HEREDITARY EQUALITY OF DOMINATION AND
EXPONENTIAL DOMINATION IN SUBCUBIC GRAPHS

XUE-GANG CHEN, YU-FENG WANG

AND

XIAO-FEI WU

Department of Mathematics
North China Electric Power University
Beijing 102206, China
e-mail: gxcxdm@163.com

Abstract

Let $\gamma(G)$ and $\gamma_e(G)$ denote the domination number and exponential
domination number of graph G, respectively. Henning et al., in [Hereditary
equality of domination and exponential domination, Discuss. Math. Graph Theory 38
(2018) 275–285] gave a conjecture: There is a finite set \mathcal{F} of graphs such that a
graph G satisfies $\gamma(H) = \gamma_e(H)$ for every induced subgraph H of G if and only if G
is \mathcal{F}-free. In this paper, we study the conjecture for subcubic graphs. We characterize
the class \mathcal{F} by minimal forbidden induced subgraphs and prove that the conjecture
holds for subcubic graphs.

Keywords: dominating set, exponential dominating set, subcubic graphs.

2010 Mathematics Subject Classification: 05C69, 05C35.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let G be a
simple and undirected graph. The vertex set and the edge set of G are denoted by $V(G)$
and $E(G)$, respectively. The degree, neighborhood and closed neighborhood
of a vertex v in the graph G are denoted by $d_G(v)$, $N_G(v)$ and $N_G[v] = N_G(v) \cup \{v\}$, respectively. If the graph G is clear from context, we simply write $d(v)$, $N(v)$
and $N[v]$, respectively. The minimum degree and maximum degree of the graph G
are denoted by $\delta(G)$ and $\Delta(G)$, respectively. Let $S \subseteq V(G)$; $N(S) = \bigcup_{v \in S} N(v)$
and $N[S] = N(S) \cup S$. The graph induced by $S \subseteq V$ is denoted by $G[S]$. The distance $dist_G(X,Y)$ between two sets X and Y of vertices in G is the minimum length of a path in G between a vertex in X and a vertex in Y. If no such path exists, then let $dist_G(X,Y) = \infty$. Let P_n, C_n and K_n denote the path, cycle and complete graph with order n, respectively. Let $l(G)$ denote the maximum length of an induced cycle in G. If $\Delta(G) \leq 3$, then G is called a subcubic graph.

A set $D \subseteq V$ in a graph G is called a dominating set if every vertex outside D is adjacent to at least one vertex in D. The domination number $\gamma(G)$ equals the minimum cardinality of a dominating set in G. The literature on the subject of domination parameters in graphs up to the year 1997 has been surveyed and detailed in the two books [3] and [4].

Let D be a set of vertices of a graph G. For two vertices u and v of G, let $dist_{(G,D)}(u,v)$ be the minimum length of a path P in G between u and v such that D contains exactly one endvertex of P but no internal vertex of P. If no such path exists, then let $dist_{(G,D)}(u,v) = \infty$. Note that, if u and v are distinct vertices in D, then $dist_{(G,D)}(u,u) = 0$ and $dist_{(G,D)}(u,v) = \infty$. For a vertex u of G, let $\omega_{(G,D)}(u) = \sum_{v \in D} \left(\frac{1}{2} \right)^{dist_{(G,D)}(u,v)-1}$, where $\left(\frac{1}{2} \right)^{\infty} = 0$.

Dankelmann et al. [2] define a set D to be an exponential dominating set of G if $\omega_{(G,D)}(u) \geq 1$ for every vertex u of G, and the exponential domination number $\gamma_e(G)$ of G as the minimum size of an exponential dominating set of G. Note that $\omega_{(G,D)}(u) \geq 2$ for $u \in D$, and that $\omega_{(G,D)}(u) \geq 1$ for every vertex u that has a neighbor in D, which implies $\gamma_e(G) \leq \gamma(G)$.

