LIST EDGE COLORING OF PLANAR GRAPHS WITHOUT 6-CYCLES WITH TWO CHORDS

LINNA HUa, LEI SUNb

AND

JIANG-RIANG WUa,1

aSchool of Mathematics, Shandong University, Jinan, 250100, China
bSchool of Mathematics, Shandong Normal University, Jinan, 250358, China

\textit{e-mail:} jlw@sdu.edu.cn.

Abstract

A graph G is edge-L-colorable if for a given edge assignment $L = \{L(e) : e \in E(G)\}$, there exists a proper edge-coloring φ of G such that $\varphi(e) \in L(e)$ for all $e \in E(G)$. If G is edge-L-colorable for every edge assignment L such that $|L(e)| \geq k$ for all $e \in E(G)$, then G is said to be edge-k-choosable. In this paper, we prove that if G is a planar graph without 6-cycles with two chords, then G is edge-k-choosable, where $k = \max\{7, \Delta(G) + 1\}$, and is edge-$t$-choosable, where $t = \max\{9, \Delta(G)\}$.

Keywords: planar graph, edge choosable, list edge chromatic number, chord.

2010 Mathematics Subject Classification: 05C15.

1. Introduction

Graphs considered in this paper are finite, simple and undirected. The terminologies and notations used but undefined in this paper can be found in [2]. Let $G = (V, E)$ be a graph. We use $V(G)$, $E(G)$, $\Delta(G)$ and $\delta(G)$ (or simply V, E, Δ and δ) to denote the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. A cycle C of length k is called a k-cycle in the graph G. If $xy \in E(G) \setminus E(C)$ and $x, y \in V(C)$, xy is called to be a chord of C in the graph G.

1Corresponding author.
An edge coloring of a graph G is a mapping φ from $E(G)$ to the set of colors $\{1, 2, \ldots, k\}$ for some positive integer k. An edge coloring is called proper if every two adjacent edges receive different colors. The edge chromatic number $\chi'(G)$ is the smallest integer k such that G has a proper edge-coloring into the set $\{1, 2, \ldots, k\}$.

We say that L is an edge assignment for the graph G if it assigns a list $L(e)$ of possible colors to each edge e of G. If G has a proper edge-coloring φ such that $\varphi(e) \in L(e)$ for each edge e of G, then we say that G is edge-L-colorable or φ is an edge-L-coloring of G. The graph G is edge-k-choosable if it is edge-L-colorable for every edge assignment L satisfying $|L(e)| \geq k$ for all $e \in E(G)$. The list edge chromatic number $\chi'_{\text{list}}(G)$ of G is the smallest k such that G is edge-k-choosable.

On the list edge coloring of a graph, there is a celebrated conjecture known as the list edge coloring conjecture, which was formulated independently by Vizing, by Gupta, by Alberson and Collins, and by Bollobás and Harris (see [8, 13]).

Conjecture 1 [9]. If G is a multigraph, then $\chi'_{\text{list}}(G) = \chi'(G)$.

The conjecture has been proved for a few classes of graphs, such as graphs with $\Delta(G) \geq 12$ which can be embedded in a surface of non-negative characteristic [4], outerplanar graphs [19], bipartite multigraphs [4, 7], complete graphs of odd order [9]. Vizing [15] proposed a weaker conjecture than Conjecture 1.

Conjecture 2 [9]. Every graph G is edge-$(\Delta(G) + 1)$-choosable.

Harris [10] showed that $\chi'_{\text{list}}(G) \leq 2\Delta(G) - 2$ if G is a graph with $\Delta(G) \geq 3$. This implies Conjecture 2 for the case $\Delta(G) = 3$. Juvan et al. [14] settled the case for $\Delta(G) = 4$ in 1999. And there are some other special cases of Conjecture 2 which have been confirmed, such as complete graphs [8], graphs with girth at least $8\Delta(G)(\ln \Delta(G)(G) + 1.1)$ [15], planar graphs with $\Delta(G) \geq 8$ [1], and planar graphs with $\Delta(G) \neq 5$ and without intersecting 3-cycles [20]. Suppose that G is a planar graph without k-cycles for some fixed integer $3 \leq k \leq 6$. Then it was proved that Conjecture 2 holds if G satisfies one of the four following conditions:

(i) either $k = 3$ or $k = 4$ and $\Delta(G) \neq 5$ [22],

(ii) $k = 4$ [17],

(iii) $k = 5$ [20],

(iv) $k = 6$ and $\Delta(G) \neq 5$ [18].

Other related known results on this topic can be found in [5, 11, 12, 16].

