NEIGHBOR SUM DISTINGUISHING TOTAL CHROMATIC NUMBER OF PLANAR GRAPHS WITHOUT 5-CYCLES

XUE ZHAO

AND

CHANGQING XU

School of Science,
Hebei University of Technology
Tianjin 300401, P.R. China

e-mail: zhaoxhxy@163.com
chqxu@hebut.edu.cn

Abstract

For a given graph $G = (V(G), E(G))$, a proper total coloring $\phi : V(G) \cup E(G) \rightarrow \{1, 2, \ldots, k\}$ is neighbor sum distinguishing if $f(u) \neq f(v)$ for each edge $uv \in E(G)$, where $f(v) = \sum_{uv \in E(G)} \phi(uv) + \phi(v)$, $v \in V(G)$. The smallest integer k in such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by $\chi''_{\Sigma}(G)$. Pilśniak and Woźniak first introduced this coloring and conjectured that $\chi''_{\Sigma}(G) \leq \Delta(G) + 3$ for any graph with maximum degree $\Delta(G)$. In this paper, by using the discharging method, we prove that for any planar graph G without 5-cycles, $\chi''_{\Sigma}(G) \leq \max\{\Delta(G) + 2, 10\}$. The bound $\Delta(G) + 2$ is sharp. Furthermore, we get the exact value of $\chi''_{\Sigma}(G)$ if $\Delta(G) \geq 9$.

Keywords: neighbor sum distinguishing total coloring, discharging method, planar graph.

2010 Mathematics Subject Classification: 05C15.

1This work was supported by NSFC (No.11671232), HNSF(No.A2015202301) and HUSTP (No.ZD2015106, QN2017044).

2Corresponding author.
1. Introduction

In this paper, all graphs considered are simple, finite and undirected. For the terminology and notation not defined in this paper can be found in [1]. For a graph G, we denote its vertex set, edge set and maximum degree by $V(G)$, $E(G)$ and $\Delta(G)$, respectively. If G is a planar graph embedded in the plane, we use $F(G)$ to denote its face set. A vertex v is a t-vertex, t^--vertex, t^+-vertex if $d_G(v) = t$, $d_G(v) \leq t$, $d_G(v) \geq t$ in G, respectively. A t-face is defined similarly. An t-face $v_1v_2\cdots v_l$ is a (b_1,b_2,\ldots,b_l)-face, where v_i is a b_i-vertex, for $i = 1,2,\ldots,l$. Let $d_G^t(v)$ denote the number of t-vertices adjacent to v in G. Let $n_d^t(v)$ denote the number of d-faces incident with v in G. A configuration F is reducible to G, if it cannot be a configuration of G.

Given a graph G, set $n_i(G) = |\{v \in V(G) : d_G(v) = i\}|$ for $i = 1,2,\ldots,\Delta(G)$.

A graph G' is smaller than G if one of the following holds:

1. $|E(G')| < |E(G)|$,
2. $|E(G')| = |E(G)|$ and $(n_t(G'), n_{t-1}(G'), \ldots, n_1(G'))$ precedes $(n_t(G), n_{t-1}(G), \ldots, n_1(G))$ with respect to the standard lexicographic order, where $t = \max \{\Delta(G), \Delta(G')\}$.

A graph is minimum for a property if no smaller graph satisfies it.

Given a graph G and a positive integer k, a proper total k-coloring of G is a mapping $\phi : V(G) \cup E(G) \to \{1,2,\ldots,k\}$ such that $\phi(x) \neq \phi(y)$ for each pair of adjacent or incident elements $x,y \in V(G) \cup E(G)$. Let $f(v) = \sum_{uv \in E(G)} \phi(uv) + \phi(v)$, $v \in V(G)$. If $f(u) \neq f(v)$ for each edge $uv \in E(G)$, then ϕ is a neighbor sum distinguishing total k-coloring, or k-tnsd-coloring for simplicity. The smallest number k is the neighbor sum distinguishing total chromatic number of G, denoted by $\chi^t_{\Sigma}(G)$. For k-tnsd-coloring, Pilśniak and Woźniak gave the following conjecture.

Conjecture 1 [11]. For any graph G, $\chi^t_{\Sigma}(G) \leq \Delta(G) + 3$.

