DECOMPOSITION OF THE PRODUCT OF CYCLES
BASED ON DEGREE PARTITION

Y.M. BORSE AND S.R. SHAIKH

Department of Mathematics
Savitribai Phule Pune University
Pune-411007, India

e-mail: ymborse11@gmail.com
shazia_31082@yahoo.co.in

Abstract

The Cartesian product of \(n \) cycles is a \(2n \)-regular, \(2n \)-connected and bipancyclic graph. Let \(G \) be the Cartesian product of \(n \) even cycles and let
\[2n = n_1 + n_2 + \cdots + n_k \]
with \(k \geq 2 \) and \(n_i \geq 2 \) for each \(i \). We prove that if \(k = 2 \), then \(G \) can be decomposed into two spanning subgraphs \(G_1 \) and \(G_2 \) such that each \(G_i \) is \(n_i \)-regular, \(n_i \)-connected, and bipancyclic or nearly bipancyclic. For \(k > 2 \), we establish that if all \(n_i \) in the partition of \(2n \) are even, then \(G \) can be decomposed into \(k \) spanning subgraphs \(G_1, G_2, \ldots, G_k \) such that each \(G_i \) is \(n_i \)-regular and \(n_i \)-connected. These results are analogous to the corresponding results for hypercubes.

Keywords: hypercube, Cartesian product, \(n \)-connected, regular, bipancyclic, spanning subgraph.

2010 Mathematics Subject Classification: 05C40, 05C70, 68R10.

References

doi:10.1007/978-94-009-0517-7_2

doi:10.1016/j.ipl.2009.03.009

doi:10.1142/S1793830915500330

Received 10 October 2016
Revised 21 July 2017
Accepted 21 July 2017