ON THE METRIC DIMENSION OF DIRECTED AND UNDIRECTED CIRCULANT GRAPHS

Tomáš Vetrík

Department of Mathematics and Applied Mathematics
University of the Free State
Bloemfontein, South Africa

e-mail: vetrikt@ufs.ac.za

Abstract

The undirected circulant graph \(C_n(\pm 1, \pm 2, \ldots, \pm t) \) consists of vertices \(v_0, v_1, \ldots, v_{n-1} \) and undirected edges \(v_i v_{i+j} \), where \(0 \leq i \leq n-1, 1 \leq j \leq t \) \((2 \leq t \leq \frac{n}{2}) \), and the directed circulant graph \(C_n(1, t) \) consists of vertices \(v_0, v_1, \ldots, v_{n-1} \) and directed edges \(v_i v_{i+1}, v_i v_{i+t} \), where \(0 \leq i \leq n-1 \) \((2 \leq t \leq n-1) \), the indices are taken modulo \(n \). Results on the metric dimension of undirected circulant graphs \(C_n(\pm 1, \pm t) \) are available only for special values of \(t \). We give a complete solution of this problem for directed graphs \(C_n(1, t) \) for every \(t \geq 2 \) if \(n \geq 2t^2 \). Grigorious et al. [On the metric dimension of circulant and Harary graphs, Appl. Math. Comput. 248 (2014) 47–54] presented a conjecture saying that \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + p - 1 \) for \(n = 2tk + t + p \), where \(3 \leq p \leq t + 1 \). We disprove it by showing that \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2} \) for \(n = 2tk + t + p \), where \(t \geq 4 \) is even, \(p \) is odd, \(1 \leq p \leq t + 1 \) and \(k \geq 1 \).

Keywords: metric dimension, resolving set, circulant graph, distance.

2010 Mathematics Subject Classification: 05C35, 05C12.

1. Introduction

Let \(V(G) \) be vertex set of a connected (undirected or directed) graph \(G \). The distance \(d(u, v) \) between two vertices \(u, v \) in an undirected graph is the number of edges in a shortest path between \(u \) and \(v \). In a directed graph \(G \) the distance \(d(u, v) \) from a vertex \(u \in V(G) \) to a vertex \(v \in V(G) \) is the length of a shortest directed path from \(u \) to \(v \).
A vertex \(w \) resolves two vertices \(u \) and \(v \) if \(d(u, w) \neq d(v, w) \). For an ordered set of vertices \(W = \{ w_1, w_2, \ldots, w_z \} \), the representation of distances of \(v \) with respect to \(W \) is the ordered \(z \)-tuple

\[
r(v|W) = (d(v, w_1), d(v, w_2), \ldots, d(v, w_z)).
\]

A set \(W \subset V(G) \) is a resolving set of \(G \) if every two distinct vertices of \(G \) have different representations of distances with respect to \(W \) (if every two vertices of \(G \) are resolved by some vertex in \(W \)). The metric dimension of \(G \) is the number of vertices in a smallest resolving set and it is denoted by \(\dim(G) \). The \(i \)-th coordinate in \(r(v|W) \) is 0 if and only if \(v = w_i \). Thus in order to prove that \(W \) is a resolving set of \(G \), it suffices to show that \(r(u|W) \neq r(v|W) \) for every two different vertices \(u, v \in V(G) \setminus W \).

The metric dimension is an invariant, which has applications in robot navigation [9], pharmaceutical chemistry [2], pattern recognition and image processing [10]. It has been extensively studied. For example, Imran [5] studied barycentric subdivisions of Cayley graphs and Saputro et al. [12] gave bounds on the metric dimension of the lexicographic product of graphs.

Let \(n, m \) and \(a_1, a_2, \ldots, a_m \) be positive integers such that \(1 \leq a_1 < a_2 < \cdots < a_m \leq \frac{n}{2} \). The undirected circulant graph \(C_n(\pm a_1, \pm a_2, \ldots, \pm a_m) \) consists of the vertices \(v_0, v_1, \ldots, v_{n-1} \) and undirected edges \(v_i v_{i+a_j} \), where \(0 \leq i \leq n-1, 1 \leq j \leq m \); the indices are taken modulo \(n \).

