GRAPHS WITH 3-RAINBOW INDEX $n - 1$ AND $n - 2$

XUELIANG LI\$^{1,2, (a)}$, INGO SCHIERMEYER\$^{(b)}$

KANG YANG\$^{1, (a)}$ and YAN ZHAO\$^{1, (a)}$

\$^{(a)}$ Center for Combinatorics and LPMC-TJKLC
Nankai University
Tianjin 300071, China

\$^{(b)}$ Institut für Diskrete Mathematik und Algebra
Technische Universität Bergakademie Freiberg
09596 Freiberg, Germany

e-mail: lxl@nankai.edu.cn
Ingo.Schiermeyer@tu-freiberg.de
yangkang@mail.nankai.edu.cn
zhaoyan2010@mail.nankai.edu.cn

Abstract

Let $G = (V(G), E(G))$ be a nontrivial connected graph of order n with an edge-coloring $c : E(G) \rightarrow \{1, 2, \ldots, q\}$, $q \in \mathbb{N}$, where adjacent edges may be colored the same. A tree T in G is a rainbow tree if no two edges of T receive the same color. For a vertex set $S \subseteq V(G)$, a tree connecting S in G is called an S-tree. The minimum number of colors that are needed in an edge-coloring of G such that there is a rainbow S-tree for each k-subset S of $V(G)$ is called the k-rainbow index of G, denoted by $rxk(G)$, where k is an integer such that $2 \leq k \leq n$. Chartrand et al. got that the k-rainbow index of a tree is $n - 1$ and the k-rainbow index of a unicyclic graph is $n - 1$ or $n - 2$. So there is an intriguing problem: Characterize graphs with the k-rainbow index $n - 1$ and $n - 2$. In this paper, we focus on $k = 3$, and characterize the graphs whose 3-rainbow index is $n - 1$ and $n - 2$, respectively.

Keywords: rainbow S-tree, k-rainbow index.

2010 Mathematics Subject Classification: 05C05, 05C15, 05C75.

References

\1Supported by NSFC Nos. 11371205 and 11071130.
\2Corresponding author.

Received 23 September 2013
Revised 21 February 2014
Accepted 24 February 2014