THE LEAST EIGENVALUE OF GRAPHS WHOSE COMPLEMENTS ARE UNICYCLIC

YI WANG1, YI-ZHENG FAN1, XIAO-XIN LI2

AND

FEI-FEI ZHANG1

1 School of Mathematical Sciences
Anhui University, Hefei 230601, P.R. China

2 Department of Mathematics and Computer Sciences
Chizhou University, Chizhou 247000, P.R. China

\textbf{e-mail:} wangy@ahu.edu.cn
fanyz@ahu.edu.cn
lxx@czu.edu.cn
zhangfeifei2403@126.com

\textbf{Abstract}

A graph in a certain graph class is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum among all graphs in that class. Bell \textit{et al.} have identified a subclass within the connected graphs of order \(n \) and size \(m \) in which minimizing graphs belong (the complements of such graphs are either disconnected or contain a clique of size \(\frac{n}{2} \)). In this paper we discuss the minimizing graphs of a special class of graphs of order \(n \) whose complements are connected and contains exactly one cycle (namely the class \(\mathcal{U}_n \) of graphs whose complements are unicyclic), and characterize the unique minimizing graph in \(\mathcal{U}_n \) when \(n \geq 20 \).

\textbf{Keywords:} unicyclic graph, complement, adjacency matrix, least eigenvalue.

\textbf{2010 Mathematics Subject Classification:} 05C50, 05D05, 15A18.

\textbf{References}

doi:10.1016/j.laa.2008.02.032

Received 4 November 2013
Revised 6 June 2014
Accepted 9 June 2014