A NOTE ON THE FAIR DOMINATION NUMBER IN OUTERPLANAR GRAPHS

MAJID HAJIAN

Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

AND

NADER JAFARI RAD

Department of Mathematics
Shahed University, Tehran, Iran

e-mail: n.jafarirad@gmail.com

Abstract

For \(k \geq 1 \), a \(k \)-fair dominating set (or just \(k \)FD-set), in a graph \(G \) is a dominating set \(S \) such that \(|N(v) \cap S| = k \) for every vertex \(v \in V - S \). The \(k \)-fair domination number of \(G \), denoted by \(fd_k(G) \), is the minimum cardinality of a \(k \)FD-set. A fair dominating set, abbreviated FD-set, is a \(k \)FD-set for some integer \(k \geq 1 \). The fair domination number, denoted by \(fd(G) \), of \(G \) that is not the empty graph, is the minimum cardinality of an FD-set in \(G \). In this paper, we present a new sharp upper bound for the fair domination number of an outerplanar graph.

Keywords: fair domination, outerplanar graph, unicyclic graph.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology not given here, we follow [13]. Specifically, let \(G \) be a simple graph with vertex set \(V(G) = V \) of order \(|V| = n \) and let \(v \) be a vertex in \(V \). The open neighborhood of \(v \) is \(N_G(v) = \{u \in V \mid uv \in E(G)\} \) and the closed neighborhood of \(v \) is \(N_G[v] = \{v\} \cup N_G(v) \). If the graph \(G \) is
clear from the context, then we simply write $N(v)$ rather than $N_G(v)$. The degree of a vertex v, is $\text{deg}(v) = |N(v)|$. A vertex of degree one is called a leaf and its neighbor a support vertex. A strong support vertex is a support vertex adjacent to at least two leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf. For a set $S \subseteq V$, its open neighborhood is the set $N(S) = \cup_{v \in S} N(v)$, and its closed neighborhood is the set $N[S] = N(S) \cup S$. The distance $d(u, v)$ between two vertices u and v in a graph G is the minimum number of edges of a path from u to v. A graph G of order at least three is 2-connected if the deletion of any vertex does not disconnect the graph. A cut-vertex in a connected graph is a vertex whose removal disconnect the graph. A maximal connected subgraph without a cut-vertex is called a block. A graph G is outerplanar if it can be embedded in the plane such that all vertices lie on the boundary of its exterior region. A graph G is Hamiltonian if there is a spanning cycle in G. For a subset S of vertices of G, we denote by $G[S]$ the subgraph of G induced by S.

A subset $S \subseteq V$ is a dominating set of G if every vertex not in S is adjacent to a vertex in S. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A vertex v is said to be dominated by a set S if $N[v] \cap S \neq \emptyset$.

Caro et al. [1] studied the concept of fair domination in graphs. For $k \geq 1$, a k-fair dominating set, abbreviated kFD-set, in G is a dominating set S such that $|N(v) \cap D| = k$ for every vertex $v \in V - D$. The k-fair domination number of G, denoted by $fd_k(G)$, is the minimum cardinality of a kFD-set. A kFD-set of G of cardinality $fd_k(G)$ is called a $fd_k(G)$-set. A fair dominating set, abbreviated FD-set, in G is a kFD-set for some integer $k \geq 1$. The fair domination number, denoted by $fd(G)$, of a graph G that is not the empty graph is the minimum cardinality of an FD-set in G. An FD-set of G of cardinality $fd(G)$ is called a $fd(G)$-set. The concept of fair domination in graphs was further studied in [9, 10, 11]. There is a close relation between the fair domination number and variant, namely perfect domination number of a graph. A perfect dominating set in a graph G is a dominating set S such that every vertex in $V(G) - S$ is adjacent to exactly one vertex in S. Hence a 1FD-set is precisely a perfect dominating set. The concept of perfect domination was introduced by Cockayne et al. in [4], and Fellows et al. [8] with a different terminology which they called semiperfect domination. This concept was further studied, see for example, [2, 3, 5, 6, 12].

Among other results, Caro et al. [1] proved that $fd(G) < 17n/19$ for any maximal outerplanar graph G of order n, and among open problems posed by Caro et al. [1], one asks to find $fd(G)$ for other families of graphs.

