G R A P H S W I T H 4 - R A I N B O W I N D E X 3 A N D n − 1

XUELIANG LI¹, INGO SCHIERMEYER²
KANG YANG¹ AND YAN ZHAO¹

1 Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China
2 Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany

e-mail: lxl@nankai.edu.cn
Ingo.Schiermeyer@tu-freiberg.de
yangkang@mail.nankai.edu.cn
zhaoyan2010@mail.nankai.edu.cn

Abstract
Let G be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , q}, q ∈ N, where adjacent edges may be colored the same. A tree T in G is called a rainbow tree if no two edges of T receive the same color. For a vertex set S ⊆ V(G), a tree that connects S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for every set S of k vertices of V(G) is called the k-rainbow index of G, denoted by r_x_k(G). Notice that a lower bound and an upper bound of the k-rainbow index of a graph with order n is k − 1 and n − 1, respectively. Chartrand et al. got that the k-rainbow index of a tree with order n is n − 1 and the k-rainbow index of a unicyclic graph with order n is n − 1 or n − 2. Li and Sun raised the open problem of characterizing the graphs of order n with r_x_k(G) = n − 1 for k ≥ 3. In early papers we characterized the graphs of order n with 3-rainbow index 2 and n − 1. In this paper, we focus on k = 4, and characterize the graphs of order n with 4-rainbow index 3 and n − 1, respectively.

Keywords: rainbow S-tree, k-rainbow index.

2010 Mathematics Subject Classification: 05C05, 05C15, 05C75.

doi:10.1002/net.21513

doi:10.1002/net.20296

doi:10.1002/net.20399

doi:10.7151/dmgt.1780

doi:10.1007/BF01195000

doi:10.1007/s00373-012-1243-2

doi:10.7151/dmgt.1783

Received 14 January 2014
Revised 22 May 2014
Accepted 16 June 2014