T-COLORINGS, DIVISIBILITY AND THE CIRCULAR CHROMATIC NUMBER

ROBERT JANCZEWSKI
Department of Algorithms and Systems Modelling
Gdańsk University of Technology
Narutowicza 11/12, Gdańsk, Poland
e-mail: skalar@eti.pg.gda.pl

ANNA MARIA TRZASKOWSKA
Department of Applied Informatics in Management
Gdańsk University of Technology
Narutowicza 11/12, Gdańsk, Poland
e-mail: anna.trzaskowska@pg.edu.pl

AND

KRZYSZTOF TUROWSKI
Center for Science of Information
Purdue University West Lafayette, Indiana, USA
e-mail: krzysztof.szymon.turowski@gmail.com

Abstract

Let T be a T-set, i.e., a finite set of nonnegative integers satisfying $0 \in T$, and G be a graph. In the paper we study relations between the T-edge spans $\text{esp}_T(G)$ and $\text{esp}_{d \odot T}(G)$, where d is a positive integer and

$$d \odot T = \{0 \leq t \leq d (\max T + 1) : d \mid t \Rightarrow t/d \in T\}.$$

We show that $\text{esp}_{d \odot T}(G) = d \text{esp}_T(G) - r$, where r, $0 \leq r \leq d - 1$, is an integer that depends on T and G. Next we focus on the case $T = \{0\}$ and show that

$$\text{esp}_{d \odot \{0\}}(G) = \lceil d(\chi_c(G) - 1) \rceil,$$

where $\chi_c(G)$ is the circular chromatic number of G. This result allows us to formulate several interesting conclusions that include a new formula for the circular chromatic number

$$\chi_c(G) = 1 + \inf \{ \text{esp}_{d \odot \{0\}}(G)/d : d \geq 1 \}.$$
and a proof that the formula for the T-edge span of powers of cycles, stated as conjecture in [Y. Zhao, W. He and R. Cao, The edge span of T-coloring on graph C_d^n, Appl. Math. Lett. 19 (2006) 647–651], is true.

Keywords: T-coloring, circular chromatic number.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

In the paper we study relations between two different generalizations of ordinary vertex colorings: T-colorings and (k, d)-colorings. Let G be a graph with n-vertex set V and edge set E. Given integers $1 \leq d \leq k$, by a (k, d)-coloring of G we mean any function $c : V \to [0, k - 1]$ ($[a, b] := \{a, a + 1, \ldots, b\}$ for any integers $a \leq b$) such that

$$d \leq |c(u) - c(v)| \leq k - d$$

whenever $uv \in E$. This notion may be viewed as a generalization of a k-coloring since (k, d)-colorings of G are k-colorings of G and $(k, 1)$-colorings are the same as k-colorings that use colors from the interval $[0, k - 1]$. The **circular chromatic number**, introduced by Vince [12] as a generalization of the chromatic number, is defined by the formula

$$\chi_c(G) = \inf \{k/d : G \text{ has a } (k, d)\text{-coloring}\}.$$

The circular chromatic number was studied by many authors, see [14, 15] for a survey of results. It was shown for example [12] that the distance between the circular and ordinary chromatic number does not exceed 1, i.e.

$$\chi(G) - 1 < \chi_c(G) \leq \chi(G).$$

In the same paper Vince proved two useful facts: (1) G has a (k, d)-coloring if and only if $\chi_c(G) \leq k/d$; (2) $\chi_c(G)$ is a rational number which has a form k/d, where $k \leq n$. We will use these observations to show that there is a relation between $\chi_c(G)$ and $\text{es}_{T}(G)$ the T-edge span defined below. Given a T-set T, i.e., a finite set that consists of nonnegative integers and satisfies $0 \in T$, by a T-**coloring** of G we mean any function $c : V \to \mathbb{Z}$ such that

