LOW 5-STARS AT 5-VERTECES IN 3-POLYTOPES WITH MINIMUM DEGREE 5 AND NO VERTICES OF DEGREE FROM 7 TO 9

OLEG V. BORODIN, MIKHAIL A. BYKOV
AND
ANNA O. IVANOVA
Sobolev Institute of Mathematics
Novosibirsk, 630090, Russia
e-mail: brdnoleg@math.nsc.ru
131093@mail.ru
shmgnanna@mail.ru

Abstract
In 1940, Lebesgue gave an approximate description of the neighborhoods of 5-vertices in the class P_5 of 3-polytopes with minimum degree 5.

Given a 3-polytope P, by $h_5(P)$ we denote the minimum of the maximum degrees (height) of the neighborhoods of 5-vertices (minor 5-stars) in P.

Recently, Borodin, Ivanova and Jensen showed that if a polytope P in P_5 is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a $(5,5,6,6,\infty)$-vertex, then $h_5(P)$ can be arbitrarily large. Therefore, we consider the subclass P_5^* of 3-polytopes in P_5 that avoid $(5,5,6,6,\infty)$-vertices.

For each P^* in P_5^* without vertices of degree from 7 to 9, it follows from Lebesgue’s Theorem that $h_5(P^*) \leq 17$. Recently, this bound was lowered by Borodin, Ivanova, and Kazak to the sharp bound $h_5(P^*) \leq 15$ assuming the absence of vertices of degree from 7 to 11 in P^*.

In this note, we extend the bound $h_5(P^*) \leq 15$ to all P^*s without vertices of degree from 7 to 9.

Keywords: planar map, planar graph, 3-polytope, structural properties, 5-star, weight, height.

2010 Mathematics Subject Classification: 05C75.

1The work was funded by the Russian Science Foundation, grant 16-11-10054.
1. Introduction

The degree of a vertex or face \(x \) in a convex finite 3-dimensional polytope (called a 3-polytope) is denoted by \(d(x) \). As proved by Steinitz [14], the 3-polytopes are in 1-1 correspondence with the 3-connected planar graphs. A \(k \)-vertex is a vertex \(v \) with \(d(v) = k \). A \(k^+ \)-vertex (\(k^- \)-vertex) is one of degree at least \(k \) (at most \(k \)). Similar notation is used for the faces. The set of 3-polytopes with minimum degree 5 is denoted by \(P_5 \), and its elements are \(P_5 \)-s. We will drop the argument whenever it is clear from context.

The height of a subgraph \(S \) of a 3-polytope is the maximum degree of the vertices of \(S \) in the 3-polytope. A \(k \)-star, a star with \(k \) rays, is minor if its center \(v \) has degree at most 5. In particular, the neighborhoods of 5-vertices are minor 5-stars and vice versa. All stars considered in this note are minor. By \(h_k(P_5) \) we denote the minimum height of minor \(k \)-stars in a given 3-polytope \(P_5 \).

In 1904, Wernicke [15] proved that every \(P_5 \) has a 5-vertex adjacent to a 6-vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a 5-vertex with two 6-neighbors. So \(h_1 \leq h_2 \leq 6 \) in \(P_5 \), where both bounds are sharp.

In 1940, Wernicke [15] proved that every \(P_5 \) has a 5-vertex adjacent to a 6-vertex. This result was strengthened by Franklin [11] in 1922 to the existence of a 5-vertex with two 6-neighbors. So \(h_1 \leq h_2 \leq 6 \) in \(P_5 \), where both bounds are sharp.

In 1940, in attempts to solve the Four Color Problem, Lebesgue [13, p. 36] gave an approximate description of the neighborhoods of 5-vertices in \(P_5 \)-s.

In particular, this description implies the results in [11, 15] and shows that there is a 5-vertex with three 7-neighbors. Thus \(h_3 \leq 7 \), which is sharp due to Borodin [1]. Jendrol’ and Madaras [12] gave a precise description of minor 3-stars in \(P_5 \)-s.

