BOUNDING THE LOCATING-TOTAL DOMINATION NUMBER OF A TREE IN TERMS OF ITS ANNIHILATION NUMBER

WENJIE NING

College of Science
China University of Petroleum (East China)
Qingdao 266580, China

e-mail: ningwenjie-0501@163.com

MEI LU

Department of Mathematical Sciences
Tsinghua University, Beijing 100084, China

e-mail: mlu@math.tsinghua.edu.cn

AND

KUN WANG

School of Mathematical Sciences
Anhui University, Hefei 230601, China

e-mail: wangkun26@163.com

Abstract

Suppose \(G = (V, E) \) is a graph with no isolated vertex. A subset \(S \) of \(V \) is called a locating-total dominating set of \(G \) if every vertex in \(V \) is adjacent to a vertex in \(S \), and for every pair of distinct vertices \(u \) and \(v \) in \(V - S \), we have \(N(u) \cap S \neq N(v) \cap S \). The locating-total domination number of \(G \), denoted by \(\gamma_{LT}(G) \), is the minimum cardinality of a locating-total dominating set of \(G \). The annihilation number of \(G \), denoted by \(a(G) \), is the largest integer \(k \) such that the sum of the first \(k \) terms of the nondecreasing degree sequence of \(G \) is at most the number of edges in \(G \). In this paper, we show that for any tree of order \(n \geq 2 \), \(\gamma_{LT}(T) \leq a(T) + 1 \) and we characterize the trees achieving this bound.

Keywords: total domination, locating-total domination, annihilation number, tree.

2010 Mathematics Subject Classification: 05C69.
References

Received 28 November 2016
Accepted 6 May 2017