EQUITABLE COLORING AND EQUITABLE CHOOSABILITY OF GRAPHS WITH SMALL MAXIMUM AVERAGE DEGREE

AIJUN DONG

School of Science
Shandong Jiaotong University
Jinan, 250023, P.R. China

e-mail: dongaijun@mail.sdu.edu.cn

AND

XIN ZHANG

School of Mathematics and Statistics
Xidian University
Xi’an, 710071, P.R. China

e-mail: xzhang@xidian.edu.cn

Abstract

A graph is said to be equitably k-colorable if the vertex set $V(G)$ can be partitioned into k independent subsets V_1, V_2, \ldots, V_k such that $||V_i|−|V_j|| ≤ 1$ ($1 ≤ i, j ≤ k$). A graph G is equitably k-choosable if, for any given k-uniform list assignment L, G is L-colorable and each color appears on at most $\lceil \frac{|V(G)|}{k} \rceil$ vertices. In this paper, we prove that if G is a graph such that $mad(G) < 3$, then G is equitably k-colorable and equitably k-choosable where $k ≥ \max\{\Delta(G), 4\}$. Moreover, if G is a graph such that $mad(G) < \frac{12}{5}$, then G is equitably k-colorable and equitably k-choosable where $k ≥ \max\{\Delta(G), 3\}$.

Keywords: graph coloring, equitable choosability, maximum average degree.

2010 Mathematics Subject Classification: 05C15.

1This work was supported by the National Natural Science Foundation of China (Grant No. 71571111). It was also supported by China Postdoctoral Science Foundation Funded Project (Grant No. 2014M561909); the Nature Science Foundation of Shandong Province of China (Grant No. ZR2014AM028; ZR2014GL001; ZR2014FM033), the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM1010) and the Fundamental Research Funds for the Central Universities (No. JB170706).
References

doi:10.1006/jctb.1994.1032

doi:10.1016/j.disc.2011.05.020

doi:10.1002/jgt.21710

doi:10.1002/jgt.10137

doi:10.1017/S0963548302005485

doi:10.1016/0012-365X(94)00092-W

Received 10 October 2016
Revised 16 February 2017
Accepted 16 February 2017