For generators \(a_1, a_2, \ldots, a_m \) such that \(1 \leq a_1 < a_2 < \cdots < a_m \leq n-1 \), the directed circulant graph \(C_n(\pm a_1, \pm a_2, \ldots, \pm a_m) \) consists of the vertices \(v_0, v_1, \ldots, v_{n-1} \) and directed edges \(v_i v_{i+a_j} \), where \(0 \leq i \leq n-1, 1 \leq j \leq m \); the indices are taken modulo \(n \). The directed circulant graph \(C_n(\pm a_1, \pm a_2, \ldots, \pm a_m) \) contains the directed edges \(v_i v_{i-a_j} \).

Circulant graphs form an important family of Cayley graphs. The metric dimension of undirected circulant graphs \(C_n(\pm 1, \pm t) \) was studied for special values of \(t \). Javaid, Rahim and Ali [8] proved that if \(n \equiv 0, 2, 3 \pmod{4} \), then \(\dim(C_n(\pm 1, \pm 2)) = 3 \). Borchert and Gosselin [1] showed that if \(n \equiv 1 \pmod{4} \), then \(\dim(C_n(\pm 1, \pm 2)) = 4 \). The undirected circulant graphs \(C_n(\pm 1, \pm 3) \) were considered in [7] and the graphs \(C_n(\pm 1, \pm \frac{n}{2}) \) for even \(n \) were investigated in [11]. We study the metric dimension for directed circulant graphs with 2 generators. We give a complete solution of this problem for directed graphs \(C_n(1, t) \) for every \(t \geq 2 \) if \(n \geq 2t^2 \).

Exact values of the metric dimension of undirected graphs \(C_n(\pm 1, \pm 2, \pm 3) \) were given in [1] and [6]. Grigorious et al. [4] showed that \(t+1 \) vertices \(v_0, v_1, \ldots, v_t \) resolve the graph \(C_n(\pm 1, \pm 2, \ldots, \pm t) \) if \(n \equiv r \pmod{2t} \), where \(2 \leq r \leq t+2 \) and they gave the bound \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq r - 1 \) if \(n \equiv r \pmod{2t} \), where \(t+3 \leq r \leq 2t + 1 \). They presented a conjecture saying that \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + p - 1 \) for \(n = 2tk + t + p \), where
3 \leq p \leq t + 1. We disprove it for even \(t \geq 4 \) and odd \(p \geq 5 \) by showing that
\[\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2} \]
for \(n = 2tk+t+p \) where \(t \geq 4 \) is even, \(p \) is odd,
\(1 \leq p \leq t + 1 \) and \(k \geq 1 \). Note that Chau and Gosselin [3] recently proved that
\[\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) = t + \frac{p+1}{2} \]
for large \(n \), which implies that the metric dimension of the graphs \(C_n(\pm 1, \pm 2, \ldots, \pm t) \)
is completely determined by the congruence class of \(n \) modulo \(2t \).

2. Directed Circulant Graphs

We study the metric dimension of directed circulant graphs \(C_n(1, t) \). It is easy to
see that the graph \(C_n(1, t) \) is isomorphic to the graph \(C_n(-1, -t) \) for \(2 \leq t \leq n-1 \).
We present Theorems 1 and 2 for the graph \(C_n(-1, -t) \), because it is easier to
express distances from vertices in a graph to vertices in chosen resolving sets if
we consider \(C_n(-1, -t) \) (especially in the proof of Theorem 2).

The distance from the vertex \(v_j \) to the vertex \(v_i \) in \(C_n(-1, -t) \), where \(i, j \in \{0, 1, \ldots, n - 1\} \), is

\[
\begin{align*}
 d(v_j, v_i) &= \left\{ \begin{array}{ll}
 \left\lfloor \frac{j-i}{t} \right\rfloor + p, & p \equiv (j-i) \pmod{t}, \quad \text{if } j \geq i, \\
 \left\lfloor \frac{n+j-i}{t} \right\rfloor + p, & p \equiv (n+j-i) \pmod{t}, \quad \text{if } j < i,
 \end{array} \right.
\end{align*}
\]

where \(0 \leq p \leq t - 1 \).