Pilśniak and Woźniak confirmed Conjecture 1 for bipartite graphs, complete graphs, cycles and subcubic graphs. Dong et al. [3] showed that Conjecture 1 holds for some sparse graphs. Yao et al. [21, 22] considered tnsd-coloring of degenerate graphs. Li et al. [9] proved that Conjecture 1 holds for K_4-minor free graphs. Song et al. [15] determined $\chi^t_{\Sigma}(G)$ for K_4-minor free graph G with $\Delta(G) \geq 5$. For planar graph, it was proved that this conjecture holds with $\Delta(G) \geq 13$ by Li et al. [7] and $\Delta(G) \geq 11$ by Qu et al. [12]. For planar graph, it was proved that $\chi^t_{\Sigma}(G) \leq \Delta(G) + 2$ holds with $\Delta(G) \geq 14$ by Cheng et al. [2], $\Delta(G) \geq 12$ by Song et al. [14] and $\Delta(G) \geq 11$ by Yang et al. [20]. The bound $\Delta(G) + 2$ is sharp. Some results about planar graphs with cycle restrictions can be seen in [5, 8, 10] and [16–19]. More references on tnsd-coloring can be seen in [4] and [13].
Recently, Ge et al. [6] got the following result.

Theorem 2 [6]. Let G be a planar graph without 5-cycles. Then
\[\chi^\Sigma_G(G) \leq \max \{ \Delta(G) + 3, 10 \}. \]

In this paper, we prove the following results.

Theorem 3. Let G be a planar graph without 5-cycles. Then
\[\chi^\Sigma_G(G) \leq \max \{ \Delta(G) + 2, 10 \}. \]

Theorem 4. Let G be a planar graph without 5-cycles and without adjacent $\Delta(G)$-vertices. Then \(\chi^\Sigma_G(G) \leq \max \{ \Delta(G) + 1, 10 \} \).

Clearly, \(\chi^\Sigma_G(G) \geq \Delta(G) + 1 \) for any graph G. If G has adjacent $\Delta(G)$-vertices, then \(\chi^\Sigma_G(G) \geq \Delta(G) + 2 \). Thus we get the following corollary.

Corollary 5. Let G be a planar graph without 5-cycles and $\Delta(G) \geq 9$. If G has no adjacent $\Delta(G)$-vertices, then \(\chi^\Sigma_G(G) = \Delta(G) + 1 \), otherwise \(\chi^\Sigma_G(G) = \Delta(G) + 2 \).

2. **The Proof of Theorem 3**

We will prove it by contradiction. Let G be a minimum counterexample to Theorem 3 which is embedded in the plane. Set $k = \max \{ \Delta(G) + 2, 10 \}$. By the choice of G, any planar graph G' without 5-cycles which is smaller than G has a k-tnsd-coloring ϕ'. In the following, we will choose some G' and extend the coloring ϕ' to a desired coloring ϕ of G to get a contradiction. Unless otherwise stated, for any $x \in (V(G) \cup E(G)) \cap (V(G') \cup E(G'))$, set $\phi(x) = \phi'(x)$.

In the following proof, we will omit the coloring of all 3^--vertices. Since they have at most 9 forbidden colors and $k \geq 10$, they can be colored easily.

In Figure 1, we draw a vertex x in black if it has no other neighbors than the ones already depicted, and a vertex x in white if it might have more neighbors than the ones shown in the figure.

Claim 1. These configurations of F_1, F_2, F_3 and F_4 in Figure 1 are reducible.

Proof. (1) Suppose to the contrary that G contains configuration F_1. We obtain a smaller graph G' by splitting v_i into u_i, v_i for $i = 1, 2$ (see F'_1 in Figure 1). Thus G' is a planar graph without 5-cycles which is smaller than G. Hence G' admits a k-tnsd-coloring ϕ'. We can stick u_i, v_i together properly for $i = 1, 2$ (if necessary, exchange the colors of uu_1 and uu_2), and then recolor u_i, v_i, thus we can obtain a k-tnsd-coloring ϕ of G, a contradiction.

(2) Suppose to the contrary that G contains configuration F_2. We obtain a smaller graph G' by splitting v_i into u_i, v_i for $i = 1, 2$ (see F'_2 in Figure 1) without producing 5-cycles. Thus G' has a k-tnsd-coloring ϕ'.
(i) If $\phi'(wu_1) \neq \phi'(uu_2)$ or $\phi'(wu_1) = \phi'(uu_2) \notin \{\phi'(vv_1),\phi'(vv_2)\}$, then we can stick u_i, v_i together for $i = 1, 2$ (if necessary, exchange the colors of vv_1 and vv_2).