Cai [6] proved that if G is a planar graph without chordal 6-cycles, then G is edge-k-choosable, where $k = \max\{8, \Delta(G) + 1\}$. In this paper, we will strengthen this result and obtain that if G is a planar graph and each 6-cycle of G contains at most one chord, then $\chi'_{\text{list}}(G) \leq \max\{7, \Delta(G) + 1\}$ and $\chi'_{\text{list}}(G) \leq \max\{9, \Delta(G)\}$.
2. Main Results and Their Proofs

In the section, we always assume that all graphs are planar graphs that have been embedded in the plane and G is a planar graph without 6-cycles with two chords. We use $d_G(x)$, or simply $d(x)$, to denote the degree of a vertex x in G. For $f \in F(G)$, if u_1, u_2, \ldots, u_n are the vertices on the boundary walk, then we write $f = u_1u_2 \cdots u_nu_1$. The degree of a f, denoted by $d(f)$, is the number of edges incident with f, where each cut-edge is counted twice. We denote by $d(f)$ the minimum degree of vertices incident with the face f. A vertex (face) x is called to be a k-vertex (k-face), k^+-vertex (k^+-face) and k^--vertex (k^--face), if $d(x) = k$, $d(x) \geq k$ and $d(x) \leq k$, respectively. $f_i(v)$ is the number of i-faces incident with v for each $v \in V(G)$.

First, we give some properties on G.

Lemma 3. If v is a 5^+-vertex of G, then $f_5(v) \leq \lceil \frac{3}{2} d(v) \rceil$.

Proof. Since G contains no 6-cycles with two chords, v is not incident with four consecutive 3-faces. So $f_3(v) \leq \lceil \frac{3}{2} d(v) \rceil$. \hfill \blacksquare

Lemma 4. Let u be a 4-vertex of G.

1. If $f_3(u) = 3$, then $f_4(u) = 0$, that is, u is incident with a 5^+-face.
2. If $f_3(u) = 2$, then $f_4(u) \leq 1$.

Proof. Let neighbors of u be u_1, u_2, u_3, u_4 and faces incident with u be f_1, f_2, f_3, f_4 in the clockwise order, where f_1 is incident with u_1, u_2.

1. Without loss of generality, we assume that f_1, f_2, f_3 are 3-faces. If f_4 is a 4-face uu_1vu_4, then the 6-cycle $uu_2vu_3vu_1u$ contains two chords uu_3 and uu_4, a contradiction. So $d(f_1) \geq 5$, that is, $f_5(u) = 1$.

2. Suppose that two 3-faces incident with u are not adjacent, without loss of generality, we assume that f_1, f_3 are 3-faces. If f_2 is a 4-face uu_2vu_3u, then the 6-cycle $uu_1vu_2vu_3u$ contains two chords uu_2 and uu_3, a contradiction. So $d(f_2) \geq 5$. By the same argument, we have $d(f_4) \geq 5$.

Suppose that two 3-faces incident with u are adjacent, without loss of generality, we assume that f_1, f_2 are 3-faces. If f_3 is a 4-face uu_3vu_4u, then we must have $v = u_1$. Since $d(u) = 4$, $d(u_4) \geq 5$. Thus if f_4 is a 4-face uu_1vu_4u, then we also have $w = u_3$, it is impossible. So $d(f_4) \geq 5$. By the same argument, if $d(f_4) = 4$, then $d(f_5) \geq 5$. Hence $f_4(u) \leq 1$. \hfill \blacksquare

Lemma 5. G satisfies at least one of the following conditions.

1. G has an edge uv with $d(u) + d(v) \leq \max\{8, \Delta(G) + 2\}$.
2. G has an even cycle $C = v_1v_2 \cdots v_{2n}v_1$ with $d(v_1) = d(v_3) = \cdots = d(v_{2n-1}) = 3$.

(3) G has a 6-vertex u with five neighbors v, w, x, y, z such that $d(v) = d(y) = 3$ and $vw, xy, yz \in E(G)$ (see Figure 1).

![Figure 1. The subgraph for Lemma 5(3).](image)

Proof. Let G be a minimal counterexample to the lemma. It is easy to check that G is connected. By the choice of G, we have the following observations.

(P1) For any edge uv, $d(u) + d(v) \geq \max\{9, \Delta(G) + 3\}$ by (1). Then $\delta(G) \geq 3$ and all neighbors of a i-vertex must be $(9 - i)^+$-vertices, where $i = 3, 4$ or 5.

(P2) Let G_3 be the subgraph induced by the edges incident with 3-vertices of G. Then G_3 is a forest.

By (P1), every two 3-vertices are not adjacent, and it follows that G_3 is a bipartite subgraph. By (2), G_3 contains no even cycles. So G_3 is a forest and (P2) holds. Let V_1 be the set of 3-vertices of G. Thus for any component of G_3, we select a vertex $u \notin V_1$ as a root of the tree. Then every 3-vertex has exactly two children. If $uv \in E(G_3)$, $u \in V_1$ and v is a child of u, then v is called a 3-master of u. Note that each 3-vertex has exactly two 3-masters and each vertex of degree at least 6 can be the 3-master of at most one 3-vertex.

