THE STEINER WIENER INDEX OF A GRAPH

XUELIANG LI12

Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
\texttt{e-mail: lxl@nankai.edu.cn}

YAPING MAO3

Department of Mathematics
Qinghai Normal University
Qinghai 810008, China
\texttt{e-mail: maoyaping@ymail.com}

AND

IVAN GUTMAN

Faculty of Science P.O. Box 60, 34000 Kragujevac, Serbia
and State University of Novi Pazar, Novi Pazar, Serbia
\texttt{e-mail: gutman@kg.ac.rs}

Abstract

The Wiener index \(W(G) \) of a connected graph \(G \), introduced by Wiener in 1947, is defined as \(W(G) = \sum_{u,v \in V(G)} d(u,v) \) where \(d_G(u,v) \) is the distance between vertices \(u \) and \(v \) of \(G \). The Steiner distance in a graph, introduced by Chartrand et al. in 1989, is a natural generalization of the concept of classical graph distance. For a connected graph \(G \) of order at least 2 and \(S \subseteq V(G) \), the Steiner distance \(d(S) \) of the vertices of \(S \) is the minimum size of a connected subgraph whose vertex set is \(S \). We now introduce the concept of the Steiner Wiener index of a graph. The Steiner \(k \)-Wiener index \(SW_k(G) \) of \(G \) is defined by \(\text{SW}_k(G) = \sum_{S \subseteq V(G)} |S|^k d(S) \). Expressions for \(\text{SW}_k \) for some special graphs are obtained. We also give sharp upper and lower bounds of \(\text{SW}_k \) of a connected graph, and establish some of its properties in

1Supported by NSFC No.11371205 and 11531011.
2Corresponding author.
3Supported by NSFC No.11161037 and 11551001, and SFQP No.2014-ZJ-907.
the case of trees. An application in chemistry of the Steiner Wiener index is reported in our another paper.

Keywords: distance, Steiner distance, Wiener index, Steiner Wiener k-index.

2010 Mathematics Subject Classification: 05C05, 05C12, 05C35.

References

Received 27 December 2014
Revised 13 August 2015
Accepted 13 August 2015