Lebesgue [13] also proved \(h_4(P_5) \leq 11 \), which was strengthened by Borodin and Woodall [10] to the tight bound \(h_4(P_5) \leq 10 \). Recently, Borodin and Ivanova [2] obtained a precise description of 4-stars in \(P_5 \)-s.

The more general problem of describing 5-stars at 5-vertices in \(P_5 \) remains widely open.

Recently, precise upper bounds have been obtained for the minimum height \(h_5(P_5) \) of minor 5-stars in several natural subclasses of \(P_5 \).

Note that Borodin, Ivanova and Jensen [5] showed that if a polytope \(P_5 \) is allowed to have a 5-vertex adjacent to two 5-vertices and two more vertices of degree at most 6, called a \((5,5,6,6,\infty)\)-vertex, then \(h_5(P_5) \) can be arbitrarily large. (In fact, every 5-vertex in the construction in [5] has two 5-neighbors and two 6-neighbors.) Therefore, from now on we restrict ourselves to the subclass \(P_5^* \) of the 3-polytopes in \(P_5 \) avoiding \((5,5,6,6,\infty)\)-vertices.

For each \(P_5^* \) in \(P_5^* \), it follows from Lebesgue’s Theorem that \(h_5(P_5^*) \leq 41 \). This bound was lowered to \(h_5(P_5^*) \leq 28 \) by Borodin, Ivanova, and Jensen [5] and then to \(h_5(P_5^*) \leq 23 \) in Borodin-Ivanova [4]. On the other hand, it was shown in [5] that the upper bound for \(h_5(P_5^*) \) cannot go down below 20. We conjecture...
that $h_5(P_5^*) \leq 20$ whenever $P_5^* \in P_5^*$.

Back in 1996, Jendrol’ and Madaras [12] showed that if a polytope P_5^{***} has a 5-vertex adjacent to four 5-vertices, then $h_5(P_5^{***})$ can be arbitrarily large. Therefore, considering subclasses of P_5^n without vertices of degree from 6 to a certain k_6 with $k_6 > 6$, we should deal only with 3-polytopes P_5^{***}’s having no 5-vertices with four 5-neighbors.

For every P_5^{**} in P_5^* with $k_6 = 9$, Lebesgue’s bound $h_5(P_5^{**}) \leq 14$ was improved by Borodin and Ivanova [3] to the sharp bound $h_5(P_5^{**}) \leq 12$. Later on, Borodin, Ivanova and Nikiforov [9] proved the same bound assuming the absence only of vertices of degree from 6 to 8, improving Lebesgue’s bound $h_5(P_5^{**}) \leq 17$.

For each P_5^{**} with no vertices of degree 6 or 7, it follows from Lebesgue’s Theorem that $h_5(P_5) \leq 23$, and Borodin, Ivanova, Kazak and Vasil’eva [7] have obtained the best possible bound $h_5(P_5^{**}) \leq 14$.

For each P_5^{**} with no 6-vertices, Lebesgue’s bound $h_5(P_5^{**}) \leq 41$ was improved by Borodin, Ivanova, and Nikiforov [8] to the sharp bound $h_5(P_5^{**}) \leq 17$. We note that the sharpness was confirmed in [8] by a construction on almost 3000 vertices.

Another natural direction of research towards a tight version of Lebesgue’s Theorem is considering subclasses of P_5^* with no vertices of degree from 7 to a certain integer k_7 with $k_7 > 7$.

For $k_7 = 11$, Lebesgue’s bound $h_5(P_5) \leq 17$ was lowered by Borodin, Ivanova, and Kazak [6] to the sharp bound $h_5(P_5) \leq 15$. The purpose of this note is to extend this bound to all P_5^*’s such that $k_7 = 9$.