$$|c(u) - c(v)| \notin T$$

whenever $uv \in E$. T-colorings were introduced as a model for the frequency assignment problem in [5]. This notion also may be viewed as a generalization of ordinary vertex colorings since T-colorings are vertex colorings and vertex
colorings are \{0\}-colorings. The T-edge span, introduced by Cozzens and Roberts [1], is defined as
\[
\text{esp}_T(G) = \min\{\text{esp}(c) : c \text{ is a } T\text{-coloring of } G\},
\]
where $\text{esp}(c) = \max\{|c(u) - c(v)| : uv \in E\}$ is the edge span of c (if G is an empty graph then $\text{esp}(c) = 0$). If we replace $\text{esp}(c)$ by $\text{sp}(c)$ (the span of c, i.e., $\max\{|c(u) - c(v)| : u, v \in V\}$) we will receive the T-span of G. Both parameters were studied by many authors, there are results concerning computational complexity of the problem of computing $\text{sp}_T(G)$ [2, 3], the behaviour of the greedy algorithm [7] and formulas describing $\text{sp}_T(G)$ and $\text{esp}_T(G)$ for some T-sets T and some graphs G [8, 9, 13].

The remainder of the paper is organized as follows. In Section 2 we study relations between $\text{esp}_T(G)$ and $\text{sp}_{d \odot T}(G)$, where d is a positive integer and $d \odot T = \{0 \leq t \leq d (\max T + 1) : d | t \Rightarrow t/d \in T\}$. We show that $\text{esp}_{d \odot T}(G) = d \text{esp}_T(G) - r$, where $r, 0 \leq r \leq d - 1$, is an integer that depends on T and G. In Section 3 we study the distance between the T-span and T-edge span and show that it cannot exceed $\max T$. We also give examples that prove that this bound is tight. Section 4 contains our main results. We show that if T is an interval, i.e., $T = [0, d - 1]$ (or equivalently $T = d \odot \{0\}$), then (k, d)-colorings ($k \geq d$) are nonnegative T-colorings with span bounded by $k - 1$ and edge span bounded by $k - d$. We use this relation to show that
\[
\text{esp}_{d \odot \{0\}}(G) = \lceil d(\chi_c(G) - 1) \rceil.
\]
We also discuss whether it is possible to extend this relation to all T-sets. Using the above formula we show that
\[
\chi_c(G) = 1 + \inf \{ \text{esp}_{d \odot \{0\}}(G)/d : d \geq 1 \}
\]
and discuss how these formulas allow us to move known results from the world of the T-edge span to the world of the circular chromatic number and vice versa. The last section is devoted to the powers of cycles investigated in [13]. The authors conjectured and partially proved that
\[
\text{esp}_{d \odot \{0\}}(C^p_n) = pd + \lceil rd/q \rceil,
\]
where $q \geq 2$ and r are the quotient and the remainder of the division of n by $p + 1$, respectively. We show that it is true in general.

2. T-Edge Span and $d \odot T$-Edge Span

The operation \odot was introduced in [6], where it was shown that $\text{sp}_{d \odot T}(G) = d \text{sp}_T(G)$. Below we prove a similar formula for the T-edge span, but before we proceed we need to recall the following result.
Lemma 1 (Lemma 2.2(i) of [6]). If a and b are real numbers, then $||a - b|| \leq ||a|| - ||b|| \leq ||a - b||$.

Lemma 2. Let G be a graph, T be a T-set and d be a positive integer.

1. If c is a T-coloring of G, then dc is a $d \circ T$-coloring of G.
2. If c is a $d \circ T$-coloring of G, then $\lceil c/d \rceil$ is a T-coloring of G.

Proof. Let uv be an edge of G (if G is empty, then our claim is obvious).

1. If $|c(u) - c(v)| \geq max T + 1$, then $|dc(u) - dc(v)| \geq d (max T + 1) = max d \circ T + 1$. If $|c(u) - c(v)| < max T + 1$ and $|dc(u) - dc(v)| \in d \circ T$, then the definition of $d \circ T$ gives $|c(u) - c(v)| \in T$, a contradiction. Hence $|dc(u) - dc(v)| \notin d \circ T$ in both cases.