(ii) If $\phi'(wu_1) = \phi'(uu_2) \in \{\phi'(vv_1),\phi'(vv_2)\}$, without loss of generality, suppose that $\phi'(uu_2) = \phi'(vv_1)$. Exchange the colors of vv_1 (uu_2) and uv. Therefore, we can stick u_i, v_i together for $i = 1, 2$. Thus, by recoloring, we can obtain a k-tnsd-coloring ϕ of G, a contradiction.

(3) Suppose to the contrary that G contains configuration F_3. We obtain a smaller graph G' by splitting v_i into v_{i1}, v_{i2} for $i = 1, 3$ (see F'_3 in Figure 1) without producing 5-cycles. Thus G' has a k-tnsd-coloring ϕ'.

(i) If $\phi'(uv_{i2}) \neq \phi'(uv_{i3})$ or $\phi'(uv_{i2}) = \phi'(uv_{i3}) \notin \{\phi'(vv_{i1}),\phi'(vv_{i3})\}$, then we can stick v_{i1}, v_{i2} together for $i = 1, 3$ (if necessary, exchange the colors of vv_{i1} and vv_{i3}).

(ii) If $\phi'(uv_{i2}) = \phi'(uv_{i3}) \in \{\phi'(vv_{i1}),\phi'(vv_{i3})\}$, without loss of generality, suppose that $\phi'(uv_{i2}) = \phi'(vv_{i1})$. Then we exchange the colors of uv_{i2} and uv_{i3}. Therefore, we can stick v_{i1}, v_{i2} together for $i = 1, 3$. Thus, by recoloring, we can obtain a k-tnsd-coloring ϕ of G, a contradiction.

(4) Suppose to the contrary that G contains configuration F_1. We obtain a smaller graph G' by splitting v_i into v_{i1}, v_{i2} for $i = 1, 4$ (see F'_4 in Figure 1) without producing 5-cycles. Thus G' admits a k-tnsd-coloring ϕ'.

(i) If $\phi'(uv_{i2}) \neq \phi'(zv_{i2})$ or $\phi'(uv_{i2}) = \phi'(zv_{i2}) \notin \{\phi'(vv_{i1}),\phi'(vv_{i4})\}$, then we can stick v_{i1}, v_{i2} together for $i = 1, 4$ (if necessary, exchange the colors of vv_{i1} and vv_{i4}).

Figure 1. Illustration of Claim 1.
(ii) If \(\phi'(uv_{12}) = \phi'(zv_{42}) \in \{ \phi'(vv_{11}), \phi'(vv_{41}) \} \), without loss of generality, suppose that \(\phi'(uv_{12}) = \phi'(zv_{42}) = \phi'(uv_{11}) \). Since \(\phi'(uv_{2}) \neq \phi'(uv_{3}) \), suppose that \(\phi'(uv_{2}) \neq \phi'(uv_{12}) \). We exchange the colors of \(uv_{12} \) and \(uv_{2} \). Therefore, we can stick \(v_{i1}, v_{i2} \) together for \(i = 1, 4 \). Thus, by recoloring, we can obtain a \(k \)-tsd-coloring \(\phi \) of \(G \), a contradiction.

It is easy to see that the following claim given in [16] also holds with the graph \(G \) in our proof.

Claim 2 [16]. In the graph \(G \), the following results holds.

1. Each \(t^- \) vertex is not adjacent to any \((7 - t^-) \) vertex, where \(t = 4, 5 \).
2. For each vertex \(v \in V(G) \), if \(d_{G}^{1}(v) \geq 1 \), then \(d_{G}^{2}(v) = 0 \); if \(d_{G}^{1}(v) \geq 2 \), then \(d_{G}^{3}(v) = 0 \).
3. If \(d_{G}(v) = 5 \), then \(d_{G}^{3}(v) \leq 1 \).
4. If \(d_{G}(v) = 6 \), then \(d_{G}^{2}(v) \leq 2 \). Furthermore, if \(d_{G}^{2}(v) \geq 1 \), then \(d_{G}^{3}(v) \leq 1 \).
5. If \(d_{G}(v) = 7 \), then \(d_{G}^{2}(v) \leq 2 \). Furthermore, if \(d_{G}^{2}(v) \geq 1 \), then \(d_{G}^{3}(v) \leq 2 \).
6. If \(d_{G}(v) = l \) \((l \geq 8)\), then \(d_{G}^{2}(v) < \left[\frac{l}{2} \right] \).
7. If \(d_{G}(v) = l \) \((l \geq 8)\) and \(d_{G}^{2}(v) \geq 1 \), then \(d_{G}^{2}(v) + d_{G}^{3}(v) \leq l - 1 \).
8. Each 3-face in \(G \) is a \((2, 6^+, 6^+) \)-face, a \((3, 5^+, 5^+) \)-face or a \((4^+, 4^+, 5^+) \)-face.