Theorem 1. Every 3-polytope P_5^* with minimum degree 5 and neither $(5, 5, 6, 6, \infty)$-vertices nor vertices of degree from 7 to 9 satisfies $h_5(P_5^*) \leq 15$, which bound is best possible.

Problem 2. Is it true that every 3-polytope P_5^* with minimum degree 5 and no $(5, 5, 6, 6, \infty)$-vertices satisfies $h_5(P_5^*) \leq 15$ provided that

(a) P_5^* has no vertices of degree 7 and 8?
(b) only 7-vertices are forbidden in P_5^*?

2. **Proof of Theorem 1**

The sharpness of the bound 15 in Theorem 1 follows from a construction in [6].

Now suppose a 3-polytope P_5^* is a counterexample to the main statement of Theorem 1. In particular, each minor 5-star in P_5 contains a 16^+-vertex along with either another 10^+-vertex or at least three 6-vertices.

Let P_5 be a counterexample on the same vertices as P_5^* with the maximum possible number of edges. For brevity, a vertex v with $d(v) \neq 6$ is a non-6-vertex.
Remark 3. P_5 has no two non-6-vertices being nonconsecutive along the boundary of a 4^+-face. Indeed, otherwise adding a diagonal between these vertices would result in a counterexample with greater edges than P_5.

Corollary 4. In P_5, each 4^+-face has at most two non-6-vertices, and if it has two such vertices, then they are adjacent to each other.

Discharging.

Let V, E, and F be the sets of vertices, edges, and faces of P_5. Euler’s formula $|V| - |E| + |F| = 2$ for P_5 implies

\[
\sum_{v \in V}(d(v) - 6) + \sum_{f \in F}(2d(f) - 6) = -12.
\]

We assign an initial charge $\mu(v) = d(v) - 6$ to each $v \in V$ and $\mu(f) = 2d(f) - 6$ to each $f \in F$, so that only 5-vertices have negative initial charge. Using the properties of P_5 as a counterexample to Theorem 1, we define a local redistribution of charges, preserving their sum such that the final charge $\mu(x)$ is non-negative for all $x \in V \cup F$. This will contradict the fact that the sum of the final charges is, by (1), equal to -12.

The final charge $\mu'(x)$ whenever $x \in V \cup F$ is defined by applying the rules R1–R9 below (see Figure 1).

For a vertex v, let $v_1, \ldots, v_d(v)$ be the vertices adjacent to v in a fixed cyclic order. If f is a face, then $v_1, \ldots, v_d(f)$ are the vertices incident with f in the same cyclic order.

A vertex is simplicial if it is completely surrounded by 3-faces.

R1. Every 4^+-face gives 1 to every incident non-6-vertex.

R2. Suppose $f =uvw$ is a 3-face with $d(u) = 5$ and $d(v) \geq 10$.

(a) If $d(w) \geq 6$, then u receives from v either $\frac{2}{3}$ if $d(v) \leq 15$ or $\frac{2}{5}$ otherwise.

(b) If $d(w) = 5$, then u (as well as w) receives from v either $\frac{1}{3}$ if $d(v) \leq 15$ or $\frac{1}{5}$ otherwise.

R3. A non-simplicial 5-vertex v such that there are 3-faces v_1v_2 and v_2v_3 with $d(v_2) \geq 16$ gives $\frac{2}{3}$ to v_2.

R4. A simplicial 5-vertex v with $d(v_2) \geq 16$ and $d(v_1) \geq 10$ gives $\frac{1}{3}$ to v_2.

R5. A simplicial 5-vertex v with $d(v_2) \geq 16$ and $d(v_1) = d(v_3) = 6$ gives $\frac{1}{3}$ to v_2.

R6. A simplicial 5-vertex v with $d(v_2) \geq 16$, $d(v_1) = 6$, $d(v_3) = 5$, and $d(v_4) \geq 10$ gives $\frac{2}{5}$ to v_2.

