CHARACTERIZATIONS OF GRAPHS HAVING LARGE PROPER CONNECTION NUMBERS

CHIRA LUMDUANHOM

Department of Mathematics
Srinakharinwirot University
Sukhumvit Soi 23, Bangkok, 10110, Thailand

ELLiot LAFORGE AND Ping zHANG

Department of Mathematics
Western Michigan University
Kalamazoo, MI 49008, USA

e-mail: ping.zhang@wmich.edu

Abstract

Let G be an edge-colored connected graph. A path P is a proper path in G if no two adjacent edges of P are colored the same. If P is a proper $u-v$ path of length $d(u,v)$, then P is a proper $u-v$ geodesic. An edge coloring c is a proper-path coloring of a connected graph G if every pair u,v of distinct vertices of G are connected by a proper $u-v$ path in G, and c is a strong proper-path coloring if every two vertices u and v are connected by a proper $u-v$ geodesic in G. The minimum number of colors required for a proper-path coloring or strong proper-path coloring of G is called the proper connection number $pc(G)$ or strong proper connection number $spc(G)$ of G, respectively. If G is a nontrivial connected graph of size m, then $pc(G) \leq spc(G) \leq m$ and $pc(G) = m$ or $spc(G) = m$ if and only if G is the star of size m. In this paper, we determine all connected graphs G of size m for which $pc(G)$ or $spc(G)$ is $m-1$, $m-2$ or $m-3$.

Keywords: edge coloring, proper-path coloring, strong proper-path coloring.

2010 Mathematics Subject Classification: 05C15, 05C38, 05C75.

References

\footnote{Research supported by a New Researcher Grants sponsored by Ministry of Science \\& Technology, Thailand.}

Received 15 October 2014
Revised 5 August 2015
Accepted 10 August 2015