Claim 3. Each 4-face in \(G \) is a \((2, 6^+, 3^+, 6^+) \)-face, a \((3, 6^+, 3^+, 6^+) \)-face, a \((3, 5^+, 4^+, 5^+) \)-face or a \((4^+, 4^+, 4^+, 4^+) \)-face.

Proof. Let \(T = v_{1}v_{2}v_{3}v_{4}v_{1} \) be a 4-face of \(G \), and assume that \(d_{G}(v_{1}) \leq d_{G}(v_{i}) \), where \(i = 2, 3, 4 \). If \(d_{G}(v_{1}) = 2 \), by Claim 2(1), \(d_{G}(v_{2}) \geq 6, d_{G}(v_{4}) \geq 6 \). By Claim 1, \(F_{1} \) is reducible, thus \(T \) is a \((2, 6^+, 3^+, 6^+) \)-face. If \(d_{G}(v_{1}) = d_{G}(v_{4}) = 3 \), by Claim 2(1) and Claim 2(3), \(d_{G}(v_{2}) \geq 6 \) and \(d_{G}(v_{i}) \geq 6 \), thus \(T \) is a \((3, 6^+, 3^+, 6^+) \)-face. If \(d_{G}(v_{1}) = 3 \) and \(d_{G}(v_{4}) \geq 4 \), by Claim 2(1), \(d_{G}(v_{2}) \geq 5 \) and \(d_{G}(v_{i}) \geq 5 \), thus \(T \) is a \((3, 5^+, 4^+, 5^+) \)-face. If \(d_{G}(v_{1}) \geq 4 \) and \(d_{G}(v_{3}) \geq 4 \), by Claim 2(1), \(d_{G}(v_{2}) \geq 4 \) and \(d_{G}(v_{i}) \geq 4 \), thus \(T \) is a \((4^+, 4^+, 4^+, 4^+) \)-face.

Let \(H \) be the graph obtained from \(G \) by removing all 1-vertices. By Claims 1–3, we have the following facts.

Fact 1. For the graph \(H \), we have \(\delta(H) \geq 2; d_{H}(v) = d_{G}(v) \), for \(2 \leq d_{G}(v) \leq 5 \). If \(d_{G}(v) \geq 6 \), then \(d_{H}(v) \geq 5 \).

Fact 2.

1. In the graph \(H \), each 3^- vertex is not adjacent to any 4^- vertex.
2. If \(d_{H}(v) = 5 \), then \(d_{H}^{2}(v) = 0 \) and \(d_{H}^{3}(v) \leq 1 \).
3. If \(d_{H}(v) = 6 \), then \(d_{H}^{2}(v) \leq 1 \); furthermore, if \(d_{H}(v) = 1 \), then \(d_{H}^{2}(v) = 0 \); if \(d_{H}^{2}(v) = 0 \), then \(d_{H}^{3}(v) \leq 2 \).
(4) If \(d_H(v) = 7 \), then \(d^2_H(v) \leq 2 \); furthermore, if \(d^2_H(v) = 2 \), then \(d^3_H(v) = 0 \); if \(d^2_H(v) = 1 \), then \(d^3_H(v) \leq 1 \).

(5) If \(d_H(v) = l \) \((l \geq 8)\), then \(d^2_H(v) \leq l - 1 \).

Fact 3.

(1) Each 3-face in \(H \) is a \((2, 6^+, 6^+)\)-face, a \((3, 5^+, 5^+)\)-face or a \((4^+, 4^+, 5^+)\)-face.

(2) Each 4-face in \(H \) is a \((2, 6^+, 3^+, 6^+)\)-face, a \((3, 6^+, 3^+, 6^+)\)-face, a \((3, 5^+, 4^+, 5^+)\)-face or a \((4^+, 4^+, 4^+, 4^+)\)-face.