In this paper, we study fair domination in outerplanar graphs. We present a new sharp upper bound for the fair domination number of outerplanar graphs.

We call a block K in an outerplanar graph G a strong-block if K contains
at least three vertices. We call a vertex w in a strong-block K of an outerplanar graph G a special cut-vertex if w belongs to a shortest path from K to a strong-block $K' \neq K$. We call a strong-block K in an outerplanar graph G a leaf-block if K contains exactly one special cut-vertex. We denote by $r(G)$ the number of strong-blocks of a graph G. The following is straightforward.

Observation 1. Every outerplanar graph with at least two strong-blocks contains at least two leaf-blocks.

We make use of the following.

Observation 2 (Caro et al. [1]). Every $1FD$-set in a graph contains all its strong support vertices.

Theorem 3 (Leydolda et al. [14]). An outerplanar graph G is Hamiltonian if and only if it is 2-connected.

Theorem 4 (Hajian et al. [9]). If G is a unicyclic graph of order n, then $fd(G) \leq (n + 1)/2.$

2. Main Result

Theorem 5. If G is an outerplanar graph of order n and size m with $r \geq 1$ strong-blocks, then $fd(G) \leq (4m - 3n + 3)/2 - r$. This bound is sharp.

Proof. Let G be an outerplanar graph of order n and size m with $r \geq 1$ strong-blocks. We prove that $fd(G) \leq (4m - 3n + 3)/2 - r$. The result follows from Theorem 4 if G is a unicyclic graph. Thus assume that G is not a unicyclic graph. Suppose to the contrary that $fd(G) > (4m - 3n + 3)/2 - r$. Assume that G has the minimum order, and among all such graphs, we may assume that the size of G is as minimum as possible. Let K_1, K_2, \ldots, K_r be the r strong-blocks of G. By Theorem 3, K_j is Hamiltonian, for $1 \leq j \leq r$. Let $C' = c_j^0c_1^j \cdots c_r^j c_0^j$ be a Hamiltonian cycle for K_i, for $1 \leq i \leq r$. We proceed with the following Claims 1 and 2.

Claim 1. For any $1 \leq i \leq r$, if c_j^i is a vertex of C', for some $j \in \{0, 1, \ldots, l_i\}$, such that $deg_G(c_j^i) = 2$, then $deg_G(c_{j+1}^i) \geq 3$ and $deg_G(c_{j-1}^i) \geq 3$, where the calculations in $j + 1$ and $j - 1$ are taken modulo l_i.

Proof. Assume that $deg_G(c_j^i) = 2$ for some $j \in \{0, 1, \ldots, l_i\}$. Suppose that $deg_G(c_{j+1}^i) = 2$. Let $G' = G - c_j^i c_{j+1}^i$. Clearly $r - 1 \leq r(G') \leq r$. By the choice of G, $fd(G') \leq (4m(G') - 3n(G') + 3)/2 - r(G') \leq (4m - 3n + 3)/2 - (r - 1) = (4m - 3n + 3)/2 - r - 1$. Let S' be a $fd(G')$-set. If $|S' \cap \{c_j^i, c_{j+1}^i\}| \in \{0, 2\}$,
then S' is a 1FD-set for G of cardinality at most $(4m - 3n + 3)/2 - r - 1$, and so $fd_1(G) \leq (4m - 3n + 3)/2 - r - 1$, a contradiction. Thus $|S' \cap \{c'_j, c'_{j+1}\}| = 1$.

Assume that $c'_j \in S'$. Then $c'_{j+1} \notin S'$, and $c'_{j+2} \in S'$, since S' is a dominating set. Thus $\{c'_j, c'_{j+1}\} \cup S'$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r$ and so $fd_1(G) \leq (4m - 3n + 3)/2 - r$, a contradiction. Next assume that $c'_{j+1} \in S'$.