According to the Euler’s formula $|V(G)| - |E(G)| + |F(G)| = 2$ of a planar graph G, we have

$$
\sum_{v \in V(G)} (3d(v)-10) + \sum_{f \in F(G)} (2d(f)-10) = -10(|V(G)|-|E(G)|+|F(G)|) = -20 < 0.
$$

Now we define the initial weight function on $V(G) \cup F(G)$ by letting $w(x) = 3d(x) - 10$ for any $x \in V(G)$ and $w(x) = 2d(x) - 10$ for any $x \in F(G)$. Thus the total sum of weights is the negative number -20. We use the following rules to redistribute the initial charge that leads to a new charge $w'(x)$.

R1. Every 3-vertex v receives $\frac{1}{2}$ from each of its 3-masters.

R2. Let $f = uu'vv'$ be a 4-face in G with $d(u) \leq \min\{d(u'), d(v), d(v')\}$. If $d(u) \geq 4$, then f receives $\frac{1}{2}$ from each of its incident vertices. Otherwise, f receives nothing from u, receives $\frac{1}{2}$ from v, $\frac{3}{4}$ from u' and $\frac{3}{4}$ from v'.
R3. Let f be a 3-face incident with a 4^+-vertex v. Then f receives a from v.

R3.1. If $d(v) = 4$, then

$$
a = \begin{cases}
\frac{1}{2} & \text{if } f_4^-(v) = 4 \text{ or if } f_3(v) = 3 \text{ and } f \text{ is located in the middle of three consecutive } 3\text{-faces incident with } v, \\
\frac{3}{4} & \text{if } f_3(v) = 2 \text{ and } f_4(v) = 1, \text{ or if } f_3(v) = 3 \text{ and } f \text{ is located in one side of three consecutive } 3\text{-faces incident with } v, \\
1 & \text{otherwise.}
\end{cases}
$$

R3.2. If $d(v) = 5$, then

$$
a = \begin{cases}
\frac{3}{2} & \text{if } f_3(v) = 3 \text{ and one of the following conditions holds:} \\
& \text{(i) } f_4(v) = 1, \\
& \text{(ii) } f_4(v) = 0 \text{ and } f \text{ is located in the middle of three consecutive } 3\text{-faces incident with } v, \\
& \text{(iii) } \text{two faces adjacent to } f \text{ at } v \text{ are } 5^+\text{-faces,} \\
\frac{7}{4} & \text{otherwise.}
\end{cases}
$$

R3.3. If $d(v) \geq 6$, then

$$
a = \begin{cases}
\frac{3}{2} & \text{if } f \text{ is adjacent to two non-adjacent } (3, 6, 6^+)\text{-faces at } v \\
& \text{and } d(v) = 6, \\
\frac{7}{4} & \text{if } f \text{ is incident with a } 3\text{-vertex,} \\
\end{cases}
$$

In the following, we will check that $w'(x) \geq 0$ for all elements $x \in V(G) \cup F(G)$ to obtain the following obvious contradiction.

$$0 \leq \sum_{v \in V \cup F} w'(x) = \sum_{v \in V \cup F} w(x) = -20.$$

First, we consider the final charge of any face f. If $d(f) \geq 5$, then it retains its initial charge and it follows that $w'(f) = w(f) = 2d(f) - 10 \geq 0$. Suppose that $d(f) = 4$. Then $w(f) = 8 - 10 = -2$. If $\delta(f) = 3$, then $w'(f) = w(f) + \frac{3}{2} + \frac{1}{2} + \frac{3}{4} = 0$ by R2. Otherwise $w'(f) = w(f) + 4 \times \frac{1}{2} = 0$. So $w'(f) \geq 0$ if $d(f) = 4$.

Suppose that $d(f) = 3$. Then $w(f) = 6 - 10 = -4$. If $\delta(f) = 3$, then f is incident with two 6^+-vertices by (P1) and it follows that $w'(f) = w(f) + 2 + 2 = 0$ by R3.3. If $\delta(f) \geq 5$, then f receives at least $\frac{3}{2}$ from each of its incident vertices by R3.2 and R3.3, so $w'(f) \geq w(f) + 3 \times \frac{3}{2} > 0$. In the following, we assume that $\delta(f) = 4$. Let f be a 3-face uvw such that $d(u) = 4$. Then $d(v) \geq 5$ and $d(w) \geq 5$ by (P1). According to R3.1, we consider the following three cases.

Case 1. f receives $\frac{1}{2}$ from u, that is, $f_4^-(u) = 4$ or $f_3(u) = 3$ and f is located in the middle of three consecutive 3-faces incident with u.

```text

```
It suffices to check that \(f \) receives at least \(\frac{7}{4} \) from each of \(v \) and \(w \). Thus \(w'(f) \geq w(f) + \frac{1}{2} + \frac{3}{2} + \frac{7}{4} = 0 \), a contradiction.

