2 - E(\bigcup_{u=1}^r S'(u)) \). Clearly, \(S'(u) \) is a \((k + r + 1 - s)\)-star with center \(a_u \) in \(H_2 \), and \(S(u) \cup S'(u) \) is a \(k \)-star. There are \(r \) copies of such \(k \)-stars. Moreover, \(\text{deg}_Z b_j = k + r - r = k \) for \(s - j \leq k + r \), and it follows that \(Z \) has an \(S_k \)-decomposition \(\mathcal{H}(2) \) with \(|\mathcal{H}(2)| = k + r - s + 1 \). Thus there are \(s + r + k + r - s + 1 = k + 2r + 1 \) copies of \(k \)-stars. This completes the proof.

Lemma 10. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(4 \leq k < n - 1 < 2k - 1 \). If \((n-k)(n-k-1) < k \), then \(C_{n,n-1} \) has a \((C_k, S_k)\)-covering with padding \(P_{k-(n-k)(n-k-1)} \).

Proof. Let \(n - 1 = k + r \). From the assumption \(k < n - 1 < 2k - 1 \), we have \(0 < r < k - 1 \). The proof is divided into two parts according to the value of \(r \).

Case 1. \(r \leq 2 \). Let \(A_0 = \{a_0, a_1, \ldots, a_{k+r}\}, \ A_1 = \{a_{k+1}, a_{k+2}, \ldots, a_{k+r}\}, \ B_0 = \{b_0, b_1, \ldots, b_{k-1}\}, \ B_1 = \{b_{k+1}, b_{k+2}, \ldots, b_{k+r}\} \). Let \(D_0 = C_{n,n-1}[\{A_0 \cup \{a_k\} \cup (B_0 \cup \{b_k\})], \ D_1 = C_{n,n-1}[A_0 \cup B_1], \ D_2 = C_{n,n-1}[A_1 \cup B_0], \) and \(D_3 = C_{n,n-1}[A_1 \cup \{a_k\}] \cup (B_1 \cup \{b_k\}) \). Clearly, \(C_{n,n-1} = D_0 \cup D_1 \cup D_2 \cup D_3 \). Note that \(D_0 \) is isomorphic to \(C_{k+1,k} \), \(D_1 \) is isomorphic to \(K_{k,k} \), \(D_2 \) is isomorphic to \(K_{k,k} \), and \(D_3 \) is isomorphic to \(C_{r+1,r} \). By Lemma 2, we have that \(D_0 \) has a \(k \)-star decomposition \(\langle b_{j_1}, b_{j_2}, \ldots, b_{j_k} \rangle a_j \) for \(0 \leq j \leq k \), where the subscripts of \(b \)'s are taken modulo \(k + 1 \) in the set of numbers \(\{0, 1, \ldots, k\} \). By Lemma 1, we obtain that \(D_1 \) and \(D_2 \) have \(k \)-star decompositions \(\langle a_0, a_1, \ldots, a_{k-1} \rangle b_j \) and \(\langle b_0, b_1, \ldots, b_{k-1} \rangle a_i \), for \(k + 1 \leq i, j \leq k + r \), respectively.

Subcase 1.1. \(r = 1 \). Define a \((k-2)\)-path \(R_1 \) as follows.

\[
R_1 = a_{k+1}b_1a_0b_2a_1b_3a_2 \cdots a_{k-3}b_{k-1}a_k
\]
where the subscripts of \(a\)'s and \(b\)'s are taken modulo \(n\). Then
\[
\langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+1}} \cup D_3 \cup R_1
\]
\[
= \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+1}} \cup \{a_kb_{k+1}, a_{k+1}b_k\} \cup R_1
\]
\[
= \langle b_0, b_1, \ldots, b_{k-2}, b_{k+1}\rangle_{a_k} \cup \langle b_0, b_1, \ldots, b_{k-2}, b_{k}\rangle_{a_{k+1}} \cup a_kb_{k-1}a_{k+1} \cup R_1.
\]

Note that \(a_kb_{k-1}a_{k+1} \cup R_1\) is a \(k\)-cycle. Hence \(C_{k+2,k+1} + E(R_1)\) can be decomposed into \(k + 3\) copies of \(k\)-stars and one copy of \(k\)-cycle, that is, \(C_{k+2,k+1}\) has a \((C_k, S_k)\)-covering \(\mathcal{C}_1\) with \(|\mathcal{C}_1| = k + 4\) and padding \(R_1\).