Bessy et al. [1] show that computing the exponential domination number is APX-hard for subcubic graphs. It is not even known how to decide efficiently for a given tree T whether its exponential domination number $\gamma_e(T)$ equals its domination number $\gamma(T)$. The difficulty to decide whether $\gamma_e(G) = \gamma(G)$ for a given graph G motivates the study of the hereditary class \mathcal{G} of graphs that satisfy this equality, that is, \mathcal{G} is the set of those graphs G such that $\gamma_e(H) = \gamma(H)$ for every induced subgraph H of G.

Henning et al. [5] proved the following results.

Proposition 1 [5]. If G is a $\{B,D,K_4,K_{2,3},P_2 \square P_3\}$-free graph, then $\gamma(H) = \gamma_e(H)$ for every induced subgraph H of G if and only if G is $\{P_7,C_7,F_1,F_2,F_3,F_4,F_5\}$-free.

Proposition 2 [5]. If T is a tree, then $\gamma(H) = \gamma_e(H)$ for every induced subgraph H of T if and only if T is $\{P_7,F_1\}$-free.

Furthermore, they gave the following conjecture.

Conjecture 1 [5]. There is a finite set \mathcal{G} of graphs such that graph G satisfies $\gamma(H) = \gamma_e(H)$ for every induced subgraph H of G if and only if G is \mathcal{G}-free.
In this paper, we study the conjecture for subcubic graphs. We characterize the class \mathcal{F} by minimal forbidden induced subgraphs. Our main result is the following.

Figure 1. The graphs $K_{2,3}$, $P_2 \Box P_3$, B and D.

Figure 2. The graphs F_1, F_2, F_3, F_4 and F_5.

Theorem 1. Let G be a subcubic graph. Then $\gamma(H) = \gamma_e(H)$ for every induced subgraph H of G if and only if G is \mathcal{F}-free, where $\mathcal{F} = \{P_7, C_7, F_1, F_2, F_3, F_6, F_7, F_8, F_9, F_{10}, F_{11}\}$.

Figure 3. The graphs F_6, \ldots, F_{11}.
2. Proof of Theorem 1

Proof. Since $\gamma(H) > \gamma_e(H)$ for every graph H in \mathcal{F}, necessity follows. In order to prove sufficiency, suppose that G is an \mathcal{F}-free graph with $\gamma(G) > \gamma_e(G)$ of minimum order. By the choice of G, we have $\gamma(H) = \gamma_e(H)$ for every proper induced subgraph H of G. Clearly, G is connected. Since $\gamma_e(G) = 1$ if and only if $\gamma(G) = 1$, we obtain $\gamma_e(G) \geq 2$ and $\gamma(G) \geq 3$. Since G is $\{P_4, C_7\}$-free, either G is a tree or G is a subcubic graph with $3 \leq l(G) \leq 6$.

By Proposition 2, G is not a tree. Then G is a connected subcubic graph with $3 \leq l(G) \leq 6$. Let $C : x_1x_2x_3 \cdots x_{l(G)x_1}$ be a longest induced cycle of G. Let $R = V(G) \setminus V(C)$.

Case 1. $l(G) = 6$. Assume some vertex z has distance 2 from a vertex on $V(C)$ in G and xyz is a path in G. If y is adjacent to x_2, then $G\{x_1, x_2, x_3, x_4, y, z\} = F_6$, which is a contradiction. If y is adjacent to x_3, then $G\{x_1, x_3, x_4, x_5, y, z\} = F_5$, which is a contradiction. By symmetry, we can assume without loss of generality that y is adjacent to neither x_5 nor x_6. Then $G\{x_1, x_2, x_5, x_6, y, z\} = F_3$, which is a contradiction. So every vertex in R has distance one from one vertex on $V(C)$. Since G is F_1-free, every vertex in R has at least two neighbors on C. Since G is a subcubic graph and $\gamma(G) \geq 3$, $2 \leq |R| \leq 3$.