2. If $|c(u) - c(v)| \geq max d \circ T + 1 = d (max T + 1)$, then $|c(u)/d - c(v)/d| \geq |c(u)/d - c(v)/d| \geq max T + 1$ by Lemma 1. If $|c(u) - c(v)| < max d \circ T + 1$, then the definition of $d \circ T$ gives $d|c(u) - c(v)|$ and, by Lemma 1, $|c(u)/d - c(v)/d| = |c(u) - c(v)|/d \notin T$. Hence $|c(u)/d - c(v)/d| \notin T$ in both cases. \qed

Theorem 3. Let G be a graph, T be a T-set and d be a positive integer. There is an integer $0 \leq r \leq d - 1$ such that $sp_{d \circ T}(G) = dsp_T(G) - r$.

Proof. Let c be a T-coloring of G such that $sp(c) = sp_T(G)$. By Lemma 2, dc is a $d \circ T$-coloring of G. Hence

$$sp_{d \circ T}(G) \leq sp(dc) = dsp(c) = dsp_T(G).$$

Let c' be a $d \circ T$-coloring of G such that $sp(c') = sp_{d \circ T}(G)$. By Lemma 2, $|c'/d|$ is a T-coloring of G. Let uv be an edge of G such that $sp(|c'/d|) = |c'(u)/d| - |c'(v)/d|$ (if G is empty our claim is obvious). Then

$$dsp_T(G) - d \leq dsp(|c'/d|) - d = d|c'(u)/d| - |c'(v)/d| - d$$

$$\leq d |c'(u) - c'(v)/d| - d \leq d |sp(c')/d| - d$$

$$= d [esp_{d \circ T}(G)/d] - d < esp_{d \circ T}(G).$$

To complete the proof it suffices to combine (1) with (2). \qed

The open problem is a formula for r. Later we will show how to compute r provided that $T = \{0\}$ and that r can be any integer from $[0, d - 1]$.

Corollary 4. Let G be a graph, T be a T-set and d be a positive integer. Then $sp_T(G) = [esp_{d \circ T}(G)/d]$.

3. The Distance Between the T-Span and T-Edge Span

It is known [1] that \(\text{esp}_T(G) \leq \text{sp}_T(G) \). We are going to show that \(\text{sp}_T(G) \leq \text{esp}_T(G) + \max T \) and give examples in which the difference \(\text{sp}_T(G) - \text{esp}_T(G) \) equals \(\max T \).

Lemma 5. Let \(G \) be a graph and \(T \) be a \(T \)-set. If \(c : V \rightarrow \mathbb{Z} \) is a \(T \)-coloring of \(G \) and \(c : V \rightarrow \mathbb{Z} \) is the remainder of the division of \(c' \) by \(\text{esp}(c') + \max T + 1 \), i.e., \(c(v) = c'(v) \mod (\text{esp}(c') + \max T + 1) \) for \(v \in V \), then

1. \(c \) is a \(T \)-coloring of \(G \);
2. \(\text{sp}(c) \leq \text{esp}(c') + \max T \);
3. \(\text{esp}(c) \leq \text{esp}(c') + \max T + 1 - \min(\mathbb{N} \setminus T) \).

Proof. Observe that (2) follows immediately from the definition of \(c \). To prove (1) and (3), take an edge \(uv \) of \(G \) (if \(G \) is empty, our claim is obvious). Let \(q \) be the quotient of the division of \(c' \) by \(\text{esp}(c') + \max T + 1 \). Without loss of generality we may assume that \(q(u) \geq q(v) \). It is easy to see that \(q(u) \leq q(v) + 1 \) since otherwise

\[
\text{esp}(c') \geq |c'(u) - c'(v)| = |(\text{esp}(c') + \max T + 1)(q(u) - q(v)) + c(u) - c(v)| \\
\geq (\text{esp}(c') + \max T + 1)|q(u) - q(v)| - |c(u) - c(v)| \\
\geq 2(\text{esp}(c') + \max T + 1) - \text{esp}(c') - \max T \\
= \text{esp}(c') + \max T + 2 > \text{esp}(c')
\]

Hence there are two cases to consider.

