LOW 5-STARS AT 5-VERTICES IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND NO VERTICES OF DEGREE FROM 7 TO 9

OLEG V. BORODIN, MIKHAIL A. BYKOV

AND

ANNA O. IVANOVA

Sobolev Institute of Mathematics
Novosibirsk, 630090, Russia

E-mail: brdnoleg@math.nsc.ru
131093@mail.ru
shmganna@mail.ru

Abstract

In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P_5 of 3-polytopes with minimum degree 5.

Given a 3-polytope P, by $h_5(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in P.

Recently, Borodin, Ivanova and Jensen showed that if a polytope P in P_5 is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a $(5, 5, 6, 6, \infty)$-vertex, then $h_5(P)$ can be arbitrarily large. Therefore, we consider the subclass P_5^* of 3-polytopes in P_5 that avoid $(5, 5, 6, 6, \infty)$-vertices.

For each P^* in P_5^* without vertices of degree from 7 to 9, it follows from Lebesgue’s Theorem that $h_5(P^*) \leq 17$. Recently, this bound was lowered by Borodin, Ivanova, and Kazak to the sharp bound $h_5(P^*) \leq 15$ assuming the absence of vertices of degree from 7 to 11 in P^*.

In this note, we extend the bound $h_5(P^*) \leq 15$ to all P^*’s without vertices of degree from 7 to 9.

Keywords: planar map, planar graph, 3-polytope, structural properties, 5-star, weight, height.

2010 Mathematics Subject Classification: 05C75.

1The work was funded by the Russian Science Foundation, grant 16-11-10054.
1. Introduction

The degree of a vertex or face x in a convex finite 3-dimensional polytope (called a 3-polytope) is denoted by $d(x)$. As proved by Steinitz [14], the 3-polytopes are in 1-1 correspondence with the 3-connected planar graphs. A k-vertex is a vertex v with $d(v) = k$. A k^+-vertex (k^--vertex) is one of degree at least k (at most k). Similar notation is used for the faces. The set of 3-polytopes with minimum degree 5 is denoted by P_5, and its elements are P_5s. We will drop the argument whenever it is clear from context.

The height of a subgraph S of a 3-polytope is the maximum degree of the vertices of S in the 3-polytope. A k-star, a star with k rays, is minor if its center v has degree at most 5. In particular, the neighborhoods of 5-vertices are minor 5-stars and vice versa. All stars considered in this note are minor. By $h_k(P_5)$ we denote the minimum height of minor k-stars in a given 3-polytope P_5.

In 1904, Wernicke [15] proved that every P_5 has a 5-vertex adjacent to a 6-vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a 5-vertex with two 6-neighbors. So $h_1 \leq h_2 \leq 6$ in P_5, where both bounds are sharp.

In 1940, Lebesgue [13, p. 36] gave an approximate description of the neighborhoods of 5-vertices in P_5s.

In particular, this description implies the results in [11, 15] and shows that there is a 5-vertex with three 7-neighbors. Thus $h_3 \leq 7$, which is sharp due to Borodin [1]. Jendrol’ and Madaras [12] gave a precise description of minor 3-stars in P_5s.

Lebesgue [13] also proved $h_4(P_5) \leq 11$, which was strengthened by Borodin and Woodall [10] to the tight bound $h_4(P_5) \leq 10$. Recently, Borodin and Ivanova [2] obtained a precise description of 4-stars in P_5s.

The more general problem of describing 5-stars at 5-vertices in P_5 remains widely open.

Recently, precise upper bounds have been obtained for the minimum height $h_5(P_5)$ of minor 5-stars in several natural subclasses of P_5.

Note that Borodin, Ivanova and Jensen [5] showed that if a polytope P_5 is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a $(5, 5, 6, 6, \infty)$-vertex, then $h_5(P_5)$ can be arbitrarily large. (In fact, every 5-vertex in the construction in [5] has two 5-neighbors and two 6-neighbors.) Therefore, from now on we restrict ourselves to the subclass P_5^* of the 3-polytopes in P_5 avoiding $(5, 5, 6, 6, \infty)$-vertices.

For each P_5^* in P_5^*, it follows from Lebesgue’s Theorem that $h_5(P_5^*) \leq 41$. This bound was lowered to $h_5(P_5^*) \leq 28$ by Borodin, Ivanova, and Jensen [5] and then to $h_5(P_5^*) \leq 23$ in Borodin-Ivanova [4]. On the other hand, it was shown in [5] that the upper bound for $h_5(P_5^*)$ cannot go down below 20. We conjecture...
that \(h_5(P_5^*) \leq 20 \) whenever \(P_5^* \in P_5^* \).