Case 1.1. $|R| = 3$. Say $R = \{u, v, w\}$. Then every vertex in R is adjacent to exactly two vertices on C. Suppose that there exists one vertex in R that is adjacent to two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_1 and x_4. Then $G\{x_1, x_2, x_3, x_5, x_6, u\} = F_1$, which is a contradiction. Hence every vertex in R is adjacent to two vertices on C with distance at most two. Since G is subcubic and the three vertices in R can not all be adjacent to two vertices on C, there exists a vertex in R that is adjacent to two adjacent vertices on C. Without loss of generality, we can assume that u is adjacent to x_1 and x_2. Assume that x_3 is adjacent to v. Then v is adjacent to either x_4 or x_5.

If v is adjacent to x_4, then w is adjacent to x_5 and x_6. If $vw \notin E(G)$, then $G\{x_1, x_2, x_3, x_4, x_5, v, w\} = F_{10}$, which is a contradiction. If $vw \in E(G)$, then $G\{x_1, x_2, x_3, x_4, x_6, u, v\} = F_{10}$, which is a contradiction.

If v is adjacent to x_5, then w is adjacent to x_4 and x_6. If $vw \in E(G)$, then $G\{x_1, x_4, x_5, x_6, u, v, w\} = F_8$, which is a contradiction. If $vw \notin E(G)$, then $G\{x_1, x_2, x_5, x_6, v, w\} = F_1$, which is a contradiction.

Case 1.2. $|R| = 2$. Say $R = \{u, v\}$. Suppose that there exists one vertex in R such that it is adjacent to exactly two vertices on C with distance three. Without loss of generality, we can assume that u is adjacent to x_1 and x_4. Then $G\{x_1, x_2, x_3, x_5, x_6, u\} = F_1$, which is a contradiction. Hence, we can assume that every vertex in R is not adjacent to exactly two vertices on C with distance
three. So there exists one vertex, say \(u \in R \), such that \(u \) is adjacent to two vertices on \(C \) with distance at most two.

Suppose that \(u \) is adjacent to \(x_1 \) and \(x_2 \). If \(v \) is adjacent to \(x_i \), where \(i \in \{4, 5\} \), then \(\{x_1, x_4\} \) or \(\{x_2, x_5\} \) is a dominating set of \(G \) and \(\gamma(G) \leq 2 \), which is a contradiction. So \(v \) is adjacent to exactly two vertices \(x_3 \) and \(x_6 \) on \(C \) with distance three, which is a contradiction.

Suppose that \(u \) is adjacent to \(x_1 \) and \(x_3 \). If \(v \) is adjacent to \(x_i \), where \(i \in \{4, 6\} \), then \(\{x_1, x_4\} \) or \(\{x_3, x_6\} \) is a dominating set of \(G \) and \(\gamma(G) \leq 2 \), which is a contradiction. So \(v \) is adjacent to exactly two vertices \(x_2 \) and \(x_5 \) on \(C \) with distance three, which is a contradiction.

Case 2. \(l(G) = 5 \). Assume some vertex \(z \) has distance 2 from \(V(C) \) in \(G \) and \(x_1yz \) is a path in \(G \). If \(y \) is adjacent to \(x_2 \), then \(G[\{x_1, x_2, x_3, x_5, y, z\}] = F_5 \), which is a contradiction. If \(y \) is adjacent to \(x_3 \), then \(G[\{x_2, x_3, x_4, x_5, y, z\}] = F_1 \), which is a contradiction. By symmetry, \(y \) has exactly one neighbor \(x_1 \) on \(C \). Then \(G[\{x_1, x_2, x_3, x_5, y, z\}] = F_1 \), which is a contradiction. So every vertex in \(R \) has distance one from one vertex on \(V(C) \). Since \(G \) is a subcubic graph and \(\gamma(G) \geq 3, 2 \leq |R| \leq 5 \).

Case 2.1. \(|R| = 5\). Say \(R = \{y_i | x_i y_i \in E(G), i = 1, 2, \ldots, 5\} \). If \(y_1 y_2 \notin E(G) \), then \(G[\{x_1, x_2, x_4, x_5, y_1, y_2\}] = F_1 \), which is a contradiction. Hence, \(y_1 y_2 \in E(G) \). Similarly, \(y_i y_{i+1} \in E(G) \) for \(i = 1, 2, 3, 4 \). Then \(G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_2 \), which is a contradiction.

