ORIENTED CHROMATIC NUMBER OF CARTESIAN PRODUCTS AND STRONG PRODUCTS OF PATHS

JANUSZ DYBIZBAŃSKI AND ANNA NENCA

Institute of Informatics
Faculty of Mathematics, Physics, and Informatics
University of Gdańsk, 80-308 Gdańsk, Poland

e-mail: jdybiz@inf.ug.edu.pl
anenca@inf.ug.edu.pl

Abstract

An oriented coloring of an oriented graph \(G \) is a homomorphism from \(G \) to \(H \) such that \(H \) is without selfloops and arcs in opposite directions. We shall say that \(H \) is a coloring graph. In this paper, we focus on oriented colorings of Cartesian products of two paths, called grids, and strong products of two paths, called strong-grids. We show that there exists a coloring graph with nine vertices that can be used to color every orientation of grids with five columns. We also show that there exists a strong-grid with two columns and its orientation which requires 11 colors for oriented coloring. Moreover, we show that every orientation of every strong-grid with three columns can be colored by 19 colors and that every orientation of every strong-grid with four columns can be colored by 43 colors. The above statements were proved with the help of computer programs.

Keywords: graph, oriented coloring, grid.

2010 Mathematics Subject Classification: 05C15.

References

doi:10.7151/dmgt.1572

doi:10.1016/S0012-365X(98)00393-8

doi:10.1016/j.ipl.2004.06.014

Received 8 December 2016
Revised 12 July 2017
Accepted 17 July 2017