Subcase 1.2. \(r = 2\). Define a \((k - 6)\)-path \(R_2\) as follows.
\[
R_2 = b_1a_0b_2a_1 \cdots b_{\frac{k-3}{2}}a_{\frac{k-1}{2}}b_{k+1},
\]
where the subscripts of \(a\)'s and \(b\)'s are taken modulo \(n\). Then
\[
\langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+2}} \cup D_3 \cup R_2
\]
\[
= \langle b_0, b_1, \ldots, b_{k-1}\rangle_{a_{k+2}} \cup \{a_kb_{k+1}, a_{k}b_{k+2}, a_{k+1}b_k, a_{k+1}b_{k+2}, a_{k+2}b_k, a_{k+2}b_{k+1}\} \cup R_2
\]
\[
= \langle b_0, b_2, b_3, \ldots, b_{k-1}, b_{k+1}\rangle_{a_{k+2}} \cup b_{k+1}a_kb_{k+2}a_{k+1}b_1 \cup R_2.
\]

Note that \(b_{k+1}a_kb_{k+2}a_{k+1}b_k \cup R_2\) is a \(k\)-cycle. Hence \(C_{k+3,k+2} + E(R_2)\) can be decomposed into \(k + 5\) copies of \(k\)-stars and one copy of \(k\)-cycle, that is, \(C_{k+3,k+2}\) has a \((C_k, S_k)\)-covering \(\mathcal{C}_2\) with \(|\mathcal{C}_2| = k + 6\) and padding \(R_2\).

Case 2. \(r \geq 3\). Let \(s = r(r + 1)/2\) and \(H_0, H_1\) and \(H_2\) be the graphs defined in the proof of Lemma 9. Define a \((k - 2s)\)-path \(R_3\) as follows.
\[
R_3 = a_{s-1}b_{s-1}a_{s}b_{s+2} \cdots a_{\frac{k-3}{2}}b_{\frac{k+1}{2}}a_{k+r},
\]
where the subscripts of \(a\)'s and \(b\)'s are taken modulo \(n\).

Let \(S\) be the \(k\)-star with center \(b_1\) and \(C\) be the \(2s\)-cycle mentioned in Lemma 9. Then
\[
S \cup C \cup R_3
\]
\[
= (S - a_{k+r}b_1 + a_{s-1}b_1) \cup a_{k+r}b_1a_0b_2a_1b_3a_2 \cdots b_{s-1}a_{s-2}b_0a_{s-1} \cup R_3.
\]

Note that \(a_{k+r}b_1a_0b_2a_1b_3a_2 \cdots b_{s-1}a_{s-2}b_0a_{s-1} \cup R_3\) is a \(k\)-cycle. Hence \(C_{k+r+1,k+r} + E(R_3)\) can be decomposed into \(k + 2r + 1\) copies of \(k\)-stars and one copy of \(k\)-cycle, that is, \(C_{k+r+1,k+r}\) has a \((C_k, S_k)\)-covering \(\mathcal{C}_3\) with \(|\mathcal{C}_3| = k + 2r + 2\) and padding \(R_3\). This settles Case 2.

Before plunging into the proof of the case of \((n - k)(n - k - 1) \geq k\), a result due to Lee and Lin [4] is needed.
Lemma 11 [4]. If \(k \) is an even integer with \(k \geq 4 \), then there exist \(k/2 - 1 \) edge-disjoint \(k \)-cycles in \(C_{k/2,k/2-1} \cup K_{k/2,k/2} \).