Subcase 1.1. \(f_4(u) = 4 \), that is, \(u \) is incident with four faces of degree at most 4. Then \(f_3(u) = 4 \) or \(f_3(u) = 1 \) by Lemma 4. If \(f_3(u) = 1 \), then all faces adjacent to \(f \) are \(4^+ \)-faces, and it follows from R3.2 and R3.3 that \(f \) receives at least \(\frac{7}{4} \) from \(v, w \) respectively. If \(f_3(u) = 4 \), then any 3-face incident with \(u \) must be adjacent to a \(5^+ \)-face and it follows from R3.2 and R3.3 that \(f \) receives at least \(\frac{7}{4} \) from \(v, w \) respectively.

Subcase 1.2. \(f_3(u) = 3 \) and \(f \) is located in the middle of three consecutive 3-faces incident with \(u \). If \(d(v) \geq 6 \), then two faces adjacent to \(f \) at \(v \) are not \((3, 6, 6^+) \)-faces (since \(d(u) = 4 \) and \(uv \) is incident with two \((4, 5^+, 6^+) \)-faces) and it follows from R3.3 that \(f \) receives at least \(\frac{7}{4} \) from \(v \). Suppose that \(d(v) = 5 \). Let five faces incident with \(v \) be \(f, f_1, \ldots, f_4 \) in clockwise order, where \(uv \) is incident with \(f \) and \(f_1 \) (see Figure 2). Then \(d(f_4) \geq 5 \) since \(G \) contains no 6-cycles with two chords. If \(f_3(v) = 3 \), then \(f_4(v) = 0 \), and \(f \) is not located in the middle of three consecutive 3-faces incident with \(v \) (since \(d(f_4) \geq 5 \)), and only one face adjacent to \(f \) at \(v \) is a \(5^+ \)-face (since \(d(f_1) = 3 \)). So \(f \) receives at least \(\frac{7}{4} \) from \(v \) by R3.2. By symmetry, \(f \) receives at least \(\frac{7}{4} \) from \(w \).

![Figure 2. \(d(u) = 4 \), \(f_3(u) = 3 \) and \(f \) is located in the middle of three consecutive 3-faces incident with \(u \).](image)

Case 2. \(f \) receives \(\frac{3}{4} \) from \(u \). Then \(f_3(u) = 2 \) and \(f_4(u) = 1 \), or \(f_3(v) = 3 \) and \(f \) is located in the one side of these 3-faces by R3.1. Suppose that \(f_3(u) = 2 \) and \(f_4(u) = 1 \). Then the induced subgraph of \(u \) and its neighbors must be isomorphic to a configuration as Figure 3, where \(w = x \) or \(w = y \). If \(vx \) is incident with two 3-faces \(uwv \) and \(vxx'v \), then the 6-cycle \(xx'vyuzx \) contains two chords \(uv \) and \(uy \), a contradiction. If \(vx \) is incident with a 4-face \(vxx'x''v \), then the 6-cycle \(xx'x''vyuzx \) contains two chords \(uv \) and \(xv \), a contradiction, too. So \(vx \) is incident with a \(5^+ \)-face. By the same argument, \(vy \) is incident with a \(5^+ \)-face, too. By R3.2 and R3.3, \(f \) receives at least \(\frac{7}{4} \) from \(v \), at least \(\frac{3}{2} \) from \(w \). So \(w'(f) \geq w(f) + \frac{3}{4} + \frac{3}{2} + \frac{7}{4} = 0 \) by R3.
Suppose that u is incident with three 3-faces and f is located in the one side of these 3-faces. Then u is incident with a 5^+-face by Lemma 4. Without loss of generality, we assume that uv is incident with two 3-faces. By the similar arguments with Subcase 1.2, v sends at least $\frac{7}{4}$ to f. So $w'(f) \geq w(f) + \frac{3}{4} + \frac{3}{2} + \frac{7}{4} = 0$.

Case 3. f receives 1 from u. Since $d(v) \geq 5$, v sends at least $\frac{3}{2}$ to f by R3.2 and R3.3. Similarly, w sends at least $\frac{3}{2}$ to f. So $w'(f) \geq w(f) + 1 + \frac{3}{2} + \frac{3}{2} = 0$.

Till now, we have checked that $w'(f) \geq 0$ for any face $f \in F(G)$. Next, we begin to check the new charge of all vertices of G. Let v be a vertex of G. If $d(v) = 3$, then $w'(v) \geq w(v) + 2 \times \frac{1}{2} = 0$ by R1 since v has exactly two 3-masters. Suppose that $d(v) = 4$. If $f_4^-(v) \leq 2$, then $w'(v) = w(v) - 2 \times 1 = 0$ by R3.1. If $f_4^-(v) = 4$, then $w'(v) = w(v) - 4 \times \frac{1}{2} = 0$ by R3.1. If $f_4^-(v) = 3$, then $f_3^-(v) = 3$ and $f_4^+(v) = 0$, or $f_4^+(v) = 1$ and $f_3^+(v) = 2$ by Lemma 4. So $w'(v) \geq w(v) - \frac{1}{2} - 2 \times \frac{3}{4} = 0$.