Then $c'_j \notin S'$ and $c'_{j-1} \in S'$. Thus $\{c'_i\} \cup S'$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r$. So $fd_1(G) \leq (4m - 3n + 3)/2 - r$, a contradiction. Hence $\deg_G(c'_{j+1}) \geq 3$. Similarly, $\deg_G(c'_{j-1}) \geq 3$.

\begin{claim}
If c'_j is a vertex of C^i, for some $j \in \{0, 1, \ldots, l_i\}$, such that $\deg_G(c'_j) = 2$, then non of c'_{j+1} and c'_{j-1} is a support vertex of G.
\end{claim}

\begin{proof}
Assume that $\deg_G(c'_j) = 2$ for some $j \in \{0, 1, \ldots, l_i\}$. Suppose that c'_{j+1} is a support vertex of G. Let $G' = G - c'_j c'_{j+1}$. Clearly $r - 1 \leq r(G') \leq r$. By the choice of G, $fd_1(G') \leq (4m(G') - 3n(G') + 3)/2 - r(G') \leq (4(m - 1) - 3n + 3)/2 - r - 1 = (4m - 3n + 3)/2 - r - 1$. Let S' be a $fd_1(G')$-set.

By Observation 2, $c'_{j+1} \in S'$, since c'_{j+1} is a strong support vertex of G. If $c'_{j-1} \notin S'$, then S' is a 1FD-set for G of cardinality at most $(4m - 3n + 3)/2 - r - 1$ and so $fd_1(G) \leq (4m - 3n + 3)/2 - r - 1$, a contradiction. Thus $c'_{j-1} \in S'$ and so $\{c'_i\} \cup S'$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r$, and so $fd_1(G) \leq (4m - 3n + 3)/2 - r$, a contradiction. Hence c'_{j+1} is not a support vertex of G. Similarly, c'_{j-1} is not a support vertex of G.
\end{proof}

We consider the following cases.

\textbf{Case 1.} $r = 1$. First assume that $V(G) = \{c'_0, c'_1, \ldots, c'_{l_1}\}$ and so $n = l_1 + 1$.

By Claim 1, at least $[n/2]$ vertices of C^1 are of degree at least 3. Now, we can easily see that $m = \frac{1}{2} \sum_{v \in V(G)} \deg(v) \geq n + [n/2]/2$. (Since $\delta(G) \geq 2$ and at least $[n/2]$ vertices of G are of degree at least 3, we have $\sum_{v \in V(G)} \deg(v) \geq 2n + [n/2]$.)

Thus $m \geq n + [n/2]/2$. If n is even, then $n \leq (4m - 3n)/2$ and if n is odd, then $n \leq (4m - 3n - 1)/2$. We thus obtain that $n \leq (4m - 3n + 3)/2 - 1$. Now $V(G)$ is a 1FD-set in G of cardinality n, and thus $fd_1(G) \leq (4m - 3n + 3)/2 - 1$, a contradiction. We deduce that $V(G) \neq \{c'_0, c'_1, \ldots, c'_{l_1}\}$. Since $r = 1$, there is a vertex of degree one in G. Let v_d be a leaf of G such that $d(v_d, C^1)$ is maximum. Let $v_0 v_1 \cdots v_d$ be the shortest path from v_d to a vertex $v_0 \in C^1$.

Clearly, $\{v_0, v_1, \ldots, v_d\} \cap V(C^1) = \{v_0\}$.