Case 2.2. \(|R| = 4\). Say \(R = \{y_i | x_i y_i \in E(G), i = 1, 2, 3, 4\} \). If \(y_1 y_2 \notin E(G) \), then \(G[\{x_1, x_2, x_3, x_4, y_1, y_2\}] = F_1 \), which is a contradiction. If \(y_3 y_4 \notin E(G) \), then \(G[\{x_1, x_2, x_3, x_4, y_3, y_4\}] = F_1 \), which is a contradiction. Hence, \(y_1 y_2 \in E(G) \) and \(y_3 y_4 \in E(G) \). Since \(x_5 \) is adjacent to at most one vertex in \(\{y_1, y_2, y_3, y_4\} \), either \(G[V(C) \cup \{y_1, y_2\}] = F_3 \) or \(G[V(C) \cup \{y_3, y_4\}] = F_3 \), which is a contradiction.

Case 2.3. \(|R| = 3\). Let \(G' \) be a graph with \(V(G') = V(C) \cup \{y_1, y_2, y_3\} \) and \(E(G') = E(C) \cup \{x_1 y_1, x_2 y_2, x_3 y_3, y_1 y_2\} \). Suppose that \(G' \) is a subgraph of \(G \). If \(y_1 x_5 \in E(G) \), then \(\{x_3, y_1\} \) is a dominating set of \(G \), which is a contradiction. Hence, \(y_1 x_5 \notin E(G) \). It follows that \(y_1 \) is adjacent to at most one vertex in \(\{x_4, y_3\} \).

Suppose that \(y_1 x_4 \in E(G) \). If \(y_2 x_5 \in E(G) \), then \(G[\{x_1, x_2, x_3, x_5, y_1, y_2, y_3\}] = F_3 \), which is a contradiction. If \(y_3 x_5 \in E(G) \), then \(G[\{x_1, x_2, x_3, x_5, y_1, y_2, y_3\}] = F_3 \) or \(G[V(C) \cup \{y_1, y_2, y_3\}] = F_1 \), which is a contradiction. If \(d_G(x_5) = 2 \), then \(G[\{x_2, x_3, x_4, x_5, y_2, y_3\}] = F_1 \) or \(G[V(C) \cup \{y_2, y_3\}] = F_3 \), which is a contradiction. Hence, \(y_1 x_4 \notin E(G) \).

Suppose that \(y_1 y_3 \in E(G) \). If \(y_3 x_4 \in E(G) \), then \(G[\{x_2, x_3, x_4, x_5, y_1, y_3\}] = F_6 \), which is a contradiction. If \(y_3 x_5 \in E(G) \), then \(G[V(C) \cup \{y_1, y_3\}] = F_3 \) or \(G[V(C) \cup \{y_1, y_2, y_3\}] = F_1 \), which is a contradiction. If \(y_3 x_4 \notin E(G) \) and
Suppose that $y_2 \in V(G)$. If $y_2 \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, x_5, y_1, y_2\}] = C_6$ and $l(G) \geq 6$, which is a contradiction. Hence, $y_1 y_3 \notin E(G)$.

So $d_G(y_1) = 2$. Since G is F_3-free, $y_2 x_4 \in E(G)$ or $y_2 x_5 \in E(G)$. If $y_2 x_4 \in E(G)$, then $G[\{x_1, x_2, x_3, x_5, y_2, y_3\}] = F_1$ or $G[\{x_1, x_2, x_3, x_5, y_1, y_2, y_3\}] = F_3$, which is a contradiction. If $y_2 x_5 \in E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_9$, which is a contradiction. Hence, we can assume that no subgraph in G is isomorphic to G'.

By symmetry, we discuss it in the following cases.

