GRAPH EXPONENTIATION AND NEIGHBORHOOD RECONSTRUCTION

RICHARD H. HAMMACK

Department of Mathematics and Applied Mathematics
Virginia Commonwealth University
Richmond, VA 23284-2014, USA

Abstract

Any graph G admits a neighborhood multiset $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ whose elements are precisely the open neighborhoods of G. We say G is neighborhood reconstructible if it can be reconstructed from $\mathcal{N}(G)$, that is, if $G \cong H$ whenever $\mathcal{N}(G) = \mathcal{N}(H)$ for some other graph H. This note characterizes neighborhood reconstructible graphs as those graphs G that obey the exponential cancellation $G^{K_2} \cong H^{K_2} \implies G \cong H$.

Keywords: neighborhood reconstructible graphs, graph exponentiation.

2010 Mathematics Subject Classification: 05C60, 05C76.

Our graphs are finite and may have loops, but not parallel edges. The open neighborhood of a vertex x of a graph G is $N_G(x) := \{y \in V(G) \mid xy \in E(G)\}$. Notice that $x \in N_G(x)$ if and only if $xx \in E(G)$, that is, there is a loop at x.

To any graph G there is an associated neighborhood multiset $\mathcal{N}(G) = \{N_G(x) \mid x \in V(G)\}$ whose elements are the open neighborhoods of G. It is possible that $\mathcal{N}(G) = \mathcal{N}(H)$ but $G \not\cong H$. Figure 1 shows the simplest instance of this. Here $G \not\cong H$ but $\mathcal{N}(G) = \{\{0\}, \{1\}\} = \mathcal{N}(H)$. Figure 2 shows a more complex and interesting example.

![Figure 1](image)

Figure 1. Two non-isomorphic graphs with the same neighborhood multiset.

1Supported by Simons Collaboration Grant for Mathematicians 523748.
A graph G is called \textit{neighborhood reconstructible} if $\mathcal{N}(G) = \mathcal{N}(H)$ implies $G \cong H$ for any graph H with $V(H) = V(G)$. Figure 2 shows that the Petersen graph is not neighborhood reconstructible. Aigner and Triesch \cite{1} attribute the neighborhood reconstruction problem to Sós \cite{9}. They note that deciding if a graph is neighborhood reconstructible is NP-complete.

Given graphs G and K, the \textit{graph exponential} G^K is the graph whose vertex set is the set of all functions $V(K) \to V(G)$, where two functions f, g are adjacent precisely if $f(x)g(y) \in E(G)$ for all $xy \in E(K)$. (See \cite{6, 8}.) If $V(K) = \{v_1, \ldots, v_n\}$, then a function $f : V(K) \to V(G)$ can be identified with an n-tuple $f = (x_1, \ldots, x_n) \in V(G)^n$ signifying $f(v_i) = x_i$.

We are interested exclusively in G^{K_2}. Note $V(G^{K_2}) = V(G) \times V(G)$, and two functions (x_1, x_2) and (y_1, y_2) are adjacent if and only if $x_1y_2 \in E(G)$ and $x_2y_1 \in E(G)$. That is,

$$E(G^{K_2}) = \{(x_1, x_2)(y_1, y_2) \mid x_1y_2 \in E(G) \text{ and } x_2y_1 \in E(G)\}.$$

See Figure 3, which shows that $G^K \cong H^K$ does not necessarily imply $G \cong H$.

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K_2 = \begin{pmatrix} 0,0 & 0,1 & 1,0 & 1,1 \\ 0,1 & 1,1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} K_2 = \begin{pmatrix} 0,0 & 0,1 & 1,0 & 1,1 \\ 0,1 & 1,1 \end{pmatrix}$$

Figure 3. Two exponentials G^{K_2} and H^{K_2}. This shows $G^K \cong H^K$ may not imply $G \cong H$.

Actually, the conditions under which $G^K \cong H^K$ implies $G \cong K$ are not fully understood today. (The issue is further complicated by the fact that there are at least two definitions of graph exponentiation; compare \cite{4}.) This note links one instance of this \textit{exponential cancellation} to neighborhood reconstruction. Our...
main result is that G is neighborhood reconstructible if and only if $G^{K^2} \cong H^{K^2}$ implies $G \cong H$ for all graphs H. To understand why we might expect this, consider Proposition 1 below, whose proof is almost automatic. (Figures 1 and 3 illustrate Proposition 1.)

Proposition 1. If G and H are two graphs on the same vertex set and $\mathcal{N}(G) = \mathcal{N}(H)$, then $G^{K^2} \cong H^{K^2}$.

Proof. Say $\mathcal{N}(G) = \mathcal{N}(H)$. As G and H have the same neighborhood multiset, there is a bijection $\varphi : V(G) \rightarrow V(H)$ for which $N_G(x) = N_H(\varphi(x))$ for each $x \in V(G)$. (Such map φ is unique if no two vertices of G have the neighborhood; otherwise there is more than one φ.) The bijection $\lambda : V(G^{K^2}) \rightarrow V(H^{K^2})$ where $\lambda(x, y) = (\varphi(x), y)$ is an isomorphism. Indeed,

$$
(x, y)(u, v) \in E(G^{K^2}) \iff v \in N_G(x) \text{ and } y \in N_G(u)
\iff v \in N_H(\varphi(x)) \text{ and } y \in N_H(\varphi(u))
\iff (\varphi(x), y)(\varphi(u), v) \in E(H^{K^2})
\iff \lambda(x, y)\lambda(u, v) \in E(H^{K^2}).
$$

We will use this proposition in the proof of our main result. We will also need the direct product of graphs: $G \times H$ is the graph whose vertex set is the set Cartesian product $V(G \times H) = V(G) \times V(H)$, and whose edges are

$$
E(G \times H) = \{(x, y)(x'y') \mid xx' \in E(G) \text{ and } yy' \in E(H)\}.
$$

See Chapter 8 of [2] for a survey of the direct product.