Assume that $d \geq 2$. Suppose that $\deg_G(v_{d-1}) = 2$. Let $G' = G - \{v_d, v_{d-1}\}$. Clearly $r(G') = r$. By the choice of G, $fd_1(G') \leq (4m(G') - 3n(G') + 3)/2 - r(G') = (4m - 2) - 3(n - 2) + 3)/2 - 1 = (4m - 3n + 3)/2 - 2$. Let S' be a $fd_1(G')$-set. If $v_{d-2} \notin S'$, then $S' \cup \{v_d\}$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - 1$ and so $fd_1(G) \leq (4m - 3n + 3)/2 - 1$, a contradiction. Thus $v_{d-2} \in S'$. Then $S' \cup \{v_{d-1}\}$ is a 1FD-set in G of cardinality at most (4m - 3n + 3)/2 - 1
(4m − 3n + 3)/2 − 1 and so \(fd_1(G) \leq (4m − 3n + 3)/2 − 1 \), a contradiction. Thus assume that \(\deg_G(v_{d-1}) \geq 3 \). Clearly any vertex of \(N_G(v_{d-1}) - \{v_{d-2}\} \) is a leaf. Let \(G' \) be obtained from \(G \) by removing all leaves adjacent to \(v_{d-1} \). Clearly \(r(G') = r \). By the choice of \(G \), \(fd_1(G') \leq (4m(G') − 3n(G') + 3)/2 − r(G') \leq (4(m − 2) − 3(n − 2) + 3)/2 − 1 = (4m − 3n + 3)/2 − 2 \). Let \(S' \) be a \(fd_1(G') \)-set. If \(v_{d-1} \in S' \), then \(S' \) is a 1FD-set in \(G \) of cardinality at most \((4m − 3n + 3)/2 − 2 \) and so \(fd_1(G) \leq (4m − 3n + 3)/2 − 2 \), a contradiction. Thus assume that \(v_{d-1} \notin S' \). Then \(v_{d-2} \in S' \). Now \(S' \cup \{v_{d-1}\} \) is a 1FD-set in \(G \) of cardinality at most \((4m − 3n + 3)/2 − 1 \) and so \(fd_1(G) \leq (4m − 3n + 3)/2 − 1 \), a contradiction.

We next assume that \(d = 1 \). Let \(D_1 = \{c^j \mid \deg_G(c^j) = 2\} \) and \(D_2 = \{c^j \mid \deg_G(c^j) \geq 3\} \). By relabeling of the vertices of \(G \) we may assume that \(c^0 \) is a special cut-vertex of \(G \). Let \(G' \) be the graph obtained by removal of all edges \(c^0c^j \), with \(c^j \in \{c^1, \ldots, c^l\} \). Clearly \(G' \) has two components. Let \(G'_1 \) be the component of \(G' \) containing \(c^0 \), and \(G'_2 \) be the component of \(G' \) containing \(c^0 \). Clearly, \(\{c^1, c^2, \ldots, c^l\} \subseteq V(G'_1) \). We consider the following subcases.

Subcase 2.1. \(V(G'_1) = \{c^1, c^2, \ldots, c^l\} \). Let \(G'_1 = G[V(G'_1) \cup \{c^0\}] \). Clearly \(n(G'_1) = l + 1 \). By Claim 1, at least \(\lfloor l/2 \rfloor \) vertices of \(G' - c^0 \) are of degree at least 3.

Assume that \(l_i \) is even. Thus at least \(l_i/2 \) vertices of \(C^i - c^0 \) are of degree at least 3. Now, we can easily see that \(m(G'_1) = \frac{1}{2} \sum_{v \in V(G'_1)} \deg(v) \geq l_i + 1 \). Let \(G'_2 = G[V(G'_1) \cup \{c^1, c^i\}] - \{c^0, c^i\} \). Clearly \(n = n(G'_2) = l_i - 2 \), \(m = m(G'_2) + m(G'_1) - 2 \) and \(r(G'_2) = r - 1 \). By the choice of \(G \), \(fd_1(G'_2) \leq (4m(G'_2) - 3n(G'_2) + 3)/2 - r(G'_2) \). Let \(S'' \) be a \(fd_1(G'_2) \)-set. By Observation 2, \(c^0 \in S'' \), since \(c^0 \) is a strong support vertex of \(G'_2 \). Then \(S'' \cup \{c^1, c^2, \ldots, c^l\} \) is
a 1FD-set for G of cardinality $|S''| + l_i$. On the other hand
\[
\frac{(4m - 3n + 3)}{2} - r \\
\geq (4m(G^*_2) + m(G^*_1) - 2) - 3(n(G^*_2) + n(G^*_1) - 3) + 3)/2 - r \\
= (4m(G^*_2) - 3n(G^*_2) + 3)/2 - r(G^*_2) + (4m(G^*_1) - 3(l_i + 1) + 1)/2 - 1 \\
\geq |S''| + (4(l_i + 1 + l_i/4) - 3l_i - 2)/2 - 1 = |S''| + l_i.
\]
Thus $fd_1(G) \leq (4m - 3n + 3)/2 - r$, a contradiction.

