A NOTE ON ROMAN DOMINATION OF DIGRAPHS

GUOLIANG HAO, ZHIHONG XIE

College of Science
East China University of Technology
Nanchang 330013, P.R. China

e-mail: guoliang-hao@163.com
xiezhi168@163.com

AND

XIAODAN CHEN

College of Mathematics and Information Science
Guangxi University
Nanning 530004, P.R. China

e-mail: x.d.chen@live.cn

Abstract

A vertex subset S of a digraph D is called a dominating set of D if every vertex not in S is adjacent from at least one vertex in S. The domination number of a digraph D, denoted by $\gamma(D)$, is the minimum cardinality of a dominating set of D. A Roman dominating function (RDF) on a digraph D is a function $f : V(D) \to \{0, 1, 2\}$ satisfying the condition that every vertex v with $f(v) = 0$ has an in-neighbor u with $f(u) = 2$. The weight of an RDF f is the value $\omega(f) = \sum_{v \in V(D)} f(v)$. The Roman domination number of a digraph D, denoted by $\gamma_R(D)$, is the minimum weight of an RDF on D. In this paper, for any integer k with $2 \leq k \leq \gamma(D)$, we characterize the digraphs D of order $n \geq 4$ with $\delta^-(D) \geq 1$ for which $\gamma_R(D) = \gamma(D) + k$ holds. We also characterize the digraphs D of order $n \geq k$ with $\gamma_R(D) = k$ for any positive integer k. In addition, we present a Nordhaus-Gaddum bound on the Roman domination number of digraphs.

Keywords: Roman domination number, domination number, digraph, Nordhaus-Gaddum.

2010 Mathematics Subject Classification: 05C69, 05C20.

1Corresponding author.
References

Received 12 December 2016
Revised 23 March 2017
Accepted 23 March 2017