Lemma 12. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(4 \leq k < n - 1 < 2k - 1 \). If \((n - k)(n - k - 1) \geq k \), then \(C_{n,n-1} \) has a \((C_k,S_k) \)-covering \(C \) with \(|C| = \lfloor n(n-1)/k \rfloor \).

Proof. Let \(n - 1 = k + r \). From the assumption \(k < n - 1 < 2k - 1 \), we have \(0 < r < k - 1 \). Since \((n - k)(n - k - 1) \geq k \), we assume that \(r(r + 1) = \alpha k + \beta \), where \(\alpha \geq 1 \) and \(0 \leq \beta \leq k - 1 \). Let \(A''_1 = \left\{ a_0, a_1, \ldots, a_{k-1} \right\} \), \(A'_2 = A \setminus (A''_1 \cup A''_2) \), \(B'_0 = \left\{ b_0, b_1, \ldots, b_{k-1} \right\} \), \(B_1 = B \setminus B'_0 \). Let \(G_i = C_{n,n-1}[A''_1 \cup B'_0] \) for \(i \in \{0,1,2\} \) and \(G_3 = C_{n,n-1}[A \cup B''_1] \). Clearly, \(C_{n,n-1} = G_0 \cup G_1 \cup G_2 \cup G_3 \). Note that \(G_0 \) and \(G_1 \) are isomorphic to \(K_{k/2,k/2-1} \cup K_{k/2,k/2} \), \(G_2 \) is isomorphic to \(K_{r+1,k} \), which is \(S_k \)-decomposable by Lemma 1, and \(G_3 \) is isomorphic to \(K_{k,r+1} \cup K_{r+1,k} \). Let \(p_0 = [\alpha/2] \) and \(p_1 = [\alpha/2] \). In the following, we will show that, for each \(i \in \{0,1\} \), \(G_i \) can be decomposed into \(p_i \) copies of \(C_k \) and \(k/2 \) copies of \(S_{k-2p_i - 1} \), and \(G_3 \) can be decomposed into \(k/2 \) copies of \(S_{2p_1+1} \) and \(r + 1 \) copies of \(S_{k'} \), \(k' \leq k \), such that the \((k-2p_i-1)\)-stars and \((2p_i+1)\)-stars have their centers in \(A''_1 \).

We first show the required decomposition of \(G_i \) for \(i \in \{0,1\} \). Since \(r < k - 1 \), we have \(r + 1 < k \), and in turn \(\alpha < r \). Thus, \(p_0 = \left\lceil \frac{\alpha}{2} \right\rceil \leq \frac{\alpha+1}{2} \leq \frac{r+1}{2} = \frac{k-2}{2} - 1 \), which implies \(p_i \leq k/2 - 1 \) for \(i \in \{0,1\} \). This assures us that there exist \(p_i \) edge-disjoint \(k \)-cycles in \(G_i \) by Lemma 11. Suppose that \(Q_{i,0}, \ldots, Q_{i,p_i-1} \) are edge-disjoint \(k \)-cycles in \(G_i \). Let \(F_i = G_i - E \left(\bigcup_{h=0}^{p_i-1} Q_{i,h} \right) \) and \(X_{i,j} = F_i \left(\{a_{ik/2+j}\} \cup B'_0 \right) \) where \(i \in \{0,1\}, j \in \{0,\ldots,k/2-1\} \). Since \(\deg_{G_i} a_{ik/2+j} = k - 1 \) and each \(Q_{i,h} \) uses two edges incident with \(a_{ik/2+j} \) for each \(i \) and \(j \), we have \(\deg_{F_i} a_{ik/2+j} = k - 2p_i - 1 \). Hence \(X_{i,j} \) is a \((k-2p_i-1)\)-star with center \(a_{ik/2+j} \).

