Oriented Incidence Colourings of Digraphs

Christopher Duffy

Department of Mathematics and Statistics
University of Saskatchewan
Saskatoon, Canada

e-mail: christopher.duffy@usask.ca

Gary MacGillivray

Department of Mathematics and Statistics
University of Victoria
Victoria, Canada

e-mail: gmacgill@math.uvic.ca

Pascal Ochem

LIRMM, CNRS,
Université de Montpellier,
Montpellier, France

e-mail: pascal.ochem@lirmm.fr

AND

André Raspaud

LaBRI UMR CNRS 5800
Université Bordeaux 1,
Bordeaux, France

e-mail: raspaud@labri.fr

Abstract

Brualdi and Quinn Massey [6] defined incidence colouring while studying the strong edge chromatic index of bipartite graphs. Here we introduce a similar concept for digraphs and define the oriented incidence chromatic number. Using digraph homomorphisms, we show that the oriented incidence chromatic number of a digraph is closely related to the chromatic number of the underlying simple graph. This motivates our study of the oriented incidence chromatic number of symmetric complete digraphs. We give
upper and lower bounds for the oriented incidence chromatic number of these graphs, as well as digraphs arising from common graph constructions and decompositions. Additionally we construct, for all $k \geq 2$, a target digraph H_k for which oriented incidence k colouring is equivalent to homomorphism to H_k.

Keywords: digraph homomorphism, graph colouring, incidence colouring, computational complexity.

2010 Mathematics Subject Classification: 05C15.

References

Appendix
<table>
<thead>
<tr>
<th>Colour Class</th>
<th>Vertex List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1, (7, 1)), (3, (3, 2)), (2, (4, 2)), (3, (4, 3)), (3, (3, 5)), (5, (4, 5)), (5, (6, 5)), (3, (3, 7)), (2, (7, 2)), (5, (7, 5)), (6, (7, 6)), (1, (6, 1)), (6, (6, 4)), (6, (6, 2))</td>
</tr>
<tr>
<td>2</td>
<td>(6, (1, 6)), (7, (1, 7)), (2, (3, 2)), (4, (3, 4)), (4, (4, 1)), (4, (4, 2)), (2, (5, 2)), (4, (4, 5)), (6, (5, 6)), (4, (4, 7)), (7, (3, 7)), (7, (5, 7)), (6, (6, 7)), (6, (6, 3))</td>
</tr>
<tr>
<td>3</td>
<td>(1, (1, 2)), (1, (1, 3)), (1, (1, 4)), (1, (1, 5)), (1, (1, 6)), (1, (1, 7)), (3, (2, 3)), (4, (2, 4)), (5, (2, 5)), (6, (2, 6)), (7, (2, 7))</td>
</tr>
<tr>
<td>4</td>
<td>(1, (2, 1)), (1, (3, 1)), (1, (4, 1)), (5, (3, 5)), (5, (5, 4)), (5, (5, 1)), (5, (5, 2)), (7, (4, 7)), (7, (7, 2)), (7, (7, 3)), (6, (3, 6)), (5, (5, 6)), (6, (4, 6)), (7, (7, 6)), (7, (7, 1))</td>
</tr>
<tr>
<td>5</td>
<td>(2, (2, 1)), (1, (5, 1)), (1, (6, 1)), (1, (3, 1)), (2, (2, 4)), (2, (2, 5)), (3, (3, 4)), (3, (5, 3)), (4, (5, 4)), (3, (3, 6)), (2, (6, 2)), (7, (7, 4)), (7, (7, 5)), (4, (6, 4)), (7, (6, 7))</td>
</tr>
<tr>
<td>6</td>
<td>(2, (1, 2)), (3, (1, 3)), (4, (1, 4)), (5, (1, 5)), (2, (2, 3)), (4, (4, 3)), (2, (2, 6)), (2, (2, 7)), (5, (5, 3)), (3, (6, 3)), (3, (7, 3)), (4, (7, 4)), (5, (5, 7)), (4, (4, 6)), (5, (6, 5))</td>
</tr>
</tbody>
</table>

Table 1. An oriented incidence colouring \overrightarrow{K}_7 with six colours.
<table>
<thead>
<tr>
<th>Colour Class</th>
<th>Vertex List</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(6, (6, 8)), (1, (2, 1)), (3, (3, 1)), (3, (3, 2)), (2, (2, 4)), (3, (3, 4)), (4, (5, 4)), (6, (2, 6)), (6, (6, 1)), (6, (6, 4)), (6, (6, 5)), (4, (7, 4)), (8, (5, 8)), (3, (5, 3)), (1, (7, 1)), (6, (7, 6)), (3, (7, 3)), (1, (5, 1))</td>
</tr>
<tr>
<td>2</td>
<td>(8, (8, 5)), (8, (8, 6)), (2, (2, 1)), (2, (2, 3)), (8, (3, 8)), (1, (3, 1)), (4, (4, 1)), (4, (3, 4)), (4, (4, 5)), (4, (4, 7)), (6, (3, 6)), (2, (2, 6)), (4, (4, 6)), (6, (5, 6)), (2, (5, 2)), (7, (5, 7)), (2, (2, 7))</td>
</tr>
<tr>
<td>3</td>
<td>(1, (8, 1)), (2, (8, 2)), (3, (8, 3)), (4, (8, 4)), (5, (8, 5)), (6, (8, 6)), (7, (8, 7)), (1, (1, 2)), (1, (1, 3)), (1, (1, 4)), (1, (1, 5)), (1, (1, 6)), (7, (7, 2)), (7, (7, 4)), (7, (7, 5)), (7, (7, 6)), (7, (7, 3))</td>
</tr>
<tr>
<td>4</td>
<td>(1, (1, 8)), (1, (1, 7)), (2, (2, 8)), (3, (3, 8)), (2, (2, 4)), (3, (4, 3)), (8, (4, 8)), (1, (4, 1)), (3, (3, 6)), (1, (6, 1)), (2, (6, 2)), (5, (7, 5)), (2, (2, 5)), (3, (3, 5)), (5, (4, 5)), (5, (6, 5)), (2, (7, 2)), (3, (3, 7)), (8, (6, 8)), (8, (7, 8))</td>
</tr>
<tr>
<td>5</td>
<td>(8, (1, 8)), (4, (4, 8)), (5, (5, 8)), (7, (7, 8)), (8, (2, 8)), (3, (1, 3)), (4, (1, 4)), (3, (2, 3)), (4, (4, 2)), (4, (4, 3)), (5, (2, 5)), (5, (5, 1)), (3, (6, 3)), (4, (6, 4)), (5, (5, 3)), (7, (2, 7)), (7, (7, 1)), (5, (5, 6)), (7, (6, 7))</td>
</tr>
<tr>
<td>6</td>
<td>(8, (8, 1)), (8, (8, 2)), (8, (8, 3)), (8, (8, 4)), (8, (8, 7)), (2, (1, 2)), (2, (3, 2)), (5, (1, 5)), (6, (1, 6)), (7, (1, 7)), (2, (4, 2)), (5, (5, 2)), (6, (6, 2)), (6, (6, 3)), (6, (4, 6)), (5, (3, 5)), (7, (4, 7)), (5, (5, 4)), (5, (5, 7)), (6, (6, 7)), (7, (3, 7))</td>
</tr>
</tbody>
</table>

Table 2. An oriented incidence colouring \mathbb{R}_8 with six colours.
Figure 1. Oriented incidence colourings of $\vec{K}_4, \vec{K}_5, \vec{K}_6$ with the minimum number of colours. The colouring of \vec{K}_4 is obtained by deleting any vertex in the colouring of \vec{K}_5.