R7. A simplicial 5-vertex v with $d(v_2) \geq 16$, $d(v_1) = 6$, $d(v_3) = d(v_4) = 5$ (hence $d(v_5) \geq 10$) gives $\frac{1}{2}$ to v_2.

Remark 5. Note that a simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = d(v_3) = 6 \), and \(d(v_5) = 5 \) gives nothing to \(v_2 \).

R8. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = d(v_3) = 5 \), and \(d(v_4) \geq 6 \) gives \(\frac{1}{15} \) to \(v_2 \).

R9. A simplicial 5-vertex \(v \) with \(d(v_2) \geq 16 \), \(d(v_1) = d(v_3) = 5 \), and \(d(v_5) \geq 10 \) gives \(\frac{4}{15} \) to \(v_2 \).

Figure 1. Rules of discharging.

Checking \(\mu'(x) \geq 0 \) whenever \(x \in V \cup F \).

First consider a face \(f \) in \(P_5 \). If \(d(f) = 3 \), then \(f \) does not participate in discharging, and so \(\mu'(v) = \mu(f) = 2 \times 3 - 6 = 0 \). Note that every 4+-face is incident with at most two non-6-vertices due to Corollary 4, which implies that \(\mu'(v) = 2d(f) - 6 - 2 \times 1 \geq 0 \) by R1.

Now suppose \(v \in V \).
Case 1. $d(v) \geq 18$. Since v sends at most $\frac{2}{3}$ to its 5-neighbors through each 3-face by R2, we have $\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{d(v) - 18}{3} \geq 0$.

Case 2. $16 \leq d(v) \leq 17$. If v is not simplicial, then it sends at most $\frac{2}{3}$ through each of at most $d(v) - 1$ faces, so $\mu'(v) \geq d(v) - 6 - (d(v) - 1) \times \frac{2}{3} = \frac{d(v) - 16}{3} \geq 0$, as desired. From now on, suppose v is simplicial.

If v has two consecutive $6^+\text{-}neighbors$, then again $\mu'(v) \geq d(v) - 6 - (d(v) - 1) \times \frac{2}{3} \geq 0$. So we can assume from now on that each 3-face incident with v is incident with a 5-vertex.

If v has at least one non-simplicial 5-neighbor v_2, then v receives $\frac{2}{3}$ from v_2 by R3, which implies $\mu'(v) \geq d(v) - 6 + \frac{2}{3} - d(v) \times \frac{2}{3} = \frac{d(v) - 16}{3} \geq 0$. Thus suppose all 5-vertices adjacent to v are simplicial.

If v has a $10^+\text{-}neighbor v_2$, then v receives $\frac{1}{3} + \frac{1}{3}$ from the 5-vertices v_1 and v_3 by R4, which again implies $\mu'(v) \geq 0$.

Summarizing, from now on our v is simplicial, has no $10^+\text{-}neighbors$, no two consecutive 6-neighbors, and no non-simplicial 5-neighbors.

Suppose $S_k = v_0, \ldots, v_k$ is a sequence of neighbors of v with $d(v_0) = 6$, $d(v_k) = 6$, while $d(v_i) = 5$ whenever $1 \leq i \leq k - 1$ and $k \geq 2$. (It is not excluded that $S_k = S_{d(v)}$, which happens when v has precisely one 6-neighbor.) Let w_i, $1 \leq i \leq k - 1$, $k \geq 2$, be the common neighbor of v_{i-1} and v_1 different from v.

Since $\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{d(v) - 16}{3}$, we can say that v has the deficiency equal to $\frac{1}{3}$ if $d(v) = 17$ or $\frac{2}{3}$ if $d(v) = 16$.

Our next goal is to estimate the total return to v from its 5-neighbors by R4–R9 and show that it is not less than the deficiency of v.

Remark 6. As we remember, our v has no S_{18}. Note that v_1 in S_2 returns $\frac{1}{3}$ to v by R5. As for S_3, it can happen that neither v_1 nor v_2 returns anything to v, which is the case only when v_1 and v_2 have a common 6-neighbor (see Remark 5).

