DESCRIBING NEIGHBORHOODS OF 5-VERTICES
IN 3-POLYTOPES WITH MINIMUM DEGREE 5
AND WITHOUT VERTICES OF
DEGREES FROM 7 TO 11¹

OLEG V. BORODIN, ANNA O. IVANOVA

AND

OLESYA N. KAZAK

Institute of Mathematics Siberian Branch
Russian Academy of Sciences
Novosibirsk, 630090, Russia

e-mail: brdnoleg@math.nsc.ru
 shmgnaanna@mail.ru
 agazandjelos@gmail.com

Abstract

In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences:

{(6, 6, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11),
 (5, 6, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17),
 (5, 5, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27),
 (5, 5, 6, 6, ∞), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11),
 (5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17),
 (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).}

In this paper we prove that every 3-polytope without vertices of degree from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: (5, 5, 6, 6, ∞), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6), where all parameters are tight.

Keywords: planar graph, structure properties, 3-polytope, neighborhood.

2010 Mathematics Subject Classification: 05C15.

¹The work was funded by the Russian Science Foundation, grant 16-11-10054.
References

doi:10.1007/BF01444968

Received 12 July 2016
Revised 13 January 2017
Accepted 13 January 2017