Next we show the required star decomposition of \(G_3 \). For \(j \in \{0,\ldots,k/2-1\} \), let

\[
X'_{i,j} = \begin{cases}
 \langle b_{k+(2p_i+1)j}, b_{k+(2p_i+1)j+1}, \ldots, b_{k+(2p_i+1)j+p_1} \rangle_{a_{ik/2+j}}, & \text{if } i = 0, \\
 \langle b_{(p_0+3/2)(k+(2p_i+1)j)}, b_{(p_0+3/2)(k+(2p_i+1)j)+1}, \ldots, b_{(p_0+3/2)(k+(2p_i+1)j)+2p_1} \rangle_{a_{ik/2+j}}, & \text{if } i = 1,
\end{cases}
\]

where the subscripts of \(b \)'s are taken modulo \(r + 1 \) in the set of numbers \(\{k, k + 1, \ldots, k + r\} \). Since \(2p_1 + 1 \leq 2p_0 + 1 \leq \alpha + 2 \leq r + 1 \), this assures us that there are enough edges for the construction of \(X'_{0,j} \) and \(X'_{1,j} \). Note that \(X'_{i,j} \) is a \((2p_1+1)\)-star and \(X_{i,j} \cup X'_{i,j} \) is a \(k \)-star for \(i \in \{0,1\}, j \in \{0,\ldots,k/2-1\} \).

On the other hand, let \(k - \beta = \tau(r + 1) + \rho \) where \(\tau \geq 0 \) and \(0 \leq \rho \leq r \). We have that
\[|E(G_3)| - |E \left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\ldots,k/2-1\}} X'_{i,j} \right) | \]
\[= (k + r)(r + 1) - (2p_0 + 2p_1 + 2)(k/2) \]
\[= (k + r)(r + 1) - (\alpha + 1)k \]
\[= (k + r)(r + 1) - (r + 1) - (k - \beta) \]
\[= k(r + 1) - \tau(r + 1) - \rho = (k - \tau)(r + 1) - \rho \]
\[= (k - \tau - 1)\rho + (k - \tau)(r + 1 - \rho). \]

Hence there exists a decomposition \(\mathcal{G} \) of \(G_3 - E \left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\ldots,k/2-1\}} X'_{i,j} \right) \) into \(\rho \) copies of \((k - \tau - 1)\)-star with center \(b_w \) for \(w = k, k + 1, \ldots, k + \rho - 1 \) and \(r + 1 - \rho \) copies of \((k - \tau)\)-star with center \(b_w \) for \(w = k + \rho, k + \rho + 1, \ldots, k + r \), that is,

\[Y_w = \begin{cases}
S_{k-r-1}, & \text{if } w \in \{k, k + 1, \ldots, k + \rho - 1\}, \\
S_{k-r}, & \text{if } w \in \{k + \rho, k + \rho + 1, \ldots, k + r\}.
\end{cases} \]

Define a star \(Y'_w \) as follows.

\[Y'_w = \begin{cases}
\langle a_{w_1}, a_{w_2}, \ldots, a_{w_r}, a_{w_{r+1}} \rangle_{b_w}, & \text{if } w \in \{k, k + 1, \ldots, k + \rho - 1\}, \\
\langle a_{w_1}, a_{w_2}, \ldots, a_{w_r} \rangle_{b_w}, & \text{if } w \in \{k + \rho, k + \rho + 1, \ldots, k + r\},
\end{cases} \]

where \(b_w a_{w_t} \in E(X'_{i,j}) \) for \(1 \leq t \leq \tau + 1 \). Since \(|E \left(\bigcup_{i \in \{0,1\}} \bigcup_{j \in \{0,\ldots,k/2-1\}} X'_{i,j} \right) | = (\alpha + 1)k \), \(|B''_w| = r + 1 \) and \((\tau + 1)(r + 1) = \tau(r + 1) + (r + 1) = (k - \beta - \rho) + (r + 1) < 2k \leq (\alpha + 1)k \), it follows that \(\tau + 1 < (\alpha + 1)k/(r + 1) \). This assures us that there are enough edges for the construction of \(Y'_w \). Note that \(Y_w + E(Y'_w) \) is a \(k \)-star. Hence \(C_{n,n-1} \) has a \((C_k, S_k)\)-covering \(\mathcal{C} \) with padding \(\bigcup_{w \in \{k, k+1, \ldots, k+r\}} Y'_w \) and \(|\mathcal{C}| = (k + r + 1) + (r + 1) + \alpha = k + 2r + 2 + \alpha = [n(n - 1)/k] \). This completes the proof.