(a) \(q(u) = q(v) + 1 \). Then \(|c'(u) - c'(v)| = |(\text{esp}(c') + \max T + 1)(q(u) - q(v)) + (c(u) - c(v))| = |(\text{esp}(c') + \max T + 1 + (c(u) - c(v))| \). Since \(\text{esp}(c') + \max T + 1 > \text{esp}(c') \geq |c'(u) - c'(v)| \) and \(|c(u) - c(v)| \leq \text{esp}(c') + \max T \), we have \(|c(u) - c(v)| = \text{esp}(c') + \max T + 1 - |c'(u) - c'(v)| \). This gives \(|c(u) - c(v)| \geq \max T + 1 \) and \(|c(u) - c(v)| \leq \text{esp}(c') + \max T + 1 - \min(\mathbb{N} \setminus T) \) since \(|c'(u) - c'(v)| \notin T \) implies \(|c'(u) - c'(v)| \geq \min(\mathbb{N} \setminus T) \).

(b) \(q(u) = q(v) \). Then \(|c'(u) - c'(v)| = |c(u) - c(v)| \), which gives \(|c(u) - c(v)| \notin T \) and \(|c(u) - c(v)| \leq \text{esp}(c') \leq \text{esp}(c') + \max T + 1 - \min(\mathbb{N} \setminus T) \).

Corollary 6. Let \(G \) be a graph and \(T \) be a \(T \)-set. Then

1. There is a \(T \)-coloring \(c \) of \(G \) such that \(\text{sp}(c) \leq \text{esp}_T(G) + \max T \) and \(\text{esp}(c) \leq \text{esp}_T(G) + \max T + 1 - \min(\mathbb{N} \setminus T) \).
2. If \(T \) is an interval, then there is a \(T \)-coloring \(c \) of \(G \) such that \(\text{esp}(c) = \text{esp}_T(G) \) and \(\text{sp}(c) \leq \text{esp}_T(G) + \max T \).
3. \(\text{esp}_T(G) \leq \text{sp}_T(G) \leq \text{esp}_T(G) + \max T \).
Proof. (1) Let c' be a T-coloring of G satisfying $\esp(c') = \esp_T(G)$ and c be the remainder of the division of c' by $\esp_T(G) + \max T + 1$. The claim follows from Lemma 5.

(2) Follows from (1) since $\min(\mathbb{N} \setminus T) = \max T + 1$ if T is an interval.

(3) Follows from (1) and the definition of the T-span.

The above inequalities are tight. It is known [1] that $\esp_T(G) = \sp_T(G)$ for all weakly perfect graphs and all T-sets T. It is also easy to see that if T is an interval, then $\sp_T(C_{2n+1}) = 2\max T + 2$ ($\sp_T(G) = (\max T + 1)(\chi(G) - 1)$ if T is an interval, see [1]) and $\esp_T(C_{2n+1}) = \lceil(\max T + 1)(1 + 1/n)\rceil$ (see Theorem 8) which gives $\sp_T(C_{2n+1}) = \esp_T(C_{2n+1}) + \max T$ provided that $n \geq \max T + 1$.

4. The Relation Between (k,d)-Colorings and T-Colorings

Now we are ready to prove that there is a relation between (k,d)-colorings and T-colorings provided that T is an interval.

Lemma 7. Let G be a graph and d be a positive integer. If $T = [0,d-1]$, then for every function $c : V \to Z$ and every integer $k \geq d$ the following conditions are equivalent:

1. c is a T-coloring of G such that $\sp(c) \leq k - 1$ and $\esp(c) \leq k - d$;
2. $c - \min c(V)$ is a (k,d)-coloring of G.

Proof. Let uv be an edge of G (our claim is obvious if G is empty) and $c' = c - \min c(V)$.