Suppose that $d(v) = 5$. Then $w(v) = 15 - 10 = 5$ and $f_3^+(v) \leq 3$ by Lemma 3. If $f_3^+(v) \leq 2$, then $w'(v) \geq w(v) - 2 \times \frac{7}{4} - 3 \times \frac{1}{2} = 0$ by R2 and R3.2. Suppose that $f_3^+(v) = 3$. If $f_4^+(v) = 1$, then $w'(v) \leq 3$ and it follows that $w'(v) \geq w(v) - 3 \times \frac{3}{2} - \frac{1}{2} = 0$ by R2 and R3.2. Otherwise $f_4^+(v) = 2$ and it follows that $w'(v) \geq w(v) - 2 \times \frac{3}{2} - \frac{1}{2} = 0$ by R3.2.

Suppose that $d(v) = 6$. Then $w(v) = 18 - 10 = 8$ and $f_3^+(v) \leq \left\lfloor \frac{3}{4} \times 6 \right\rfloor = 4$ by Lemma 3. It follows from (P2) that it may be the 3-master of some 3-vertex u, that is, v needs to send at most $\frac{1}{2}$ to its neighbors by R1. If $f_3^+(v) \leq 2$, then $w'(v) \geq w(v) - 2 \times 2 - 4 \times \frac{3}{4} - \frac{1}{2} > 0$ by R1–R3. If $f_3^+(v) = 3$, then $f_5^+(v) \geq 1$ and it follows that $w'(v) \geq w(v) - 3 \times 2 - 2 \times \frac{3}{4} - \frac{1}{2} = 0$. Suppose that $f_3^+(v) = 4$. Then $f_4^+(v) = 0$. If v is incident with at most two $(3, 6, 6^+)$-faces, then $w'(v) \geq w(v) - 2 \times 2 - 2 \times \frac{3}{2} - \frac{1}{2} = 0$. Otherwise, v is incident with three $(3, 6, 6^+)$-faces by (P2) and (3) of the lemma, and v is incident with three consecutive 3-faces in which the middle 3-face is incident with two non-adjacent $(3, 6, 6^+)$-faces. So $w'(v) \geq w(v) - 3 \times 2 - \frac{3}{2} - \frac{1}{2} = 0$ by R1 and R3.3.

Suppose that $d(v) = 7$. Then $f_3^+(v) \leq 5$ by Lemma 3. If $f_3^+(v) = 5$, then
\(f_4(v) = 0 \) and \(w'(v) \geq w(v) - 5 \times 2 - \frac{1}{2} > 0 \). If \(f_3(v) = 4 \), then \(f_4(v) \leq 1 \) and \(w'(v) \geq w(v) - 4 \times 2 - \frac{3}{4} - \frac{1}{2} > 0 \). If \(f_3(v) \leq 3 \), then \(w'(v) \geq w(v) - 3 \times 2 - 4 \times \frac{3}{4} - \frac{1}{2} > 0 \).

If \(d(v) \geq 8 \), then \(f_3(v) \leq \left\lceil \frac{3d(v)}{4} \right\rceil \) by Lemma 3, and it follows that \(w'(v) \geq \frac{1}{2} = \frac{2(4d(v) - 8)}{16} \geq 0 \).

Hence, we complete the proof of Lemma 5.

\[\text{Theorem 6.} \quad G \text{ is edge-} k \text{-choosable, where } k = \max\{7, \Delta(G) + 1\}. \]

\[\text{Proof.} \quad \text{Let } G \text{ be a minimal counterexample to the theorem. Then there is an edge assignment } L \text{ with } |L(e)| \geq k \text{ for all } e \in E(G), \text{ where } k = \max\{7, \Delta(G) + 1\}, \text{ such that } G \text{ is not edge-} L \text{-colorable. By Lemma 5, we consider three cases as follows.} \]

\[\text{Case 1.} \quad G \text{ contains an edge } uv \text{ with } d(u) + d(v) \leq \max\{8, \Delta(G) + 2\}. \text{ Let } G' = G - uv. \text{ Then } G' \text{ has an edge-} L \text{-coloring } \psi. \text{ Since there exist at most } \max\{6, \Delta(G)\} \text{ edges adjacent to } uv \text{ and } |L(uv)| \geq \max\{7, \Delta(G) + 1\}, \text{ we can color } uv \text{ with some color from } L(uv) \text{ that was not used by } \psi \text{ on the edges adjacent to } uv. \text{ It is easy to show that any edge-} L \text{-coloring of } G' \text{ can be extended to an edge-} L \text{-coloring of } G. \text{ This contradicts the choice of the graph } G. \]