Assume next that l_i is odd. Observe that at least $(l_i - 1)/2$ vertices of $C^i - c_0^i$ are of degree at least 3. Now, we can easily see that $m(G^*_1) = \frac{1}{2} \sum_{v \in V(G^*_1)} \deg(v) \geq l_i + 1 + (l_i - 1)/4$. We show that $m(G^*_1) = l_i + 1 + (l_i - 1)/4$. Suppose that $m(G^*_1) > l_i + 1 + (l_i - 1)/4$. Then $m(G^*_1) \geq l_i + 1 + (l_i - 1)/4 + 1/4$. Let $G^*_2 = G^*_1 \cup \{c_i^1, c_i^2\} - \{c_i^1\}$. Clearly $n = n(G^*_2) + l_i - 2$, $m = m(G^*_2) + m(G^*_1) - 2$ and $r(G^*_2) = r - 1$. By the choice of G, $fd_1(G^*_2) \leq (4m(G^*_2) - 3n(G^*_2) + 3)/2 - r(G^*_2)$.

Let S'' be a $fd_1(G^*_2)$-set. By Observation 2, $c_0^i \in S''$, since c_0^i is a strong support vertex of G^*_2. Then $S'' \cup \{c_1^i, c_2^i, \ldots, c_{l_i}^i\}$ is a 1FD-set for G of cardinality $|S''| + l_i$. On the other hand
\[
\frac{(4m - 3n + 3)}{2} - r \\
\geq (4m(G^*_2) + m(G^*_1) - 2) - 3(n(G^*_2) + n(G^*_1) - 3) + 3)/2 - r \\
= (4m(G^*_2) - 3n(G^*_2) + 3)/2 - r(G^*_2) + (4m(G^*_1) - 3(l_i + 1) + 1)/2 - 1 \\
\geq |S''| + (4(l_i + 1 + l_i/4 + 1/4) - 3l_i - 2)/2 - 1 = |S''| + l_i.
\]
Thus $fd_1(G) \leq (4m - 3n + 3)/2 - r$, a contradiction. We thus obtain that $m(G^*_1) = l_i + 1 + (l_i - 1)/4$. Note that $|E(G^*_1) \cap E(C^i)| = l_i + 1$. Hence $|E(G^*_2) - E(C^i)| = (l_i - 1)/4$. Since $(l_i - 1)/2$ vertices of $C^i - c_0^i$ are of degree at least 3, we thus obtain that precisely $(l_i - 1)/2$ vertices of $C^i - c_0^i$ are of degree 3, and so $(l_i + 1)/2$ vertices of $C^i - c_0^i$ are of degree two. Now Claim 1 implies that $deg_G(c_1^i) = deg_G(c_{l_i}^i) = 2$. Thus we obtain that $deg_G(c_0^i) = 2$. Let $A_1 = \{c_j \mid deg_G(c_{l_i}^i) = 2 \text{ for } 1 \leq j \leq l_i\}$ and $A_2 = \{c_1^i, c_2^i, \ldots, c_{l_i}^i\} - A_1$. Clearly $|A_1| = (l_i + 1)/2$ and $|A_2| = (l_i - 1)/2$. Note that $|A_2|$ is even, since the number of odd vertices in every graph (here G^*_1) is even. Thus $|A_1|$ is odd, since l_i is odd and $|A_1| + |A_2| = l_i$. Then $|A_1| \geq 3$, since $c_{l_i}^i \in A_1$. Now Claim 1 implies that $A_1 = \{c_1^i, c_3^i, \ldots, c_{l_i+1}^i/2, \ldots, c_{l_i}^i\}$ and $A_2 = \{c_2^i, c_4^i, \ldots, c_{l_i-1}^i\}$.

Fact 1. There are two adjacent vertices $c_s^i, c_t^i \in A_2$ such that $|s - t| = 2$.