A \((2, 6^+, 6^+)\)-face or a \((3, 5^+, 5^+)\)-face is called a bad 3-face. A \((4^+, 5^+, 5^+)\)-face is called a normal 3-face. A \((2, 6^+, 3^+, 6^+)\)-face or a \((3, 6^+, 3^+, 6^+)\)-face is called a bad 4-face, and other 4-face is a normal 4-face. We use \(n'_i(v), n''_i(v) \) to denote the number of bad \(i \)-faces and the number of normal \(i \)-faces incident with \(v \) in \(H \), respectively, \(i = 3, 4 \).

Since \(G \) has no 5-cycles, we have the following fact.

Fact 4. These configurations are reducible to \(H \):

(1) a 5-face,

(2) a 3-face adjacent to two 3-faces,

(3) a 3-face adjacent to a 4-face, and they are sharing only one edge.

By Fact 4, we have the following fact.

Fact 5. If \(d_H(v) = l \) and \(n^3_H(v) > 0 \), then \(n^3_H(v) + n^4_H(v) \leq l - 2 \).

By Euler’s formula, we have

\[
\sum_{v \in V(H)} (2d_H(v) - 6) + \sum_{f \in F(H)} (d_H(f) - 6) = -12.
\]

We will use the discharging method to obtain a contradiction. First, we give an initial charge function: \(w(v) = 2d_H(v) - 6 \) for each \(v \in V(H) \); \(w(f) = d_H(f) - 6 \) for each \(f \in F(H) \). Next, we will design some discharging rules. Let \(w' \) be the new charge after the discharging process. It suffices to show that \(w'(x) \geq 0 \) for each \(x \in V(H) \cup F(H) \), which leads to a contradiction.

In the following, a \(k \)-face means a \(k \)-face in \(H \), the discharging rules are defined as follows.

R1 Every 2-vertex \(v \) in \(H \) takes 1 from each neighbor.

R2 Every 4-vertex \(v \) in \(H \) gives 1 to each incident 3-face, gives \(\frac{1}{2} \) to each incident 4-face.

R3 Every \(5^+ \)-vertex \(v \) in \(H \) gives \(\frac{3}{2} \) to each incident bad 3-face, gives 1 to each incident normal 3-face.
R4 Every 5^+-vertex v in H gives 1 to each incident bad 4-face, gives $\frac{3}{2}$ to each incident normal 4-face.

We will verify the new charge of each $x \in V(H) \cup F(H)$. In the following, we use $d(v), d_i(v), n_i(v)$ and $d(f)$ to denote $d_H(v), d'_H(v), n_H^i(v)$ and $d_H(f)$, respectively. We first consider the new charge of each $f \in F(H)$.

- $d(f) = 3$. If f is a bad 3-face, by R3, $w'(f) = 3 - 6 + \frac{3}{2} \cdot 2 = 0$; otherwise, by R2 and R3, $w'(f) = 3 - 6 + 1 \cdot 3 = 0$.
- $d(f) = 4$. If f is a bad 4-face, by R4, $w'(f) = 4 - 6 + 1 \cdot 2 = 0$. If f is a $(2, 6^+, 4^+, 6^+)$-face or a $(3, 5^+, 4^+, 5^+)$-face, by R2 and R4, $w'(f) = 4 - 6 + \frac{3}{2} \cdot 2 + \frac{1}{2} = 0$. If f is a $(4^+, 4^+, 4^+, 4^+)$-face, by R2 and R4, $w'(f) = 4 - 6 + \frac{1}{2} \cdot 4 = 0$.
- $d(f) = t \ (t \geq 6)$. $w'(f) = w(f) = t - 6 \geq 0$.

Next we will consider the new charge of each $v \in V(H)$.