\[\text{Case 2.} \quad G \text{ contains an even cycle } C = v_1v_2 \cdots v_{2n} \text{ with } d(v_1) = d(v_3) = \cdots = d(v_{2n-1}) = 3. \text{ Let } G' \text{ be the subgraph of } G \text{ obtained by deleting the edges of } C. \text{ Then } G' \text{ has an edge-} L \text{-coloring } \psi. \text{ We define an edge assignment } L' \text{ of } C \text{ such that } L'(e) = L(e) \setminus \{ \psi(e') \mid e' \in E(G') \text{ is adjacent to } e \text{ in } G \} \text{ for each } e \in E(C). \text{ It is easy to see that } L'(e) \geq 2 \text{ for each } e \in E(C). \text{ It is showed in [3] that any even cycle is edge-2-choosable. So } C \text{ is edge-} L' \text{-colorable and it follows that } G \text{ is edge-} L \text{-colorable, a contradiction.} \]

\[\text{Case 3.} \quad G \text{ has a 6-vertex } u \text{ with five neighbors } v, w, x, y, z \text{ such that } d(v) = d(y) = 3 \text{ and } vw, xy, yz \in E(G). \text{ Let } v' \in N(v) \setminus \{ u, w \}. \text{ According to Case 1, we assume that } d(v_1) + d(v_2) = d(x) = d(z) = d(v') = 6. \text{ Without loss of generality, we consider the worst case that } |L(e)| = 7 \text{ for all } e \in E(G). \text{ By minimality of } G, \text{ } G' = G - \{ y, v \} \text{ has an edge-} L \text{-coloring } \psi. \text{ For each } e \in E(G), \text{ let } L'(e) = L(e) \setminus \{ \psi(e') \mid e' \in E(G') \text{ is adjacent to } e \text{ in } G \}. \]

If \(|L'(xy)| \geq 3 \), then we can color \(vv', vw, vu, yu, yz \) and \(xy \) successively to obtain an edge-\(L \)-coloring of \(G \), a contradiction. So \(|L'(xy)| = 2 \). By the same argument, we have \(|L'(yz)| = |L'(vw)| = |L'(vv')| = 2 \). If \(|L'(uy)| \geq 4 \), then we can color \(vv', vw, vu, xy, yz \) and \(uy \) successively, a contradiction. So \(|L'(uy)| = 3 \). By the same argument, we have \(|L'(uv)| = |L'(vy)| = |L'(vw)| = |L'(vv')| = 2 \) and \(|L'(uy)| = |L'(uv)| = 3 \).
If \(L'(xy) \neq L'(yz) \), without loss of generality, we assume that there is a color
\(a \in L'(xy) \setminus L'(yz) \), then we color \(xy \) with \(a \) firstly, and then color \(vv', vv, vu, yu \)
and \(yz \) successively, a contradiction. So \(L'(xy) = L'(yz) \). By the same argument, we have
\(L'(vw) = L'(vu') \).

Without loss of generality, we assume that \(\psi(ux) = 1, \psi(uz) = 2, \psi(uw) = 3, \)
\(L'(xy) = L'(yz) = \{ \alpha, \beta \} \). Then \(1 \in L(xy) \) and \(2 \in L(yz) \) for otherwise \(|L'(xy)| \geq 3 \) or \(|L'(yz)| \geq 3 \). Thus the colors \(1, 2, \alpha, \beta \) are all distinct. At the same time,
we have that \(L'(ux) \subseteq \{ 1, 2, 3 \} \) for otherwise we can recolor \(ux \) with a color in
\(L'(ux) \setminus \{ 1, 2, 3 \} \), color \(xy \) with 1, and color \(vv', vv, vu, yu \) and \(yz \) successively to obtain an edge-\(L \)-coloring of \(G \), a contradiction. By the same argument, we have
\(L'(uz) \subseteq \{ 1, 2, 3 \} \) and \(L'(uw) \subseteq \{ 1, 2, 3 \} \). So \(L'(ux) \cup L'(uz) \cup L'(uw) = \{ 1, 2, 3 \} \).

Now if \(1 \in L'(uz) \) and \(2 \in L'(ux) \), that is, \(\{ 1, 2 \} \subseteq L'(uz) \cap L'(ux) \), then we recolor \(ux \) with 2, and \(uz \) with 1 to obtain a contradiction. So \(\{ 1, 2 \} \not\subseteq L'(uz) \cap L'(ux) \). Similarly, we have \(\{ 1, 3 \} \not\subseteq L'(uz) \cap L'(uw) \) and \(\{ 2, 3 \} \not\subseteq L'(uz) \cap L'(uw) \). These three results imply that \(|L'(ux)| = |L'(uz)| = |L'(uw)| = 2 \). Let \(a \in L'(ux) \setminus \{ 1 \} \), \(b \in L'(uz) \setminus \{ 2 \} \) and \(c \in L'(uw) \setminus \{ 3 \} \). Then \(\{ a, b, c \} = \{ 1, 2, 3 \} \). Thus we recolor \(ux \) with \(a \), \(uz \) with \(b \) and \(uw \) with \(c \) to obtain a final contradiction.

This completes the proof of Theorem 6.

According to the theorem, it is easy to obtain the following corollary.

Corollary 7. If \(\Delta(G) \geq 6 \), then \(\chi'_{\text{list}}(G) \leq \Delta(G) + 1 \).