Back in 1996, Jendrol’ and Madaras [12] showed that if a polytope \(P_{5^*} \) has a 5-vertex adjacent to four 5-vertices, then \(h_5(P_{5^*}) \) can be arbitrarily large. Therefore, considering subclasses of \(P_5^* \) without vertices of degree from 6 to a certain \(k_6 \) with \(k_6 > 6 \), we should deal only with 3-polytopes \(P_{5^*} \)'s having no 5-vertices with four 5-neighbors.

For every \(P_{5^*} \) in \(P_5^* \) with \(k_6 = 9 \), Lebesgue’s bound \(h_5(P_{5^*}) \leq 14 \) was improved by Borodin and Ivanova [3] to the sharp bound \(h_5(P_{5^*}) \leq 12 \). Later on, Borodin, Ivanova and Nikiforov [9] proved the same bound assuming the absence only of vertices of degree from 6 to 8, improving Lebesgue’s bound \(h_5(P_{5^*}) \leq 17 \).

Another natural direction of research towards a tight version of Lebesgue’s Theorem is considering subclasses of \(P_5^* \) with no vertices of degree from 7 to a certain integer \(k_7 \) with \(k_7 > 7 \).

For \(k_7 = 11 \), Lebesgue’s bound \(h_5(P^*) \leq 17 \) was lowered by Borodin, Ivanova, and Kazak [6] to the sharp bound \(h_5(P^*) \leq 15 \). The purpose of this note is to extend this bound to all \(P^* \)’s such that \(k_7 = 9 \).

Theorem 1. Every 3-polytope \(P^* \) with minimum degree 5 and neither \((5, 5, 6, 6, \infty)\)-vertices nor vertices of degree from 7 to 9 satisfies \(h_5(P^*) \leq 15 \), which bound is best possible.

Problem 2. Is it true that every 3-polytope \(P^* \) with minimum degree 5 and no \((5, 5, 6, 6, \infty)\)-vertices satisfies \(h_5(P^*) \leq 15 \) provided that

(a) \(P^* \) has no vertices of degree 7 and 8?
(b) only 7-vertices are forbidden in \(P^* \)?

2. **Proof of Theorem 1**

The sharpness of the bound 15 in Theorem 1 follows from a construction in [6].

Now suppose a 3-polytope \(P_5^* \) is a counterexample to the main statement of Theorem 1. In particular, each minor 5-star in \(P_5^* \) contains a 16\(^{+}\)-vertex along with either another 10\(^{+}\)-vertex or at least three 6-vertices.

Let \(P_5 \) be a counterexample on the same vertices as \(P_5^* \) with the maximum possible number of edges. For brevity, a vertex \(v \) with \(d(v) \neq 6 \) is a non-6-vertex.
Remark 3. \(P_5 \) has no two non-6-vertices being nonconsecutive along the boundary of a 4\(^+\)-face. Indeed, otherwise adding a diagonal between these vertices would result in a counterexample with greater edges than \(P_5 \).

Corollary 4. In \(P_5 \), each 4\(^+\)-face has at most two non-6-vertices, and if it has two such vertices, then they are adjacent to each other.

Discharging.

Let \(V \), \(E \), and \(F \) be the sets of vertices, edges, and faces of \(P_5 \). Euler’s formula \(|V| - |E| + |F| = 2\) for \(P_5 \) implies

\[
\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2d(f) - 6) = -12.
\]

We assign an initial charge \(\mu(v) = d(v) - 6 \) to each \(v \in V \) and \(\mu(f) = 2d(f) - 6 \) to each \(f \in F \), so that only 5-vertices have negative initial charge. Using the properties of \(P_5 \) as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum such that the final charge \(\mu(x) \) is non-negative for all \(x \in V \cup F \). This will contradict the fact that the sum of the final charges is, by (1), equal to \(-12\).

The final charge \(\mu'(x) \) whenever \(x \in V \cup F \) is defined by applying the rules R1–R9 below (see Figure 1).

For a vertex \(v \), let \(v_1, \ldots, v_{d(v)} \) be the vertices adjacent to \(v \) in a fixed cyclic order. If \(f \) is a face, then \(v_1, \ldots, v_{d(f)} \) are the vertices incident with \(f \) in the same cyclic order.

