\textbf{\textit{P}-APEX GRAPHS}

Mieczysław Borowiecki, Ewa Drgas-Burchardt

AND

Elżbieta Sidorowicz

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Prof. Z. Szafrana 4a, 65–516 Zielona Góra, Poland

e-mail: M.Borowiecki@wmie.uz.zgora.pl
E.Drgas-Burchardt@wmie.uz.zgora.pl
E.Sidorowicz@wmie.uz.zgora.pl

Dedicated to the memory
of Professor Horst Sachs (1927 – 2017)

Abstract

Let \mathcal{P} be an arbitrary class of graphs that is closed under taking induced subgraphs and let $\mathcal{C}(\mathcal{P})$ be the family of forbidden subgraphs for \mathcal{P}. We investigate the class $\mathcal{P}(k)$ consisting of all the graphs G for which the removal of no more than k vertices results in graphs that belong to \mathcal{P}. This approach provides an analogy to apex graphs and apex-outerplanar graphs studied previously. We give a sharp upper bound on the number of vertices of graphs in $\mathcal{C}(\mathcal{P}(1))$ and we give a construction of graphs in $\mathcal{C}(\mathcal{P}(k))$ of relatively large order for $k \geq 2$. This construction implies a lower bound on the maximum order of graphs in $\mathcal{C}(\mathcal{P}(k))$. Especially, we investigate $\mathcal{C}(W_r(1))$, where W_r denotes the class of P_r-free graphs. We determine some forbidden subgraphs for the class $W_r(1)$ with the minimum and maximum number of vertices. Moreover, we give sufficient conditions for graphs belonging to $\mathcal{C}(\mathcal{P}(k))$, where \mathcal{P} is an additive class, and a characterisation of all forests in $\mathcal{C}(\mathcal{P}(k))$. Particularly we deal with $\mathcal{C}(\mathcal{P}(1))$, where \mathcal{P} is a class closed under substitution and obtain a characterisation of all graphs in the corresponding $\mathcal{C}(\mathcal{P}(1))$. In order to obtain desired results we exploit some hypergraph tools and this technique gives a new result in the hypergraph theory.

\textbf{Keywords:} induced hereditary classes of graphs, forbidden subgraphs, hypergraphs, transversal number.

\textbf{2010 Mathematics Subject Classification:} 05C75, 05C15.
References

Received 17 January 2018
Accepted 5 February 2018