The following result is about edge-\(\Delta \)-choosable of embedded planar graphs without 6-cycles with two chords.

Theorem 8. \(G \) is edge-\(k \)-choosable if \(k = \max\{9, \Delta(G)\} \).

This theorem implies that if \(G \) is a planar graph \(G \) with \(\Delta(G) \geq 9 \) and every
6-cycle of \(G \) contains at most one chord, then \(G \) is edge-\(\Delta \)-choosable.

Proof. Suppose that there is an edge assignment \(L \) with \(|L(e)| \geq k \) for all \(e \in E(G) \) such that \(G \) is not edge-\(L \)-colorable, but all subgraphs of \(G \) are edge-\(L \)-colorable.

Lemma 9 [4]. The graph \(G \) has the following properties.

1. \(G \) is connected and \(\delta(G) \geq 2 \).
2. \(G \) contains no edges \(uv \) with \(d(u) + d(v) \leq 10 \).
3. \(G \) contains no 2-alternating cycles, that is, \(G \) does not contain an even cycle \(C = v_1 v_2 \cdots v_{2n} v_1 \) with \(d(v_1) = d(v_3) = \cdots = d(v_{2n-1}) = 2 \).

Suppose \(G_2 \) be the subgraph induced by the edges incident with the 2-vertices of \(G \). By Lemma 9(2), any two 2-vertices are not adjacent in \(G \), so \(G_2 \) does not contain any odd cycle. By Lemma 9(3), \(G_2 \) contains no even cycle. So \(G_2 \) is a
forest. It follows that G_2 contains a matching M such that all 2-vertices in G_2 are saturated. If $uv \in M$ and $d(u) = 2$, then v is called the 2-master of u. It is easy to see that each 2-vertex has one exactly 2-master and each 9$^+$-vertex can be the 2-master of at most one 2-vertex.

Lemma 10 [21]. Let $X = \{ x \in V(G) \mid d_G(x) \leq 3 \}$ and $Y = \bigcup_{x \in X} N(x)$. If $X \neq \emptyset$, then there exists a bipartite subgraph M' of G with partite sets X and Y such that $d_{M'}(x) = 1$ for any $x \in X$ and $d_{M'}(y) \leq 2$ for any $y \in Y$. Here, we call w the 3-master of u if $uw \in M'$ and $u \in X$.

Now we use the method of redistribution of charge in order to obtain a contradiction. We assign an “initial charge” $c(x)$ to each element $x \in V(G) \cup F(G)$, where $c(x) = 3d(x) - 10$ if $x \in V(G)$ and $c(x) = 2d(x) - 10$ if $x \in F(G)$. Then

$$
\sum_{x \in V(G) \cup F(G)} c(x) = \sum_{v \in V(G)} (3d(v) - 10) + \sum_{f \in F(G)} (2d(f) - 10) < 0.
$$

Our discharging rules are defined as follows.

R1. Let v be a 2-vertex. If v is incident with a 3-face and a 6$^+$-face f, then v receives 2 from f and 2 from its 2-master. Otherwise, v receives 2 from its 2-master and 2 from its 3-master.

R2. Every 3-vertex v receives 1 from its 3-master.

R3. Let f be a 3-face and v be a 4$^+$-vertex incident with f. Then f receives a from v, where

$$
a = \begin{cases}
\frac{1}{7} & \text{if } d(v) = 4, \\
\frac{3}{7} & \text{if } 5 \leq d(v) \leq 6, \\
\frac{4}{7} & \text{if } d(v) = 7, \\
2 & \text{if } d(v) \geq 8.
\end{cases}
$$

R4. Let f be a 4-face incident with a 4$^+$-vertex v. Then f receives a from v, where

$$
a = \begin{cases}
\frac{1}{7} & \text{if } 4 \leq d(v) \leq 5, \\
\frac{3}{4} & \text{if } 6 \leq d(v) \leq 7, \\
1 & \text{if } 8 \leq d(v).
\end{cases}
$$

Let $c'(x)$ be the final charge on $x \in V(G) \cup F(G)$. Then $\sum_{x \in V(G) \cup F(G)} c'(x) = \sum_{x \in V(G) \cup F(G)} c(x) < 0$. In the following, we will check that $c'(x) \geq 0$ for all $x \in V(G) \cup F(G)$ to get a contradiction.