A vertex is simplicial if it is completely surrounded by 3-faces.

R1. Every 4\(^+\)-face gives 1 to every incident non-6-vertex.

R2. Suppose \(f = uvw \) is a 3-face with \(d(u) = 5 \) and \(d(v) \geq 10 \).

(a) If \(d(w) \geq 6 \), then \(u \) receives from \(v \) either \(\frac{2}{3} \) if \(d(v) \leq 15 \) or \(\frac{2}{3} \) otherwise.

(b) If \(d(w) = 5 \), then \(u \) (as well as \(w \)) receives from \(v \) either \(\frac{1}{3} \) if \(d(v) \leq 15 \) or \(\frac{1}{3} \) otherwise.

R3. A non-simplicial 5-vertex \(v \) such that there are 3-faces \(v_1v_2v \) and \(v_2v_3v \) with \(d(v_2) \geq 16 \) gives \(\frac{2}{3} \) to \(v_2 \).

R4. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \) and \(d(v_1) \geq 10 \) gives \(\frac{1}{3} \) to \(v_2 \).

R5. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \) and \(d(v_1) = d(v_3) = 6 \) gives \(\frac{1}{3} \) to \(v_2 \).

R6. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = 6 \), \(d(v_3) = 5 \), and \(d(v_4) \geq 10 \) gives \(\frac{2}{3} \) to \(v_2 \).

R7. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = 6 \), \(d(v_3) = d(v_4) = 5 \) (hence \(d(v_5) \geq 10 \)) gives \(\frac{1}{2} \) to \(v_2 \).
Remark 5. Note that a simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = d(v_4) = 6 \), and \(d(v_3) = 5 \) gives nothing to \(v_2 \).

R8. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = d(v_3) = d(v_4) = 5 \), and \(d(v_5) \geq 10 \) gives \(\frac{1}{15} \) to \(v_2 \).

R9. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = d(v_3) = 5 \), \(d(v_4) \geq 6 \), and \(d(v_5) \geq 10 \) gives \(\frac{4}{15} \) to \(v_2 \).

Checking \(\mu'(x) \geq 0 \) whenever \(x \in V \cup F \).

First consider a face \(f \) in \(P_5 \). If \(d(f) = 3 \), then \(f \) does not participate in discharging, and so \(\mu'(v) = \mu(f) = 2 \times 3 - 6 = 0 \). Note that every \(4^+ \)-face is incident with at most two non-6-vertices due to Corollary 4, which implies that \(\mu'(v) = 2d(f) - 6 - 2 \times 1 \geq 0 \) by R1.

Now suppose \(v \in V \).
Case 1. \(d(v) \geq 18 \). Since \(v \) sends at most \(\frac{2}{3} \) to its 5-neighbors through each 3-face by R2, we have \(\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{(d(v) - 18)}{3} \geq 0 \).

Case 2. \(16 \leq d(v) \leq 17 \). If \(v \) is not simplicial, then it sends at most \(\frac{2}{3} \) through each of at most \(d(v) - 1 \) faces, so \(\mu'(v) \geq d(v) - 6 - (d(v) - 1) \times \frac{2}{3} = \frac{(d(v) - 16)}{3} \geq 0 \), as desired. From now on, suppose \(v \) is simplicial.

If \(v \) has two consecutive \(6^+ \)-neighbors, then again \(\mu'(v) \geq d(v) - 6 - (d(v) - 1) \times \frac{2}{3} \geq 0 \). So we can assume from now on that each 3-face incident with \(v \) is incident with a 5-vertex.

If \(v \) has at least one non-simplicial 5-neighbor \(v_2 \), then \(v \) receives \(\frac{2}{3} \) from \(v_2 \) by R3, which implies \(\mu'(v) \geq d(v) - 6 + \frac{2}{3} - d(v) \times \frac{2}{3} = \frac{(d(v) - 16)}{3} \geq 0 \). Thus suppose all 5-vertices adjacent to \(v \) are simplicial.

If \(v \) has a \(10^+ \)-neighbor \(v_2 \), then \(v \) receives \(\frac{1}{3} + \frac{1}{3} \) from the 5-vertices \(v_1 \) and \(v_3 \) by R4, which again implies \(\mu'(v) \geq 0 \).

Summarizing, from now on our \(v \) is simplicial, has no \(10^+ \)-neighbors, no two consecutive 6-neighbors, and no non-simplicial 5-neighbors.