Case 2.3.1. $R = \{y_i | x_i y_i \in E(G), i = 1, 2, 3\}$. If $E(G[\{y_1, y_2, y_3\}]) = \emptyset$, then $G[\{x_1, x_2, x_3, x_5, y_2, y_3\}] = F_1$, which is a contradiction. Hence, $E(G[\{y_1, y_2, y_3\}]) \neq \emptyset$. Since no subgraph in G is isomorphic to G', $y_1 y_2, y_2 y_3 \notin E(G)$ and $y_1 y_3 \in E(G)$. Since no subgraph in G is isomorphic to G', $y_1 x_4 \notin E(G)$. If $y_2 x_4 \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2\}] = F_1$, which is a contradiction. Hence, $y_2 x_4 \in E(G)$ and $y_1 x_3 \notin E(G)$.

Suppose that $y_2 x_3 \in E(G)$. If $E(G[\{y_1, y_2, y_4\}]) = \emptyset$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_{10}$, which is a contradiction. Hence, $E(G[\{y_1, y_2, y_4\}]) \neq \emptyset$. If $y_1 y_4 \in E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_4\}] = C_6$, which is a contradiction. If $y_1 y_4 \in E(G)$ or $y_2 y_4 \in E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_7$, which is a contradiction. Hence, $y_2 x_3 \notin E(G)$.

So $y_1 x_3 \notin E(G)$, $y_2 x_3 \notin E(G)$ and $y_1 y_2 \in E(G)$. Since no subgraph in G is isomorphic to G', $y_4 x_3 \notin E(G)$. Then $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_2$ or $G[\{x_1, x_2, x_3, x_4, y_1, y_2, y_4\}] = F_3$, which is a contradiction.

Case 2.4. $|R| = 2$. Say $R = \{y_1, y_2\}$ and $y_1 x_1 \in E(G)$. If $y_2 x_i \in E(G)$ for $i \in \{3, 4\}$, then $\{x_1, x_i\}$ is a dominating set of G, which is a contradiction. Hence, $y_2 x_3 \notin E(G)$ and $y_2 x_4 \notin E(G)$. Without loss of generality, we can assume that $y_2 x_2 \in E(G)$. If $y_1 x_i \in E(G)$ for $i \in \{4, 5\}$, then $\{x_2, x_i\}$ is a dominating set of G, which is a contradiction. Hence, $y_1 x_4 \notin E(G)$ and $y_1 x_5 \notin E(G)$.

If $y_1 x_3 \notin E(G)$ and $y_1 y_2 \notin E(G)$, then $G[\{x_1, x_2, x_3, x_4, y_1, y_2\}] = F_1$, which is a contradiction. Hence, $y_1 x_3 \in E(G)$ or $y_1 y_2 \in E(G)$.

Suppose that $y_1 x_3 \in E(G)$. If $y_2 x_5 \in E(G)$, then $\{x_3, x_5\}$ is a dominating set of G, which is a contradiction. Hence, $y_2 x_5 \notin E(G)$. If $y_1 y_2 \notin E(G)$, then $G[\{x_2, x_3, x_4, x_5, y_1, y_2\}] = F_1$, which is a contradiction. If $y_1 y_2 \in E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_9$, which is a contradiction. Hence, $y_1 x_3 \in E(G)$ and $y_1 y_2 \in E(G)$. If $y_2 x_5 \notin E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_3$, which is a contradiction. If $y_2 x_5 \in E(G)$, then $G[V(C) \cup \{y_1, y_2\}] = F_9$, which is a contradiction.
Case 3. \(l(G) = 4 \). Assume some vertex \(t \) has distance 3 from one vertex on \(V(C) \) in \(G \) and \(x_1yzt \) is a path in \(G \). If \(y \) is adjacent to \(x_2 \), then \(G[V(C) \cup \{y,z,t\}] = F_7 \), which is a contradiction. If \(y \) is adjacent to \(x_3 \), then \(G[V(C) \cup \{y,z,t\}] = F_8 \), which is a contradiction. If \(y \) is not adjacent to \(x_i \) for \(i = 2,3,4 \), then \(G[V(C) \cup \{y,z,t\}] = F_2 \), which is a contradiction. So every vertex in \(R \) has distance at most two from a vertex on \(V(C) \). If \(|N(V(C)) \cap R| = 1 \), say \(x_1y_1 \in E(G) \), then \(\{y_1,x_3\} \) is a dominating set of \(G \), which is a contradiction. Hence, \(2 \leq |N(V(C)) \cap R| \leq 4 \).