Let f be a face of G. If $d(f) \geq 6$, then f is incident with at most $(d(f) - 5)$ 2-vertices each of which is incident with a 3-face, and it follows that $c'(f) \geq c(f) - 2(d(f) - 5) = 0$. If $d(f) = 5$, then f retains its initial charge and we have
Let v be a vertex of G. If $d(v) = 2$, then $c'(v) = c(v) + 2 = 2$ by R1. If $d(v) = 3$, then $c'(v) = c(v) + 1 = 0$ by R2. If $d(v) = 4$, then $c'(v) \geq c(v) - \frac{1}{2} \times 4 = 0$ by R3 and R4. Suppose that $d(v) = 5$. Then $c(v) = 15 - 10 = 5$ and $f_3(v) \leq 3$ by Lemma 3. If $f_3(v) = 3$, then $f_4(v) \leq 1$ and it follows from R3 and R4 that $c'(v) \geq c(v) - 3 \times \frac{3}{2} - 1 = 1 \times \frac{3}{2} = 0$. If $f_3(v) = 2$, then $c'(v) \geq c(v) - 2 \times \frac{3}{2} - 3 \times \frac{1}{2} \geq 0$ by R3 and R4. If $d(v) = 6$, then $f_3(v) \leq 4$ by Lemma 3 and we have $c'(v) \geq c(v) - 4 \times \frac{3}{2} - 2 = 3 \times \frac{3}{2} > 0$. If $d(v) = 7$, then $f_3(v) \leq 5$ and we have $c'(v) \geq c(v) - 5 \times \frac{7}{4} - 2 = 4 \times \frac{7}{4} > 0$. Suppose that $d(v) = 8$. Then $f_3(v) \leq 6$ by Lemma 3, and it may be the 3-master of two 3-vertices by Lemma 10. If $f_3(v) = 6$, then $f_4(v) = 0$ and it follows that $c'(v) \geq c(v) - 6 \times 2 = 0$. If $f_3(v) = 5$, then $f_4(v) = 1$ and it follows that $c'(v) \geq c(v) - 5 \times 2 - 1 - 2 = 0$. If $f_3(v) \leq 4$, then $c'(v) \geq c(v) - 4 \times 2 - 4 \times 1 - 2 = 0$. By R3 and R4. So $c'(v) \geq 0$ if $d(v) = 8$.

Now we assume that $d(v) \geq 9$. By Lemmas 9 and 10, v may be the 3-master of two 3-vertices and the 2-master of a 2-vertex, that is, v sends at most 5 to its incident 3-vertices. Suppose that $d(v) = 9$. Then $f_3(v) \leq 6$. If $f_3(v) \leq 3$, then $c'(v) \geq c(v) - 3 \times 2 - 6 \times 1 - 5 = 0$. If $f_3(v) = 4$, then $f_4(v) \leq 4$ and $c'(v) \geq c(v) - 4 \times 2 - 4 \times 1 - 5 = 0$. If $f_3(v) = 5$, then $f_4(v) \leq 2$ and $c'(v) \geq c(v) - 5 \times 2 - 2 \times 1 - 5 = 0$. For $f_3(v) = 6$, we have $f_4(v) \leq 1$. If $f_4(v) = 0$, then $c'(v) \geq c(v) - 6 \times 2 - 5 = 0$. Otherwise, v and its neighbors must induce a configuration isomorphic to Figure 4. Thus, if $d(y) = 2$ or $d(x) = 2$, then f_1 is a 6'-face. If $d(y) = 2$ or $d(z) = 2$, then f_2 is a 6'-face. By R1, v sends at most 2 to its adjacent 2-vertices. By R2, v sends at most 2 to its adjacent 3-vertices. So $c'(v) \geq c(v) - 6 \times 2 - 1 - 4 = 0$.

Suppose that $d(v) = 10$. Then $f_3(v) \leq 7$. If $f_3(v) = 7$, then $f_4(v) \leq 1$ and it follows that $c'(v) \geq c(v) - 7 \times 2 - 1 - 5 = 0$. If $f_3(v) = 6$, then $f_4(v) \leq 2$ and it follows that $c'(v) \geq c(v) - 6 \times 2 - 2 \times 1 - 5 = 0$. If $f_3(v) \leq 5$, then $c'(v) \geq c(v) - 5 \times 2 - 5 \times 1 - 5 = 0$. Suppose that $d(v) = 11$. Then $c(v) = 3 \times 11 - 10 = 22$ and $f_3(v) \leq 8$. If $7 \leq f_3(v) \leq 8$, then $f_4(v) \leq 1$ and it follows that $c'(v) \geq 22 - 8 \times 2 - 1 - 5 = 0$. If $f_3(v) \leq 6$, then $c'(v) \geq 22 - 6 \times 2 - 5 \times 1 - 5 = 0$. If $d(v) \geq 12$, then $c'(v) \geq c(v) - \frac{3d(v)}{4} \times 2 - (d(v) - \left\lfloor \frac{3d(v)}{4} \right\rfloor) \times 1 - 5 = 2d(v) - \left\lfloor \frac{3d(v)}{4} \right\rfloor - 15 \geq 0$.

Till now, we have checked that $c'(x) \geq 0$ for all $x \in V(G) \cup F(G)$. This contradiction completes the proof of Theorem 8.
Figure 4. \(d(v) = 9, f_3(v) = 6 \) and \(f_4(v) = 1 \).

References

List Edge Coloring of Planar Graphs

Received 22 May 2017
Revised 10 September 2018
Accepted 10 September 2018