- $d(v) = 2$. By R1, $w'(v) = 2 \cdot 2 - 6 + 1 \cdot 2 = 0$.
- $d(v) = 3$. No rule applies to v, $w'(v) = 2 \cdot 3 - 6 = 0$.
- $d(v) = 4$. By Fact 2(1), $d_2(v) = d_3(v) = 0$. If $n_3(v) = 0$, by R2, $w'(v) = 2 \cdot 4 - 6 - 1 \cdot n_3(v) - \frac{1}{2} \cdot n_4(v) \geq 2 - \frac{1}{2} \cdot 4 = 0$. If $n_3(v) > 0$, by Fact 5, $n_3(v) + n_4(v) \leq 2$. By R2, $w'(v) = 2 \cdot 4 - 6 - 1 \cdot n_3(v) - \frac{1}{2} \cdot n_4(v) \geq 2 - 1 \cdot 2 = 0$.
- $d(v) = 5$. By Fact 2(2), $d_2(v) = d_3(v) = 0$, so we have $n_3'(v) \leq 2$ and $n_4'(v) = 0$. If $n_3(v) = 0$, by R4, $w'(v) = 2 \cdot 5 - 6 - \frac{3}{2} \cdot n_3'(v) \geq 4 - \frac{3}{2} \cdot 5 = \frac{1}{2} > 0$. If $n_3(v) > 0$, by Fact 5, $n_3(v) + n_4(v) \leq 3$. By R3 and R4, $w'(v) = 2 \cdot 5 - 6 - \frac{3}{2} \cdot n_3'(v) - 1 \cdot n_3'(v) - \frac{5}{4} \cdot n_4'(v) \geq 4 - \frac{3}{2} \cdot 2 - 1 = 0$.
- $d(v) = 6$. By Fact 2(3), $d_2(v) \leq 1$.
 (a) $d_2(v) = 1$. By Fact 2(3), $d_3(v) = 0$, so we have $n_3'(v) \leq 1$ and $n_4'(v) = 0$. If $n_3(v) = 0$, by R1 and R4, $w'(v) = 2 \cdot 6 - d_2(v) - \frac{3}{2} \cdot n_3'(v) \geq 6 - 1 - \frac{3}{2} \cdot 6 = \frac{1}{2} > 0$. If $n_3(v) > 0$, by Fact 5, $n_3(v) + n_4'(v) \leq 4$. By R1, R3 and R4, $w'(v) = 2 \cdot 6 - d_2(v) - \frac{3}{2} \cdot n_3'(v) - 1 \cdot n_4'(v) - \frac{3}{2} \cdot n_4'(v) \geq 6 - 1 \cdot 1 - 1 \cdot 3 = \frac{1}{2} > 0$.
 (b) $d_2(v) = 0$. If $n_3(v) = 0$, by R4, $w'(v) = 2 \cdot 6 - 6 - 1 \cdot n_4'(v) \geq 6 - 1 \cdot 6 = 0$. If $n_3(v) > 0$, by Fact 5, $n_3(v) + n_4(v) \leq 4$. By R3 and R4, $w'(v) \geq 2 \cdot 6 - 6 - \frac{3}{2} \cdot n_3(v) - 1 \cdot n_4(v) \geq 6 - \frac{3}{2} \cdot 4 = 0$.
- $d(v) = 7$. By Fact 2(4), $d_2(v) \leq 2$.
 (a) $d_2(v) = 2$. By Fact 2(4), $d_3(v) = 0$. By Claim 1, F_1 and F_2 are reducible, so we have $n_3'(v) = n_4'(v) = 0$. If $n_3(v) = 0$, by R1 and R4, $w'(v) = 2 \cdot 7 - 6 - d_2(v) - \frac{3}{2} \cdot n_3'(v) \geq 8 - 2 - \frac{3}{2} \cdot 7 = \frac{3}{2} > 0$. If $n_3(v) > 0$, by Fact 5, $n_3(v) + n_4(v) \leq 5$. Noting that $n_3'(v) = n_4'(v) = 0$. By R1, R3 and R4, $w'(v) = 2 \cdot 7 - 6 - d_2(v) - 1 \cdot n_3'(v) - \frac{3}{2} \cdot n_4'(v) \geq 8 - 2 - \frac{3}{2} \cdot 5 > 0$.
 (b) $d_2(v) \leq 1$. If $n_3(v) = 0$, by R1 and R4, $w'(v) \geq 2 \cdot 7 - 6 - d_2(v) - 1 \cdot n_4(v) \geq 8 - 1 \cdot 1 = 0$. If $n_3(v) > 0$, by Fact 4 and Fact 5, $n_3(v) \leq 4$ and $n_3(v) + n_4(v) \leq 5$. By R1, R3 and R4, $w'(v) \geq 2 \cdot 7 - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - 1 \cdot n_4(v) \geq 8 - \frac{3}{2} \cdot 4 = 1 = 0$.
- $d(v) = l \ (l \geq 8)$, by Fact 2(5), $d_2(v) \leq l - 1$.
(a) \(d_2(v) = l - 1 \). By Claim 1, \(F_1 \) and \(F_2 \) are reducible, so we have \(n_3(v) = 0 \) and \(n_4(v) \leq 2 \). By R1 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - 1 \cdot n_4(v) \geq 2l - 6 - (l - 1) - 1 \cdot 2 = l - 7 > 0.
(b) \(d_2(v) = l - 2 \).