For a positive integer k, the direct power G^k is $G \times \cdots \times G$ (k factors). Any square G^2 admits a mirror automorphism $\mu : G^2 \rightarrow G^2$ of order 2, where $\mu(x, y) = (y, x)$. From the definitions it is immediate that

1. $(x, y)(u, v) \in E(G^2)$ if and only if $(x, y)\mu(u, v) \in E(G^{K^2})$,
2. $(x, y)(u, v) \in E(G^{K^2})$ if and only if $\mu(x, y)(u, v) \in E(G^2)$.

Recall the following two results (by Lovász) concerning direct powers and products. (They are Theorems 2 and 5, respectively, in [7].)

Proposition 2. If $G^k \cong H^k$ for a positive integer k, then $G \cong H$.

Proposition 3. If $G \times K \cong H \times K$, then there is an isomorphism $G \times K \rightarrow H \times K$ of form $(x, y) \mapsto (\lambda(x, y), y)$ for some map $\lambda : G \times K \rightarrow H$.

Actually, we will only need a weaker instance of Proposition 3, one that is easy to prove from scratch. If $G \times K_2 \cong H \times K_2$, then there exists an isomorphism $G \times K_2 \rightarrow H \times K_2$ of form $(x, y) \mapsto (\lambda(x, y), y)$.
We are ready for our main theorem.

Theorem 4. A graph G is neighborhood reconstructible if and only if the exponential cancellation law $G^K \simeq H^K \Rightarrow G \simeq H$ holds for any graph H.

Proof. Say the exponential cancellation law $G^K \simeq H^K \Rightarrow G \simeq H$ holds. Let $\mathcal{N}(G) = \mathcal{N}(H)$ for a graph G with $V(H) = V(G)$. Proposition 1 yields $G^K \simeq H^K$, whence $G \simeq H$. Thus G is neighborhood reconstructible.

Conversely, suppose G is neighborhood reconstructible. Say $G^K \simeq H^K$ for some graph H. We must show $G \simeq H$.

Put $V(K_2) = \{0, 1\}$. Take an isomorphism $\varphi : G^K \to H^K$. Using (1) and (2), observe that

$$(x, y)(u, v) \in E(G^2) \iff (x, y) \mu(u, v) \in E(G^K) \iff \varphi(x, y) \varphi(u, v) \in E(H^K) \iff \mu \varphi(x, y) \varphi(u, v) \in E(H^2).$$

From this we get an isomorphism $\Theta : G^2 \times K_2 \to H^2 \times K_2$ defined as

$$\Theta((x, y), \varepsilon) = \begin{cases} (\varphi(x, y), \varepsilon) & \text{if } \varepsilon = 0, \\ (\mu \varphi(x, y), \varepsilon) & \text{if } \varepsilon = 1. \end{cases}$$

From $G^2 \times K_2 \simeq H^2 \times K_2$ we get $G^2 \times K_2 \times K_2 \simeq H^2 \times K_2 \times K_3$, yielding $(G \times K_2)^2 \simeq (H \times K_2)^2$. By Proposition 2 we have $G \times K_2 \simeq H \times K_2$. Then Proposition 3 guarantees an isomorphism $\theta : G \times K_2 \to H \times K_2$ having form

$$\theta(x, \varepsilon) = \begin{cases} (\lambda_0(x), \varepsilon) & \text{if } \varepsilon = 0, \\ (\lambda_1(x), \varepsilon) & \text{if } \varepsilon = 1. \end{cases}$$

for two bijections $\lambda_0, \lambda_1 : V(G) \to V(H)$, which (by definition of the direct product) necessarily satisfy $xy \in E(G)$ if and only if $\lambda_0(x)\lambda_1(y) \in E(H)$.

Now form a graph H' on $V(G)$ whose edges are precisely $\lambda_1^{-1}(u)\lambda_1^{-1}(v)$ for each $uv \in E(H)$. Thus $\lambda_1^{-1} : H \to H'$ is an isomorphism.

We claim that $N_G(x) = N_{H'}(\lambda_1^{-1}\lambda_0(x))$ for each $x \in V(G) = V(H')$. Note $y \in N_G(x)$ if and only if $xy \in E(G)$, if and only if $\lambda_0(x)\lambda_1(y) \in E(H)$, if and only if $\lambda_1^{-1}\lambda_0(x)\lambda_1^{-1}\lambda_1(y) \in E(H')$, if and only if $\lambda_1^{-1}\lambda_0(x)y \in E(H')$, if and only if $y \in N_{H'}(\lambda_1^{-1}\lambda_0(x))$. Thus indeed $N_G(x) = N_{H'}(\lambda_1^{-1}\lambda_0(x))$.

Consequently $\mathcal{N}(G) = \mathcal{N}(H')$, so $G \simeq H'$ because G is neighborhood reconstructible. But $H' \simeq H$, so $G \simeq H$. \hfill \blacksquare

The present note is a sequel to [3], which characterizes neighborhood reconstructible graphs as those graphs G which obey the cancellation law $G \times K \simeq H \times K \Rightarrow G \simeq K$ for all graphs H and K.

Acknowledgment

The author thanks the referee for a prompt response.

References

Received 3 September 2018
Accepted 27 October 2018