(\Rightarrow) c is a T-coloring of G and T is an interval, so $|c'(u) - c'(v)| = |c(u) - c(v)| \geq d$. Moreover, $|c'(u) - c'(v)| = |c(u) - c(v)| \leq \esp(c) \leq k - d$ and $c'(V) \subseteq \lceil 0, \esp(c) \rceil \subseteq [0,k-1]$.

(\Leftarrow) c' is a (k,d)-coloring of G, so $|c(u) - c(v)| = |c'(u) - c'(v)| \geq d$ and $|c(u) - c(v)| = |c'(u) - c'(v)| \leq k - d$. This proves that c is a T-coloring and gives $\esp(c) \leq k - d$. To complete the proof it suffices to observe that $c'(V) \subseteq [0,k-1]$ implies $\sp(c) = \sp(c') \leq k - 1$.

Theorem 8. Let G be a graph and d be a positive integer. If $T = [0,d-1]$, then

$$\esp_T(G) = \lceil d(\chi_e(G) - 1) \rceil.$$

Proof. Without loss of generality we assume that G is not empty. Then $k = \lceil d(\chi_e(G)) \rceil - 1 \geq d$. If $\esp_T(G) \leq k - d$, then, by Corollary 6, there is a T-coloring c of G such that $\esp(c) = \esp_T(G) \leq k - d$ and $\sp(c) \leq \esp_T(G) + d - 1 \leq k - 1$.

Lemma 7 implies now that \(c - \min c(V) \) is a \((k, d)\)-coloring, which finally gives
\[d\chi_c(G) \leq k \], a contradiction. Hence
\[\text{esp}_T(G) \geq k - d + 1. \]

On the other hand, \((k + 1)/d \geq \chi_c(G)\) so there exists a \((k + 1, d)\)-coloring \(c \) of \(G \).
Without loss of generality we assume that \(\min c(V) = 0 \). By Lemma 7, \(c \) has to be a \(T \)-coloring of \(G \) with \(\text{esp}(c) \leq k - d + 1 \). This gives
\[\text{esp}_T(G) \leq k - d + 1. \]

Combining these inequalities together, we get \(\text{esp}_T(G) = k - d + 1 = \lceil d\chi_c(G) \rceil - d = \lceil d(\chi_c(G) - 1) \rceil \).

Since \(T \) is an interval, we know that \(|T| = \max T + 1 \) and the above formula may be expressed as
\[\text{esp}_T(G) = |T|(\chi_c(G) - 1). \]

This resembles Tesman’s inequality \(\text{sp}_T(G) \leq |T|(\chi(G) - 1) \) which holds for all \(T \)-sets \(T \) and all graphs \(G \) [11], so it is interesting to ask the following question.

Does \(\text{esp}_T(G) \leq |T|(\chi_c(G) - 1) \) for all \(T \)-sets \(T \) and all graphs \(G \)?

Unfortunately, the answer is negative even for odd cycles. To show this, let us consider integers \(1 \leq k \leq n - 1 \) and set \(T = \{0, 2, \ldots, 2k\} \) and \(G = C_{2n+1}. \)
Then \(|T|(\chi_c(G) - 1) = \lceil (k + 1)(1 + 1/n) \rceil = k + 2 \) and \(\text{esp}_T(C_{2n+1}) \geq 2k + 2 \) since otherwise the differences of colors assigned to adjacent vertices of \(G \) in any \(T \)-coloring of \(G \) with minimal edge span would be odd and their sum would not be 0, a contradiction.

Theorem 8 shows also that the value of integer \(r \) of Theorem 3 can be arbitrary. Indeed, if we take \(0 \leq r \leq d - 1 \) and a planar graph \(G \) such that \(\chi_c(G) = 3 - r/d \) (which exists by [10]), then \(\chi(G) = 3 \) and \(\text{esp}_{d\in\{0\}}(G) = [d(\chi_c(G) - 1)] = [d(2 - r/d)] = 2d - r = d(\chi(G) - 1) - r = d\chi_{\{0\}}(G) - r \). The open question is if this is true for all \(T \)-sets \(T \).