Suppose \(S_k = v_0, \ldots, v_k \) is a sequence of neighbors of \(v \) with \(d(v_0) = 6 \), \(d(v_k) = 6 \), while \(d(v_i) = 5 \) whenever \(1 \leq i \leq k - 1 \) and \(k \geq 2 \). (It is not excluded that \(S_k = S_{d(v)} \), which happens when \(v \) has precisely one 6-neighbor.) Let \(w_i \), \(1 \leq i \leq k - 1 \), \(k \geq 2 \), be the common neighbor of \(v_{i-1} \) and \(v_i \) different from \(v \).

Since \(\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{(d(v) - 16)}{3} \), we can say that \(v \) has the deficiency equal to \(\frac{1}{3} \) if \(d(v) = 17 \) or \(\frac{2}{3} \) if \(d(v) = 16 \).

Our next goal is to estimate the total return to \(v \) from its 5-neighbors by R4–R9 and show that it is not less than the deficiency of \(v \).

Remark 6. As we remember, our \(v \) has no \(S_1 \). Note that \(v_1 \) in \(S_2 \) returns \(\frac{1}{3} \) to \(v \) by R5. As for \(S_3 \), it can happen that neither \(v_1 \) nor \(v_2 \) returns anything to \(v \), which is the case only when \(v_1 \) and \(v_2 \) have a common 6-neighbor (see Remark 5).

Lemma 7. The total return from (the three 5-vertices of) an \(S_4 \) is at least \(\frac{2}{3} \).

Proof. If \(d(w_2) \geq 10 \) or \(d(w_2) = 5 \), then \(v \) receives at least \(\frac{2}{3} \) from its 5-neighbor \(v_1 \) by R6 or R7, respectively. The same is true for \(v_3 \). So, if \(d(w_2) \neq 6 \) and \(d(w_3) \neq 6 \), our \(v \) returns at least \(\frac{4}{5} \), which is more than enough. Thus we can assume by symmetry that \(d(w_2) = 6 \). Note that in this case \(d(w_3) \geq 10 \), for \(v_2 \) is not a \((5, 5, 6, 6, \infty)\)-vertex. Since \(v_2 \) gives \(\frac{1}{15} \) to \(v \) by R9, while \(v_3 \) gives \(\frac{2}{3} \) by R6, we have the desired return of \(\frac{2}{3} \). ■

Lemma 8. The total return from the three extreme 5-vertices \(v_1, v_2, \) and \(v_3 \) of an \(S_k \) with \(k \geq 5 \) is at least \(\frac{1}{3} \).

Proof. We have nothing to prove unless \(d(w_2) = 6 \), which implies that \(d(w_3) \geq 10 \). Now \(v_2 \) still gives \(\frac{1}{15} \) to \(v \) by R9, while \(v_3 \) gives at least \(\frac{1}{15} \) by R8 or R9, which returns sum up to the desired \(\frac{1}{3} \). ■
By symmetry, we deduce the following fact from Lemma 8.

Corollary 9. The total return from an S_k is at least $\frac{1}{\delta}$ if $5 \leq k \leq 6$ and at least $\frac{2}{\delta}$ if $k \geq 7$.

If v is completely surrounded by 5-vertices (which means that no S_k is defined), then the total return to v is at least $16 \times \frac{1}{17} > \frac{2}{3}$, and hence we can assume from now on that the neighborhood of v is partitioned into S_ks.

If $d(v) = 17$, then to pay off the deficiency of $\frac{1}{3}$ it suffices to note that every S_k with $k \neq 3$ returns at least $\frac{1}{3}$ to v, while 3 does not divide 17 (which implies that v cannot be surrounded only by S_3s).

Finally, suppose that $d(v) = 16$. As follows from Lemma 7 combined with Corollary 9, we are able to cover the deficiency of 16, while 3 does not divide 17 (which implies that every S_k with $k \neq 3$ returns at least $\frac{1}{3}$ to v, while 3 does not divide 17 (which implies that v cannot be surrounded only by S_3s).

Remark 10. Each $16^+\text{-neighbor } v_2$ gives v through the faces v_1v_2, v_2v_3 by $R2$ and returns from v along edge vv_2 by $R4$–$R9$:

(a) $\frac{4}{3}$ versus $\frac{1}{3}$ if $d(v_1) \geq 6$ and $d(v_3) \geq 6$,
(b) 1 versus at most $\frac{1}{2}$ if $d(v_1) = 5$ and $d(v_3) \geq 6$, or
(c) $\frac{2}{3}$ versus at most $\frac{4}{15}$ if $d(v_1) = 5$ and $d(v_3) = 5$.