Proof. Note that $l_i \equiv 1 \pmod{4}$, since $\frac{l_i - 1}{2}$ is even. If $l_i = 5$, then $c_2^i, c_4^i \in A_2$ are the desired vertices, since they are the only vertices of G^*_1 of degree three. Thus assume that $l_i \geq 9$. If $\{c_{l_i+1}^i + 1, c_{l_i+1}^i - 3\} \cap N(c_{l_i+1}^i - 1) \neq \emptyset$, then the desired pairs
are $c_{\frac{i}{2}+1}-3$ and the vertex of $\{c_{\frac{i}{2}+1}^t, c_{\frac{i}{2}+1}^h\} \cap N(c_{\frac{i}{2}+1}^t)$. Thus assume that $\{c_{\frac{i}{2}+1}^t, c_{\frac{i}{2}+1}^h\} \cap N(c_{\frac{i}{2}+1}^t) = \emptyset$. Clearly there is a vertex $c_i^t \in A_2$ such that c_i^t is adjacent to $c_{\frac{i}{2}+1}^t$. Without loss of generality, assume that $t < \frac{i+1}{2} - 3$. Since G is an outerplanar graph, $|A_2 \cap \{c_i^h : t+2 \leq h \leq \frac{i+1}{2} - 3\}|$ is even. Furthermore, since G is an outerplanar graph, any vertex of $A_2 \cap \{c_i^h : t+2 \leq h \leq \frac{i+1}{2} - 3\}$ is adjacent to a vertex of $A_2 \cap \{c_i^h : t+2 \leq h \leq \frac{i+1}{2} - 3\}$. Consequently, there are two pairs $c_{h_1}, c_{h_2} \in A_2 \cap \{c_i^h : t+2 \leq h \leq \frac{i+1}{2} - 3\}$ such that $c_{h_1} \in N(c_{h_2})$ and $|h_1 - h_2| = 2$.

Let c_i^t and c_{i+2}^t be two adjacent vertices of A_2 according to Fact 1. Clearly, $deg(c_{i+1}^t) = 2$. Let $G^* = G - c_i^t c_{i+1}^t - c_{i+2}^t$. Clearly $n(G^*) = n$, $m(G^*) = m - 2$ and $r - 1 \leq r(G^*) \leq r$. By the choice of G, $f_{d_1}(G^*) \leq (4m(G^*) - 3n(G^*) + 3)/2 - r(G^*) \leq (4m - 3n + 3)/2 - r - 3$. Let S^* be a $f_{d_1}(G^*)$-set. Since c_{i+2}^t is a strong support vertex of G^*, by Observation 2, we have $c_{i+2}^t \in S^*$. If $c_{i-1}^t \notin S^*$, then S^* is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r - 3$ and so $f_{d_1}(G) \leq (4m - 3n + 3)/2 - r - 3$, a contradiction. Thus $c_{i-1}^t \in S^*$. Then $S^* \cup \{c_i^t, c_{i+1}^t\}$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r - 1$ and so $f_{d_1}(G) \leq (4m - 3n + 3)/2 - r - 1$, a contradiction.

Subcase 2.2. $V(G_1) \neq \{c_1^t, c_2^t, \ldots, c_i^t\}$. Since K_1 is a leaf-block of G, $G_1 - c_i^t$ has some vertex of degree at most one. Let v_d be a leaf of G'_1 such that $d(v_d, G_1 - c_i^t)$ is as maximum as possible, and the shortest path from v_d to C_i does not contain c_d^t. Let G' be obtained from G by removing all leaves adjacent to v_d. Clearly $r(G') = r$. By the choice of G, $f_{d_1}(G') \leq (4m(G') - 3n(G') + 3)/2 - r(G') = (4m - 3n + 3)/2 - r = (4m - 3n + 3)/2 - r - 1$. Let S' be a $f_{d_1}(G')$-set. If $v_{d-2} \notin S'$, then $S' \cup \{v_d\}$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r$ and so $f_{d_1}(G) \leq (4m - 3n + 3)/2 - r$, a contradiction. Thus $v_{d-2} \in S'$. Then $S' \cup \{v_{d-1}\}$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r$ and so $f_{d_1}(G) \leq (4m - 3n + 3)/2 - r$, a contradiction. We deduce that $deg_G(v_{d-1}) \geq 3$. Clearly any vertex of $N_G(v_{d-1}) - \{v_{d-2}\}$ is a leaf. Let G'' be obtained from G by removing all leaves adjacent to v_{d-1}. Clearly $r(G'') = r$. By the choice of G, $f_{d_1}(G'') \leq (4m(G'') - 3n(G'') + 3)/2 - r(G'') = (4m - 3n + 3)/2 - r = (4m - 3n + 3)/2 - r - 1$. Let S'' be a $f_{d_1}(G'')$-set. If $v_{d-1} \notin S''$, then S'' is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r - 1$ and so $f_{d_1}(G) \leq (4m - 3n + 3)/2 - r - 1$, a contradiction. Thus assume that $v_{d-1} \notin S''$. Then $v_{d-2} \in S''$. Now $S'' \cup \{v_{d-1}\}$ is a 1FD-set in G of cardinality at most $(4m - 3n + 3)/2 - r$ and so $f_{d_1}(G) \leq (4m - 3n + 3)/2 - r$, a contradiction.

