ORIENTABLE \mathbb{Z}_N-DISTANCE MAGIC GRAPHS

SYLWIA CICHACZ

AGH University of Science and Technology
al. A. Mickiewicza 30, 30-059 Kraków, Poland
e-mail: cichacz@agh.edu.pl

BRYAN FREYBERG

Southwest Minnesota State University
Marshall, MN, USA
e-mail: bryan.freyberg@smsu.edu

AND

DALIBOR FRONCEK

University of Minnesota Duluth
Duluth, MN, USA
e-mail: dalibor@d.umn.edu

Abstract

Let $G = (V, E)$ be a graph of order n. A distance magic labeling of G is a bijection $\ell: V \rightarrow \{1, 2, \ldots, n\}$ for which there exists a positive integer k such that $\sum_{x \in N(v)} \ell(x) = k$ for all $v \in V$, where $N(v)$ is the open neighborhood of v.

Tutte’s flow conjectures are a major source of inspiration in graph theory. In this paper we ask when we can assign n distinct labels from the set $\{1, 2, \ldots, n\}$ to the vertices of a graph G of order n such that the sum of the labels on heads minus the sum of the labels on tails is constant modulo n for each vertex of G. Therefore we generalize the notion of distance magic labeling for oriented graphs.

Keywords: distance magic graph, digraph, flow graph.

2010 Mathematics Subject Classification: 5C15, 05C22, 05C25, 05C76, 05C78.

1This work was partially supported by the Faculty of Applied Mathematics AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education.
References

Received 14 March 2017
Revised 28 September 2017
Accepted 28 September 2017