ETERNAL m-SECURITY BONDAGE NUMBERS
IN GRAPHS

HAMIDEH ARAM
Department of Mathematics
Gareziaeddin Center, Khoy Branch
Islamic Azad University, Khoy, Iran
e-mail: hamideh.aram@gmail.com

MARYAM ATAPOUR
Department of Mathematics
Faculty of Basic Sciences
University of Bonab, Bonab, I.R. Iran
e-mail: m.atapour@bonabu.ac.ir

AND

SEYED MAHMOUD SHEIKHOESLAMI
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran
e-mail: s.m.sheikholeslami@azaruniv.edu

Abstract
An eternal m-secure set of a graph $G = (V, E)$ is a set $S_0 \subseteq V$ that can defend against any sequence of single-vertex attacks by means of multiple guard shifts along the edges of G. The eternal m-security number $\sigma_m(G)$ is the minimum cardinality of an eternal m-secure set in G. The eternal m-security bondage number $b_{\sigma_m}(G)$ of a graph G is the minimum cardinality of a set of edges of G whose removal from G increases the eternal m-security number of G. In this paper, we study properties of the eternal m-security bondage number. In particular, we present some upper bounds on the eternal m-security bondage number in terms of eternal m-security number and edge connectivity number, and we show that the eternal m-security bondage number of trees is at most 2 and we classify all trees attaining this bound.

Keywords: eternal m-secure set, eternal m-security number, eternal m-security bondage number.

2010 Mathematics Subject Classification: 05C69.
References

Received 12 September 2016
Revised 3 April 2017
Accepted 3 April 2017