(b1) \(n_3(v) = 0 \). By Claim 1, \(F_1 \) is reducible, so we have \(n_4(v) \leq 4 \). By R1 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - 1 \cdot n_4(v) \geq 2l - 6 - (l - 2) - 4 = l - 8 \geq 0.
(b2) \(n_3(v) > 0 \). By Claim 1, \(F_1 \) and \(F_2 \) are reducible, and by Fact 4, we have \(n_3(v) = 1 \) and \(n_4(v) = 0 \). By R1 and R3, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) \geq 2l - 6 - (l - 2) - \frac{3}{2} = l - \frac{11}{2} > 0.
(c) \(d_2(v) = l - 3 \).
(c1) \(n_3(v) = 0 \). By Claim 1, \(F_1 \) is reducible, so we have \(n_4(v) \leq 6 \). If \(n_4(v) = 6 \), by Claim 1, \(F_3 \) is reducible, so we have \(n'_4(v) = 0 \). By R1 and R4, \(w'(v) = 2l - 6 - d_2(v) - \frac{3}{4} \cdot n''_4(v) = 2l - 6 - (l - 3) - \frac{3}{4} \cdot 6 = l - \frac{15}{2} > 0.
(c) \(d_2(v) = l - 4 \).
(c2) \(n_3(v) > 0 \). By Claim 1, \(F_2 \) is reducible, so we have \(n_4(v) \leq 2 \). By Claim 1, \(F_1 \) is reducible, and by Fact 4, we have \(n_4(v) \leq 2 \). By R1, R3 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - 1 \cdot n_4(v) \geq 2l - 6 - (l - 3) - \frac{3}{2} \cdot 2 - 2 = l - 8 \geq 0.
(d) \(d_2(v) = l - 5 \).
(d1) \(n_3(v) = 0 \). By Claim 1, \(F_1 \) is reducible, so we have \(n_4(v) \leq 8 \). If \(n_4(v) = i \) \((i = 7, 8)\). By Claim 1, \(F_3 \) is reducible, so we have \(n'_4(v) \leq 8 - i \). By R1 and R4, \(w'(v) = 2l - 6 - d_2(v) - 1 \cdot n'_4(v) - \frac{3}{4} \cdot n''_4(v) \geq 2l - 6 - (l - 4) - 1 \cdot (8 - i) - \frac{3}{4} \cdot (i - 8 - i)) = l - 4 - \frac{i}{2} \geq 0.
(d2) \(n_3(v) > 0 \). By Claim 1, \(F_2 \) is reducible, so each 2-neighbor of \(v \) is not incident with a 3-face. And note that each 3-face is not adjacent to two 3-faces, so we have \(n_3(v) \leq 2 \).
\(n_3(v) = i \) \((i = 1, 2)\). By Claim 1, \(F_1 \) and \(F_2 \) are reducible, and note that each 3-face is not adjacent to a 4-face, we have \(n_4(v) \leq 6 - 2i \). By R1, R3 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - 1 \cdot n_4(v) \geq 2l - 6 - (l - 4) - \frac{3}{2} \cdot i - 1 \cdot (6 - 2i) = l - 8 + \frac{i}{2} > 0.
(e) \(d_2(v) = l - 5 \).
(e1) \(n_3(v) = 0 \). If \(n_4(v) \leq l - 1 \), by R1 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - 1 \cdot n_4(v) \geq 2l - 6 - (l - 5) - 1 \cdot (l - 1) = 0. \) Now suppose that \(n_4(v) = l \). By Claim 1, \(F_1 \) is reducible, so we have \(d_2(v) \leq \left\lfloor \frac{l}{4} \right\rfloor \). Noting that \(d_2(v) = l - 5 \), we have \(8 \leq l \leq 10 \). By Claim 1, \(F_1, F_3 \) and \(F_4 \) are reducible, so we have \(n'_4(v) \leq 4 \). By R1 and R4, \(w'(v) = 2l - 6 - d_2(v) - 1 \cdot n'_4(v) - \frac{3}{4} \cdot n''_4(v) \geq 2l - 6 - (l - 5) - 1 \cdot 4 - \frac{3}{4} \cdot (l - 4) = \frac{l}{4} - 2 \geq 0.
(e2) \(n_3(v) > 0 \). By Claim 1, \(F_2 \) is reducible, and by Fact 4, we have \(n_3(v) \leq 3 \).
Neighbor Sum Distinguishing Total Chromatic Number