Case 3.1. \(|N(V(C)) \cap R| = 4 \). Say \(N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1,2,3,4\} \). If \(y_1y_3 \in E(G) \), then \(G[\{x_1,x_2,x_3,y_1,y_3\}] = C_5 \), which is a contradiction with \(l(G) = 4 \). By symmetry, \(y_1y_3 \notin E(G) \) and \(y_2y_4 \notin E(G) \).

If \(y_1y_2 \notin E(G) \) and \(y_2y_3 \notin E(G) \), then \(G[\{x_1,x_2,x_3,y_1,y_2,y_3\}] = F_1 \), which is a contradiction. Hence, \(y_1y_2 \in E(G) \) or \(y_2y_3 \in E(G) \). Without loss of generality, we can assume that \(y_1y_2 \in E(G) \). If \(y_2y_3 \in E(G) \), then \(G[\{x_1,x_3,x_4,y_1,y_2,y_3\}] = C_6 \), which is a contradiction. If \(y_1y_4 \in E(G) \), then \(G[\{x_2,x_3,x_4,y_1,y_2,y_3\}] = C_6 \), which is a contradiction. Hence, \(y_2y_3 \notin E(G) \) and \(y_1y_4 \notin E(G) \). If \(y_3y_4 \notin E(G) \), then \(G[\{x_1,x_2,x_4,y_2,y_3,y_4\}] = F_2 \), which is a contradiction. If \(y_3y_4 \notin E(G) \), then \(G[\{x_2,x_3,y_2,y_3,y_4\}] = F_1 \), which is a contradiction.

Case 3.2. \(|N(V(C)) \cap R| = 3 \). Say \(N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1,2,3\} \). If \(y_1y_3 \in E(G) \), then \(G[\{x_1,x_2,x_3,y_1,y_3\}] = C_5 \), which is a contradiction. Hence, \(y_1y_3 \notin E(G) \). If \(y_1y_2 \notin E(G) \) and \(y_2y_3 \notin E(G) \), then \(G[\{x_1,x_2,x_3,y_1,y_2,y_3\}] = F_1 \), which is a contradiction. Hence, \(y_1y_2 \in E(G) \) or \(y_2y_3 \in E(G) \).

Without loss of generality, we can assume that \(y_1y_2 \in E(G) \). If \(y_1x_4 \in E(G) \), then \(G[\{x_2,x_3,y_2,y_4\}] = C_5 \), which is a contradiction.

Suppose that \(y_2y_3 \in E(G) \). If \(y_3x_4 \in E(G) \), then \(G[\{x_1,x_4,y_1,y_2,y_3\}] = C_5 \), which is a contradiction. Hence, \(y_1x_4 \notin E(G) \) and \(y_3x_4 \notin E(G) \). Then \(G[\{x_1,x_3,x_4,y_1,y_2,y_3\}] = C_6 \), which is a contradiction. Hence, \(y_2y_3 \notin E(G) \).

Suppose that \(N(y_3) \setminus (V(C) \cup \{y_1,y_2,y_3\}) \neq \emptyset \), say \(t \in N(y_3) \setminus (V(C) \cup \{y_1,y_2,y_3\}) \). Since \(l(G) = 4 \), \(y_3t \notin E(G) \). Then \(G[\{x_1,x_2,x_3,y_1,y_2,y_3,t\}] = F_2 \), which is a contradiction. Hence \(N(y_3) \setminus (V(C) \cup \{y_1,y_2,y_3\}) = \emptyset \).

Suppose that \(N(y_2) \setminus (V(C) \cup N[y_1]) \neq \emptyset \), say \(t \in N(y_2) \setminus (V(C) \cup N[y_1]) \). Since \(l(G) = 4 \), \(y_2t \notin E(G) \). Then \(G[\{x_1,x_2,x_3,y_2,y_3,t\}] = F_1 \), which is a contradiction. Hence, \(N(y_2) \setminus (V(C) \cup N[y_1]) = \emptyset \). Then \(\{y_1,x_3\} \) is a dominating set of \(G \), which is a contradiction.