Now, we are ready for the main result of this section.

Theorem 13. Let \(k \) be a positive even integer and let \(n \) be a positive integer with \(4 \leq k \leq n - 1 \). Then

\[c(C_{n,n-1}; C_k, S_k) = \begin{cases}
[n(n - 1)/k], & \text{if } k < n - 1, \\
k + 2, & \text{if } k = n - 1.
\end{cases} \]

Proof. Since \(|E(C_{n,n-1})| = n(n - 1) \), we have that \(c(C_{n,n-1}; C_k, S_k) \geq [n(n - 1)/k] \). Let \(n - 1 = qk + r \), where \(q \) and \(r \) are integers with \(q \geq 1 \), \(0 \leq r \leq k - 1 \). We consider the following two cases.

Case 1. \(q = 1 \). For \(r = 0 \), the result follows from Corollary 7. If \(r \neq 0 \), by Lemmas 8, 10 and 12, \(C_{k+r+1,k+r} \) has a \((C_k, S_k)\)-covering \(\mathcal{C} \) with \(|\mathcal{C}| = [(k + r + 1)(k + r)/k] \).
Case 2. \(q \geq 2 \). Note that
\[
C_{n,n-1} = C_{qk+r+1,qk+r} = C_{(q-1)k+1,(q-1)k} \cup C_{k+r+1,k+r} \cup K_{(q-1)k,k+r} \cup K_{k+r,(q-1)k}.
\]

Trivially, \(|E(C_{(q-1)k+1,(q-1)k})|, |E(K_{(q-1)k,k+r})| \) and \(|E(K_{k+r,(q-1)k})|\) are multiples of \(k \), by Lemmas 1 and 2, we have that \(C_{(q-1)k+1,(q-1)k} \), \(K_{(q-1)k,k+r} \) and \(K_{k+r,(q-1)k} \) have \(S_k \)-decompositions \(\mathcal{A}^{(1)} \), \(\mathcal{A}^{(2)} \) and \(\mathcal{A}^{(3)} \) with \(|\mathcal{A}^{(1)}| = (q-1)((q-1)k+1), |\mathcal{A}^{(2)}| = |\mathcal{A}^{(3)}| = (k+r)(q-1)\). For the case of \(r = 0 \), by Lemma 4, \(C_{k+1,k} \) has a \(C_k \)-decomposition \(\mathcal{C} \) with \(|\mathcal{C}| = k+1\). Hence \(C_{n,n-1} \) is \((C_k, S_k)\)-decomposable, that is, \(C_{n,n-1} \) has a \((C_k, S_k)\)-covering \(\bigcup_{i=1}^3 \mathcal{A}^{(i)} \cup \mathcal{C} \) with cardinality \((q-1)((q-1)k+1)+k(q-1)+k(q-1)+k+1 = n(qk+1) = n(n-1)/k\). For the other case of \(r \neq 0 \), by Lemmas 10 and 12, \(C_{k+r+1,k+r} \) has a \((C_k, S_k)\)-covering \(\mathcal{C}' \) with \(|\mathcal{C}'| = [(k+r+1)(k+r)/k]\). Hence \(\bigcup_{i=1}^3 \mathcal{A}^{(i)} \cup \mathcal{C}' \) is a \((C_k, S_k)\)-covering of \(C_{n,n-1} \) with cardinality \((q-1)((q-1)k+1) + (k+r)(q-1) + (k+r)(q-1) + [(k+r+1)(k+r)/k] = [(qk+r+1)(qk+r)/k] = [n(n-1)/k]\). This completes the proof.

References

Received 22 October 2018
Revised 7 July 2019
Accepted 7 July 2019