Remark 10 combined with examining $R4$–$R9$ more carefully implies the following observation.

Remark 11. The donation of a $16^+\text{-neighbor } v_2$ to v exceeds the return from v to v_2 by less than $\frac{1}{2}$ only when v obeys $R9$, in which case we have $\frac{2}{3} - \frac{4}{15} = \frac{2}{5}$.

Subcase 5.1. v participates in $R9$. Thus suppose $d(v_1) = d(v_3) = 5$, $d(v_2) \geq 16$, $d(v_4) \geq 6$, and $d(v_5) \geq 10$. Note that v acquires $\frac{2}{3} - \frac{4}{15} = \frac{2}{5}$ from v_2 by $R2$ combined with $R9$.

If $d(v_5) \geq 16$, then v_5 gives 1 to v by $R2$, and v returns to v_5 either $\frac{1}{2}$ by $R4$ if $d(v_4) \geq 10$ or $\frac{2}{5}$ by $R6$ if $d(v_4) = 6$. Thus the total acquisition of v from v_5 is at least $\frac{2}{5}$, and we are done.
If \(d(v_5) \leq 15\), then \(v_5\) gives \(\frac{3}{5}\) to \(v\) by R2, and we are done again.

Subcase 5.2. \(v\) does not participate in R9. In view of Remark 11, we already have nothing to prove if \(v\) has at least two \(16^+\)-neighbors. So suppose \(v_2\) is the only \(16^+\)-neighbor of \(v\).

If \(d(v_1) \geq 10\), then \(v_1\) gives \(v\) at least \(\frac{2}{5}\) by R2, while \(v_2\)’s resulting donation to \(v\) is \(1 - \frac{1}{5}\) by R2 and R4. This implies \(\mu'(v) > 0\).

By symmetry, suppose \(d(v_1) \leq d(v_3) \leq 6\). If \(d(v_1) = d(v_3) = 6\), then \(v_1\) gives \(\frac{4}{5}\) to \(v\) by R2 and takes back \(\frac{1}{5}\) from \(v\) by R5, which implies \(\mu'(v) \geq 0\).

Subcase 5.2.1. \(d(v_1) = 5\) and \(d(v_3) = 6\). Now \(v_2\) gives 1 to \(v\) by R2. If \(d(v_5) > 6\), which means that in fact \(10 \leq d(v_4) \leq 15\), then we have \(\mu'(v) \geq -1 + 1 - \frac{2}{5} + \frac{2}{5} = 0\) by R2 and R6.

If \(d(v_5) = 6\), then we have \(d(v_4) = 6\) or \(d(v_4) \geq 10\) due to the absence of a \((5, 5, 6, 6, \infty)\)-vertex. In both cases, \(\mu'(v) \geq -1 + 1 = 0\) by R2 since \(v\) returns nothing to \(v_2\).

Finally, \(d(v_5) = 5\). Now \(d(v_4) \geq 10\) due to the absence of \((5, 5, 6, 6, \infty)\)-vertex, and we have \(\mu'(v) \geq -1 + 1 - \frac{1}{5} + \frac{1}{5} = 0\) by R2 and R7.

Subcase 5.2.2. \(d(v_1) = d(v_3) = 5\). Here \(v_2\) gives \(\frac{2}{5}\) to \(v\) by R2. Since \(v\) is not a \((5, 5, 6, 6, \infty)\)-vertex, we can assume that \(10 \leq d(v_4) \leq 15\). Furthermore, R9 is not applicable to \(v\) by an above assumption, so \(d(v_5) = 5\). This means that \(v\) obeys R8, and we have \(\mu'(v) = -1 + \frac{2}{5} - \frac{1}{15} + \frac{1}{5} = 0\), as desired.

Thus we have proved \(\mu'(x) \geq 0\) whenever \(x \in V \cup F\), which contradicts (1) and completes the proof of Theorem 1.

References

doi:10.7151/dmgt.2024

doi:10.1016/j.disc.2017.11.021

doi:10.1016/j.disc.2017.03.002

doi:10.1134/S003744661704005X

doi:10.7151/dmgt.1071

doi:10.7151/dmgt.1035

doi:10.1007/BF01444968

Received 18 December 2017
Revised 25 June 2018
Accepted 25 June 2018