Case 3.3. \(|N(V(C)) \cap R| = 2 \).

Case 3.3.1. \(N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1,2\} \). Since \(\{x_1,x_2\} \) is not a dominating set of \(G \), \(V(G) \setminus (V(C) \cup \{y_1,y_2\}) \neq \emptyset \). Say \(t_1 \in N(y_1) \setminus (V(C) \cup \{y_2\}) \).

Suppose that \(y_1y_2 \in E(G) \). If \(N(y_2) \setminus (V(C) \cup \{y_1,t_1\}) = \emptyset \), then \(\{y_1,x_3\} \) is a dominating set of \(G \), which is a contradiction. Hence, we can assume that \(t_2 = N(y_2) \setminus \{x_2,y_1\} \). If \(t_1t_2 \notin E(G) \), then \(G[\{x_2,x_3,y_2,t_1,t_2\}] = F_1 \), which
is a contradiction. If $t_1t_2 \in E(G)$, then $G[x_2, x_3, x_4, y_1, y_2, t_1, t_2] = F_2$, which is a contradiction. Hence, we can assume that $y_1y_2 \notin E(G)$.

Suppose that $N(y_2) \setminus V(C) = \emptyset$. Since $G[x_1, x_2, x_4, y_1, y_2, t_1] = F_1$, $x_4y_1 \in E(G)$ or $x_4y_2 \in E(G)$. If $x_4y_1 \in E(G)$, then $\{y_1, x_2\}$ is a dominating set of G, which is a contradiction. Hence, $x_4y_2 \in E(G)$. If $x_3y_1 \in E(G)$ or $x_3y_2 \in E(G)$, then $\{y_1, y_2\}$ is a dominating set of G, which is a contradiction. Hence, $x_3y_1 \notin E(G)$ and $x_3y_2 \notin E(G)$. Then $G[x_1, x_2, x_3, y_1, y_2, t_1] = F_5$, which is a contradiction. Hence, $N(y_2) \setminus V(C) \neq \emptyset$. Say $t_2 \in N(y_2) \setminus V(C)$. Since G is F_1-free, $\{x_3, x_4\} \subseteq N(\{y_1, y_2\})$. Then $\{y_1, y_2\}$ is a dominating set of G, which is a contradiction.

Case 3.3.2. $N(C) = \{y_i \mid x_iy_i \in E(G), i = 1, 3\}$. Since $l = 4$, $y_1y_3 \notin E(G)$. Since $\{x_1, x_3\}$ is not a dominating set of G, $V(G) \setminus (V(C) \cup \{y_1, y_2\}) \neq \emptyset$. Say $t_1 \in N(y_1) \setminus V(C)$. If $N(y_2) \setminus V(C) = \emptyset$, then $\{y_1, x_3\}$ is a dominating set of G, which is a contradiction. Hence, we can assume that $t_3 \in N(y_3) \setminus V(C)$. Then $G[x_1, x_2, x_3, y_1, y_3, t_1, t_3] = P_7$, which is a contradiction.

Case 4. $l(G) = 3$. Since G is P_7-free, every vertex in R has distance at most 4 from one vertex on $V(C)$. Assume vertex y_4 has distance 4 from one vertex on $V(C)$ in G and $x_1y_1y_2y_3y_1$ is a path in G. Since $\{x_1, y_3\}$ is not a dominating set of G, there is a vertex u at distance 2 from $\{x_1, y_3\}$ in G. If $ux_1 \in E(G)$ for $i \in \{2, 3\}$, then $G[u, x_1, x_1, y_1, y_2, y_3, y_4] = P_7$, which is a contradiction. Suppose that u is adjacent to y_1. If $uy_2 \notin E(G)$, then $G[u, x_1, x_2, y_1, y_2, y_3] = F_1$, which is a contradiction. If $uy_2 \in E(G)$, then $G[u, x_1, x_2, y_1, y_2, y_3, y_4] = F_{10}$, which is a contradiction. Suppose that u is adjacent to y_1. If $uy_2 \notin E(G)$, then $G[u, x_1, x_2, y_1, y_2, y_3] = F_6$, which is a contradiction. Since $l = 3$, $\{x_2, x_3, y_1\} \subseteq N(v) = \emptyset$. So $G[u, v, x_1, x_2, y_1, y_2, y_3] = P_7$, which is a contradiction. Hence, we can assume that every vertex in R has distance at most 3 from one vertex on $V(C)$.