\[n_3(v) = 3. \] By Claim 1, \(F_1 \) is reducible, and by Fact 4, we have \(n_4(v) = 0. \) By R1 and R3, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) \geq 2l - 6 - (l - 5) - \frac{3}{2} \cdot 3 = l - \frac{11}{2} > 0. \)

\[n_3(v) = i (i = 1, 2). \] By Claim 1, \(F_1 \) is reducible, and by Fact 4, we have \(n_4(v) \leq 8 - 2i. \) By Claim 1, \(F_3 \) is reducible. So if \(n_4(v) = 8 - 2i, \) we have \(n_4'(v) = 0. \) By R1, R3 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - \frac{3}{4} \cdot n_4'(v) \geq 2l - 6 - (l - 5) - \frac{3}{2} \cdot i - \frac{3}{4} \cdot (8 - 2i) = l - 7 > 0. \) If \(n_4(v) \leq 7 - 2i, \) by R1, R3 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - 1 \cdot n_4(v) \geq 2l - 6 - (l - 5) - \frac{3}{2} \cdot i - 1 \cdot (7 - 2i) = l + \frac{5}{2} - 8 > 0. \)

(f) \(d_2(v) \leq l - 6. \) Set \(t = \left\lceil \frac{2(l-d_2(v)-1)}{3} \right\rceil. \) By Claim 1, \(F_2 \) is reducible, and by Fact 4, we have \(n_3(v) \leq t, n_4(v) \leq l \) and if \(n_3(v) > 0, \) then \(n_3(v) + n_4(v) \leq l - 2. \)

(f1) \(n_3(v) = 0, \) by R1 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - l \geq 2l - 6 - (l - 6) - l = 0. \)

(f2) \(n_3(v) > 0, \) by R1, R3 and R4, \(w'(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - n_4(v) \geq 2l - 6 - d_2(v) - \frac{3}{2} \cdot n_3(v) - (l - 2 - n_3(v)) \geq l - 4 - d_2(v) - \frac{1}{2} \cdot l = l - 4 - d_2(v) - \frac{1}{2} \cdot \left\lceil \frac{2(l-d_2(v)-1)}{3} \right\rceil \geq 0. \)

Now we get that for each \(x \in V(H) \cup F(H), \) \(w'(x) \geq 0, \) which is a contradiction. This completes the proof of Theorem 3.

3. The Proof of Theorem 4

The proof of Theorem 4 is almost the same as the proof of Theorem 3 except for some details. Let \(G \) be a minimum counterexample to Theorem 4 which is embedded in the plane. Set \(k = \max\{\Delta(G) + 1, 10\}. \) By the choice of \(G, \) any planar graph \(G' \) without 5-cycles and without adjacent \(\Delta(G) \)-vertices which is smaller than \(G \) has a \(k \)-tusd-coloring \(\phi' \). Similarly, we will choose some \(G' \) and extend the coloring \(\phi' \) of \(G' \) to a desired coloring \(\phi \) of \(G \) to get a contradiction. It is easy to see that all the claims in the proof of Theorem 3 except for Claim 2(6) and Claim 2(7) also hold here. The proof of Claim 2(6) and Claim 2(7) can be seen in [5]. The rest of the proof including the discharging method is the same as the proof of Theorem 3.

References

doi:10.1016/j.dam.2015.03.013

doi:10.1007/s10114-014-2454-7

doi:10.1007/s11425-014-4796-0

doi:10.1016/j.uco.2017.05.037

doi:10.1016/j.tcs.2017.05.037

doi:10.1007/s11464-013-0322-x

doi:10.1016/j.tcs.2015.09.017

doi:10.1007/s10878-015-9911-9

doi:10.1016/j.tcs.2016.06.007

doi:10.1007/s11464-017-0649-9

doi:10.1007/s10878-017-0137-x

doi:10.1016/j.dam.2016.02.003

Received 5 December 2017
Revised 8 February 2018
Accepted 7 March 2018