CHARACTERIZATION OF SUPER-RADIAL GRAPHS

KM. Kathiresan

Center for Research and Post Graduate Studies in Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi-626 124, Tamil Nadu, India

E-mail: kathir2esan@yahoo.com

G. Marimuthu

Department of Mathematics
The Madura College
Madurai-625 011, Tamil Nadu, India

E-mail: yellowmuthu@yahoo.com

AND

C. Parameswaran

Center for Research and Post Graduate Studies in Mathematics
Ayya Nadar Janaki Ammal College
Sivakasi-626 124, Tamil Nadu, India

E-mail: parames65c@yahoo.com

Abstract

In a graph G, the distance $d(u, v)$ between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity $e(u)$ of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius, $r(G)$, of the graph and the maximum eccentricity is called the diameter, $d(G)$, of the graph. The super-radial graph $R^*(G)$ based on G has the vertex set as in G and two vertices u and v are adjacent in $R^*(G)$ if the distance between them in G is greater than or equal to $d(G) - r(G) + 1$ in G. If G is disconnected, then two vertices are adjacent in $R^*(G)$ if they belong to different components. A graph G is said to be a super-radial graph if it is a super-radial graph $R^*(H)$ of some graph H. The main objective of this paper is to solve the graph equation $R^*(H) = G$ for a given graph G.

Keywords: radius, diameter, super-radial graph.

2010 Mathematics Subject Classification: 05C12.
References

Received 25 June 2013
Revised 28 October 2013
Accepted 4 December 2013