Lemma 7. The total return from the three 5-vertices of an S_k is at least $\frac{2}{3}$.

Proof. If $d(w_2) \geq 10$ or $d(w_2) = 5$, then v receives at least $\frac{2}{3}$ from its 5-neighbor v_1 by R6 or R7, respectively. The same is true for v_2. So, if $d(w_2) \neq 6$ and $d(w_3) \neq 6$, our v returns at least $\frac{4}{5}$, which is more than enough. Thus we can assume by symmetry that $d(w_2) = 6$. Note that in this case $d(w_3) \geq 10$, for v_2 is not a $(5, 5, 6, 6, \infty)$-vertex. Since v_2 gives $\frac{1}{10}$ to v by R9, while v_3 gives $\frac{2}{5}$ by R6, we have the desired return of $\frac{2}{3}$.

Lemma 8. The total return from the three extreme 5-vertices v_1, v_2, and v_3 of an S_k with $k \geq 5$ is at least $\frac{1}{3}$.

Proof. We have nothing to prove unless $d(w_2) = 6$, which implies that $d(w_3) \geq 10$. Now v_2 still gives $\frac{1}{10}$ to v by R9, while v_3 gives at least $\frac{1}{10}$ by R8 or R9, which returns sum up to the desired $\frac{1}{3}$. ■
By symmetry, we deduce the following fact from Lemma 8.

Corollary 9. The total return from an S_k is at least $\frac{1}{3}$ if $5 \leq k \leq 6$ and at least $\frac{2}{3}$ if $k \geq 7$.

If v is completely surrounded by 5-vertices (which means that no S_k is defined), then the total return to v is at least $16 \times \frac{1}{15} > \frac{2}{3}$, and hence we can assume from now on that the neighborhood of v is partitioned into S_ks.

If $d(v) = 17$, then to pay off the deficiency of $\frac{1}{3}$ it suffices to note that every S_k with $k \neq 3$ returns at least $\frac{1}{3}$ to v, while 3 does not divide 17 (which implies that v cannot be surrounded only by S_3s).

Finally, suppose that $d(v) = 16$. As follows from Lemma 7 combined with Corollary 9, we are able to cover the deficiency of $\frac{2}{3}$ unless the neighborhood of v consists of several S_3 and at most one S_k such that $k \in \{2, 5, 6\}$. However, the residue of 16 modulo 3 is neither 0 nor 2, a contradiction.

- **Case 3.** $10 \leq d(v) \leq 15$. Now R2 implies that $\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{3(d(v)-10)}{5} \geq 0$ since v sends either nothing or $\frac{2}{5}$ through each incident face.

- **Case 4.** $d(v) = 6$. Since v does not participate in discharging, we have $\mu'(v) = \mu(v) = 6 - 6 = 0$.

- **Case 5.** $d(v) = 5$. If v is incident with a 4$^+$-face, then $\mu'(v) \geq 5 - 6 + 1 = 0$ due to R1 combined with the fact that each 16$^+$-neighbor v_2 gives more to v by R2 than v returns to v_2 by R3. Therefore, in what follows we can assume that v is simplicial.

Remark 10. Each 16$^+$-neighbor v_2 gives v through the faces v_1v_2, v_2v_3 by R2 and returns from v along edge vv_2 by R4–R9:

- (a) $\frac{4}{3}$ versus $\frac{1}{3}$ if $d(v_1) \geq 6$ and $d(v_3) \geq 6$,
- (b) 1 versus at most $\frac{1}{2}$ if $d(v_1) = 5$ and $d(v_3) \geq 6$, or
- (c) $\frac{2}{3}$ versus at most $\frac{4}{15}$ if $d(v_1) = 5$ and $d(v_3) = 5$.

Remark 10 combined with examining R4–R9 more carefully implies the following observation.

