COMPLETELY INDEPENDENT SPANNING TREES IN k-TH POWER OF GRAPHS

XIA HONG

Department of mathematics
Luoyang Normal University
Luoyang, 471022, China

E-mail: 05shumenghongxia@163.com

Abstract

Let T_1, T_2, \ldots, T_k be spanning trees of a graph G. For any two vertices u, v of G, if the paths from u to v in these k trees are pairwise openly disjoint, then we say that T_1, T_2, \ldots, T_k are completely independent. Araki showed that the square of a 2-connected graph G on n vertices with $n \geq 4$ has two completely independent spanning trees. In this paper, we prove that the k-th power of a k-connected graph G on n vertices with $n \geq 2k$ has k completely independent spanning trees. In fact, we prove a stronger result: if G is a connected graph on n vertices with $\delta(G) \geq k$ and $n \geq 2k$, then the k-th power G^k of G has k completely independent spanning trees.

Keywords: completely independent spanning tree, power of graphs, spanning trees.

2010 Mathematics Subject Classification: 05C05.

References

Received 28 April 2016
Revised 30 January 2017
Accepted 7 February 2017