SOLUTIONS OF SOME $L(2, 1)$-COLORING RELATED OPEN PROBLEMS

Nibedita Mandal and Pratima Panigrahi

Department of Mathematics
Indian Institute of Technology Kharagpur
India

e-mail: nibedita.mandal.iitkgp@gmail.com
pratima@maths.iitkgp.ernet.in

Abstract

An $L(2, 1)$-coloring (or labeling) of a graph G is a vertex coloring $f : V(G) \to \mathbb{Z}^+ \cup \{0\}$ such that $|f(u) - f(v)| \geq 2$ for all edges uv of G, and $|f(u) - f(v)| \geq 1$ if $d(u, v) = 2$, where $d(u, v)$ is the distance between vertices u and v in G. The span of an $L(2, 1)$-coloring is the maximum color (or label) assigned by it. The span of a graph G is the smallest integer λ such that there exists an $L(2, 1)$-coloring of G with span λ. An $L(2, 1)$-coloring of a graph with span equal to the span of the graph is called a span coloring. For an $L(2, 1)$-coloring f of a graph G with span k, an integer h is a hole in f if $h \in (0, k)$ and there is no vertex v in G such that $f(v) = h$. A no-hole coloring is an $L(2, 1)$-coloring with no hole in it. An $L(2, 1)$-coloring is irreducible if color of none of the vertices in the graph can be decreased to yield another $L(2, 1)$-coloring of the same graph. A graph G is inh-colorable if there exists an irreducible no-hole coloring of G. Most of the results obtained in this paper are answers to some problems asked by Laskar et al. [5]. These problems are mainly about relationship between the span and maximum no-hole span of a graph, lower inh-span and upper inh-span of a graph, and the maximum number of holes and minimum number of holes in a span coloring of a graph. We also give some sufficient conditions for a tree and an unicyclic graph to have inh-span $\Delta + 1$.

Keywords: $L(2, 1)$-coloring, span of a graph, no-hole coloring, irreducible coloring, unicyclic graph.

2010 Mathematics Subject Classification: 05C15.

References

Received 21 January 2015
Revised 15 June 2015
Accepted 15 June 2015