Remark 11. The donation of a 16$^+$-neighbor v_2 to v exceeds the return from v to v_2 by less than $\frac{1}{2}$ only when v obeys R9, in which case we have $\frac{2}{3} - \frac{4}{15} = \frac{2}{5}$.

Subcase 5.1. v participates in R9. Thus suppose $d(v_1) = d(v_3) = 5$, $d(v_2) \geq 16$, $d(v_4) \geq 6$, and $d(v_5) \geq 10$. Note that v acquires $\frac{2}{3} - \frac{4}{15} = \frac{2}{5}$ from v_2 by R2 combined with R9.

If $d(v_5) \geq 16$, then v_5 gives 1 to v by R2, and v returns to v_5 either $\frac{1}{7}$ by R4 if $d(v_4) \geq 10$ or $\frac{2}{5}$ by R6 if $d(v_4) = 6$. Thus the total acquisition of v from v_5 is at least $\frac{2}{5}$, and we are done.
If \(d(v_5) \leq 15 \), then \(v_5 \) gives \(\frac{3}{5} \) to \(v \) by R2, and we are done again.

Subcase 5.2. \(v \) does not participates in R9. In view of Remark 11, we already have nothing to prove if \(v \) has at least two 16+-neighbors. So suppose \(v_2 \) is the only 16+-neighbor of \(v \).

If \(d(v_1) \geq 10 \), then \(v_1 \) gives \(v \) at least \(\frac{2}{5} \) by R2, while \(v_2 \)'s resulting donation to \(v \) is \(1 - \frac{1}{5} \) by R2 and R4. This implies \(\mu'(v) > 0 \).

By symmetry, suppose \(d(v_1) \leq d(v_3) \leq 6 \). If \(d(v_1) = d(v_3) = 6 \), then \(v_1 \) gives \(\frac{1}{5} \) to \(v \) by R2 and takes back \(\frac{1}{5} \) from \(v \) by R5, which implies \(\mu'(v) \geq 0 \).

Subcase 5.2.1. \(d(v_1) = 5 \) and \(d(v_3) = 6 \). Now \(v_2 \) gives \(1 \) to \(v \) by R2. If \(d(v_5) > 6 \), which means that in fact \(10 \leq d(v_4) \leq 15 \), then we have \(\mu'(v) \geq 1 + 1 - \frac{2}{5} + \frac{2}{5} = 0 \) by R2 and R6.

If \(d(v_5) = 6 \), then we have \(d(v_4) = 6 \) or \(d(v_4) \geq 10 \) due to the absence of a \((5,5,6,6,\infty)\)-vertex. In both cases, \(\mu'(v) \geq 1 + 1 = 0 \) by R2 since \(v \) returns nothing to \(v_2 \).

Finally, \(d(v_5) = 5 \). Now \(d(v_4) \geq 10 \) due to the absence of \((5,5,6,6,\infty)\)-vertex, and we have \(\mu'(v) \geq -1 + 1 - \frac{2}{5} + \frac{2}{5} > 0 \) by R2 and R7.

Subcase 5.2.2. \(d(v_1) = d(v_3) = 5 \). Here \(v_2 \) gives \(\frac{2}{5} \) to \(v \) by R2. Since \(v \) is not a \((5,5,6,6,\infty)\)-vertex, we can assume that \(10 \leq d(v_4) \leq 15 \). Furthermore, R9 is not applicable to \(v \) by an above assumption, so \(d(v_5) = 5 \). This means that \(v \) obeys R8, and we have \(\mu'(v) = -1 + \frac{2}{5} - \frac{1}{15} + \frac{2}{5} = 0 \), as desired.

Thus we have proved \(\mu'(x) \geq 0 \) whenever \(x \in V \cup F \), which contradicts (1) and completes the proof of Theorem 1.

References

Received 18 December 2017
Revised 25 June 2018
Accepted 25 June 2018