Case 4.1. $|N(V(C)) \cap R| = 3$. Say $|N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1, 2, 3\}$. Since $l = 3$, $E(G[\{y_1, y_2, y_3\}]) = \emptyset$. Then $G[x_1, x_2, x_3, y_1, y_2, y_3] = F_6$, which is a contradiction.

Case 4.2. $|N(V(C)) \cap R| = 2$. Say $|N(V(C)) \cap R = \{y_i \mid x_iy_i \in E(G), i = 1, 2\}$. Since $l = 3$, $y_1y_2 \notin E(G)$. Suppose that there exists an induced path $x_1y_1u_1v_1$. Since G is P_7-free, $N(y_2) \setminus V(C) = \emptyset$.

Suppose that there exists a vertex u such that $u \notin N(y_1) \setminus \{x_1, u_1\}$. If $u_1u \notin E(G)$, then $G[u, x_1, x_2, y_1, u_1, v_1] = F_1$, which is a contradiction. If $u_1u \in E(G)$, then $\{u_1, x_2\}$ is a dominating set of G, which is a contradiction. If $N(y_1) \setminus \{x_1, u_1\} = \emptyset$, then $\{u_1, x_2\}$ is a dominating set of G, which is a contradiction. Hence, we can assume that every vertex in $V(G) \setminus (V(C) \cup \{y_1, y_2\})$ is adjacent to exactly one vertex in $\{y_1, y_2\}$.
If $N(y_i) \cap (V(G) \setminus (V(C) \cup \{y_1, y_2\})) = \emptyset$, then $\{x_i, y_j\}$ is a dominating set of G, where $i, j \in \{1, 2\}$ and $j \neq i$, which is a contradiction. Suppose that $N(y_i) \cap (V(G) \setminus (V(C) \cup \{y_1, y_2\})) \neq \emptyset$ for $i \in \{1, 2\}$. If x_3 is not adjacent to y_1 and y_2, then $G[\{x_1, x_2, x_3, y_1, s_1, y_2, s_2\}] = F_{10}$, where $s_i \in N(y_i)$, which is a contradiction. If x_3 is adjacent to y_1 or y_2, then $\{y_1, y_2\}$ is a dominating set of G, which is a contradiction.

\textbf{Case 4.3.} $|N(V(C)) \cap R| = 1$. Say $y_1x_1 \in E(G)$. Since $\{x_1, y_1\}$ is not a dominating set of G, there is a vertex u at distance 2 from y_1 in G. Without loss of generality, we can assume that y_1vu be a induced path. If there exists a vertex t such that $y_1t \in E(G)$. If $tv \notin E(G)$, then $G[\{u, v, x_1, x_2, y_1, t\}] = F_1$, which is a contradiction. Suppose that $tv \in E(G)$. If $N(t) \setminus \{y_1, v\} = \emptyset$, say $s \in N(t) \setminus \{y_1, v\}$, then $G[\{t, s, u, v, u, x_1, y_1\}] = F_6$, which is a contradiction. If $N(t) \setminus \{y_1, v\} = \emptyset$ or $d_G(y_1) = 2$, then $\{v, x_1\}$ is a dominating set of G, which is a contradiction. \hfill \blacksquare

3. Remark

Henning \textit{et al.} also gave the following conjecture.

\textbf{Conjecture 2} [5]. The set \mathcal{F} in Conjecture 1 can be chosen such that $\gamma(F) = 3$ and $\gamma_e(F) = 2$ for every graph F in \mathcal{F}.

It is obvious that the conjecture holds for subcubic graphs.

\textbf{References}

Received 11 October 2018
Revised 13 May 2019
Accepted 13 May 2019