Theorem 9. Let \(G \) be a graph. Then
\[\chi_c(G) = 1 + \inf \left\{ \text{esp}_{d\in\{0\}}(G)/d : d \geq 1 \right\}. \]

Moreover, if \(\chi_c(G) = k/d \) (\(1 \leq d \leq k \)), then \(\chi_c(G) = 1 + \text{esp}_{d\in\{0\}}(G)/d \).

Proof. \(\chi_c(G) - 1 \leq \text{esp}_{d\in\{0\}}(G)/d \) by Theorem 8. To complete the proof it suffices to observe that if \(\chi_c(G) = k/d \), then the same theorem gives \(\chi_c(G) - 1 = \text{esp}_{d\in\{0\}}(G)/d \). □
Theorems 8 and 9 have two important consequences. Firstly, if we know a formula for $\chi_c(G)$, then we can easily obtain a formula for $\esp_T(G)$ for all T-sets T that are intervals. For example, Fan [4] proved that $\chi_c(G) = \chi(G)$ if the complement of G is non-Hamiltonian, which gives

Corollary 10. If G is a graph whose complement is non-Hamiltonian, then

$$\esp_{d\oplus\{0\}}(G) = d(\chi(G) - 1) = \esp_{d\oplus\{0\}}(G)$$

for every $d \geq 1$.

Secondly, if the problem of computing $\chi_c(G)$ for graphs G from a certain class \mathcal{G} is polynomially solvable, then we can compute $\esp_T(G)$ for $G \in \mathcal{G}$ and any interval T in a polynomial time, too.

5. **Powers of Cycles**

Let $p \geq 1$ and $n \geq 2p + 2$ be integers. Let q and r are the quotient and the remainder of the division of n by $p + 1$, respectively.

Zhao et al. in [13] proved the following theorem.

Theorem 11. If $q = pl + t$ for $l \geq 0$, $0 \leq t \leq p - 1$ such that $p \geq td$, then

$$\esp_{d\oplus\{0\}}(C_{pn}) = pd + \lceil rd/q \rceil.$$

Moreover, they conjectured that this equality holds for any $n \geq 2p + 2$, not only when $p \geq td$. We will show that it is true. Recall that it is known that if G is a n-vertex graph, then $\chi_c(G) \geq n/\alpha(G)$, where $\alpha(G)$ is the independence number of G.

Theorem 12. $\chi_c(C_{pn}) = n/q$.

Proof. Let $v_0, v_1, \ldots, v_{n-1}$ be a cyclic ordering of vertices of C_{pn}. We claim that a function given by

$$c(v_i) = (iq) \mod n$$

is a (n,q)-coloring of C_{pn}. Indeed, the definition of c gives $0 \leq c \leq n - 1$ and, if v_iv_j ($i > j$) is an edge of C_{pn}, then either $1 \leq i - j \leq p$ and $|c(v_i) - c(v_j)| = (i-j)q$ or $1 \leq n + j - i \leq p$ and $|c(v_i) - c(v_j)| = (n - i + j)q$. In both cases it is easy to verify that $q \leq |c(v_i) - c(v_j)| \leq qp \leq n - q$.

To complete the proof it suffices to observe that $\alpha(C_{pn}) \leq q$ and use inequality $\chi_c(G) \geq n/\alpha(G)$.

Theorem 13. $\esp_{d\oplus\{0\}}(C_{pn}) = pd + \lceil rd/q \rceil$.

Proof. Follows immediately from Theorems 8 and 12.
6. Conclusion

We proved the general relation between the circular chromatic number and T-edge span for $T = d \odot \{0\}$. Moreover, we applied it to solve an open conjecture concerning the T-edge span for powers of cycles C_n^p.

Possible further fields of research include for example finding the necessary conditions for $\esp_T(G) \leq \lceil |T| (\chi_c(G) - 1) \rceil$, or analyzing dependence between $\esp_T(G)$ and $\chi_c(G)$ on the structure of a set T.

References

Received 19 March 2018
Revised 16 October 2018
Accepted 7 December 2018