ON GRAPHS REPRESENTABLE BY PATTERN-AVOIDING WORDS

YELENA MANDELSHTAM

Stanford University, Stanford, CA, USA

e-mail: yelena13@stanford.edu

Abstract

In this paper we study graphs defined by pattern-avoiding words. Word-representable graphs have been studied extensively following their introduction in 2004 and are the subject of a book published by Kitaev and Lozin in 2015. Recently there has been interest in studying graphs represented by pattern-avoiding words. In particular, in 2016, Gao, Kitaev, and Zhang investigated 132-representable graphs, that is, word-representable graphs that can be represented by a word which avoids the pattern 132. They proved that all 132-representable graphs are circle graphs and provided examples and properties of 132-representable graphs. They posed several questions, some of which we answer in this paper.

One of our main results is that not all circle graphs are 132-representable, thus proving that 132-representable graphs are a proper subset of circle graphs, a question that was left open in the paper by Gao et al. We show that 123-representable graphs are also a proper subset of circle graphs, and are different from 132-representable graphs. We also study graphs represented by pattern-avoiding 2-uniform words, that is, words in which every letter appears exactly twice.

Keywords: pattern-avoidance, word-representability, circle graphs.

2010 Mathematics Subject Classification: 05C99.

References

doi:10.1016/j.dam.2015.07.033

doi:10.1007/978-3-642-17333-2

doi:10.1007/978-3-319-25859-1

Received 17 November 2016
Revised 9 September 2017
Accepted 9 September 2017