We thus assume that $d = 1$. Let $D_1 = \{c_j^t | deg_G(c_j^t) = 2\}$, $D_2 = \{c_j^t | c_j^t$
is a support vertex of G} and $D_3 = \{c^j_i \mid \deg_G(c^j_i) \geq 3$ and c^j_i is not a support vertex of $G\}$. Clearly $|D_1| + |D_2| + |D_3| = l_i$. Observe that $|D_2| \geq 1$, since $d = 1$. Thus by Claims 1 and 2, $|D_1| \leq |D_3|$. Let $G_1^* = G[G_1^i \cup \{c^0_i\}]$. Observe that $m(G_1^i) = \frac{1}{2} \sum_{v \in V(G_1^i)} \deg(v) \geq n(G_1^i) + |D_3| / 2$. Then $n(G_1^i) \geq l_i + 1 + |D_2|$. Let $G_2^* = \{G_2 \cup \{c^1_i, c^2_i, \ldots, c^l_i\}\} - \{c^0_i\}$. Clearly $n = n(G_2^i) + n(G_1^i) - 3$, $m = m(G_2^i) + m(G_1^i) - 2$ and $r(G_2^i) = r - 1$. By the choice of G, $fd_1(G_2^i) \leq (4m(G_2^i) - 3n(G_2^i) + 3) / 2 - r(G_2^i)$. Let S'' be a $fd_1(G_2^i)$-set. By Observation 2, $c^0_i \in S''$, since c^0_i is a strong support vertex of G_2^i. Then $S'' \cup \{c^1_i, c^2_i, \ldots, c^l_i\}$ is a 1FD-set for G of cardinality $|S''| + l_i$. On the other hand

\[
(4m - 3n + 3)/2 - r \\
\geq (4(m(G_2^i) + m(G_1^i) - 2) - 3(n(G_2^i) + n(G_1^i) - 3) + 3) / 2 - r \\
= (4m(G_2^i) - 3n(G_2^i) + 3) / 2 - r(G_2^i) + (4m(G_1^i) - 3n(G_1^i) + 1) / 2 - 1 \\
\geq |S''| + (n(G_1^i) + 2|D_3| + 1)/2 - 1 \\
\geq |S''| + (l_i + 1 + |D_2| + 2|D_3| + 1)/2 - 1 \\
\geq (l_i + |D_2| + |D_3| + |D_1|)/2 \geq |S''| + l_i.
\]

Thus $fd_1(G) \leq |S''| + l_i \leq (4m - 3n + 3)/2 - r$, a contradiction.

To the sharpness, consider a cycle C_5.

3. Concluding Remarks

As it is noted, Caro et al. [1] proved that $fd(G) < 17n/19$ for any maximal outerplanar graph G of order n. They also proved that $fd(G) \leq n - 2$ for any connected graph G of order $n \geq 3$. It is worth-noting that the bound of Theorem 5 improves the bound $n - 2$ when $4m < 5n + 2r - 7$. It is also known that every maximal outerplanar graph G of order at least 3 is 2-connected [7], and thus $r(G) = 1$. Therefore, the bound of Theorem 5 improves the bound $17n/19$ when $4m < \frac{9n}{19} - 1$. We have the following conjecture.

Conjecture 6. If G is a graph of order n and size m with $r \geq 1$ strong-blocks, then $fd(G) \leq (4m - 3n + 3)/2 - r$.

References

doi:10.1016/j.disc.2012.05.006