Theorem 1. Let \(t \geq 2 \) and \(n \geq 2t^2 \). Then
\[\dim(C_n(-1, -t)) \geq t. \]

Proof. We prove the result by contradiction. Assume that
\(\dim(C_n(-1, -t)) \leq t - 1 \). Let \(W = \{v_{i_1}, v_{i_2}, \ldots, v_{i_{t-1}}\} \)
be a resolving set of \(C_n(-1, -t) \), where \(0 \leq i_1 \leq i_2 \leq \cdots \leq i_{t-1} \). Since we have at most \(t - 1 \) different vertices in \(W \) and
the graph \(C_n(-1, -t) \) has at least \(2t^2 \) vertices, \(C_n(-1, -t) \) contains a set of \(2t \)
consecutive vertices \(V' = \{v_j, v_{j+1}, \ldots, v_{j+2t-1}\} \), where \(0 \leq j \leq n - 1 \), such that
no vertex of \(W \) is in \(V' \). Without loss of generality we can assume that \(j = n - 2t \),
which means that \(V' = \{v_{n-2t}, v_{n-2t+1}, \ldots, v_{n-1}\} \) and \(i_{t-1} < n - 2t \).

Since \(|W| \leq t - 1 \), there is a \(k \in \{0, 1, \ldots, t - 1\} \), such that no vertex \(v_i \in W \)
satisfies \(i \equiv k \pmod{t} \). So we can write any vertex of \(W \) in the form \(v_{tr+s} \), where
\(0 \leq s \leq t - 1 \), \(s \neq k \) and \(r \geq 0 \).

Let \(v_l \) be any vertex in the set of \(t \) vertices \(\{v_{n-2t}, v_{n-2t+1}, \ldots, v_{n-t-1}\} \), such
that \(l \equiv k \pmod{t} \). Then we can write \(l = tx+k \), where \(0 \leq k \leq t - 1 \). We
show that the vertices \(v_{lx+k}, v_{lx+k+t-1} \in V' \) are not resolved by \(W \). Note that
tx + k > tr + s. By (1) we have

\[d(v_{tx+k}, v_{tr+s}) = \begin{cases}
\left\lfloor \frac{tx+k-(tr+s)}{t} \right\rfloor + k - s = x - r + \left\lfloor \frac{k-s}{t} \right\rfloor + k - s & \text{if } k > s, \\
x - r + k - s & \text{if } k < s,
\end{cases} \]

\[d(v_{tx+k}, v_{tr+s}) = \begin{cases}
\left\lfloor \frac{tx+k-1-(tr+s)}{t} \right\rfloor + k - 1 - s & \text{if } k > s, \\
x + 1 - r + \left\lfloor \frac{k-1-s}{t} \right\rfloor + k - 1 - s + t & \text{if } k < s.
\end{cases} \]

Since \(d(v_{tx+k}, v_{tr+s}) = d(v_{tx+k+t-1}, v_{tr+s}) \) for any vertex \(v_{tr+s} \in W \), the graph \(C_n(-1, -t) \) is not resolved by \(W \). A contradiction.

Let us present an upper bound on the metric dimension of directed circulant graphs with 2 generators.

Theorem 2. Let \(2 \leq t < n \). Then \(\dim(C_n(-1, -t)) \leq t \).

Proof. We prove that \(W = \{v_0, v_1, \ldots, v_{n-1}\} \) is a resolving set of \(C_n(-1, -t) \). First we find all vertices \(v_j \) (\(1 \leq j \leq n-1 \)) of \(C_n(-1, -t) \) such that \(d(v_j, v_0) = x \) for any \(x \geq 1 \). We can write \(j = tr + p \) where \(r \geq 0 \) and \(0 \leq p \leq t - 1 \). Since by (1), \(d(v_{tr+p}, v_0) = r + p \), we have \(r + p = x \). Thus \(r = x - p \) (\(\geq 0 \)) and then \(v_{t(x-p)+p} \) for \(0 \leq p \leq t - 1 \) and \(1 \leq t(x-p)+p \leq n-1 \) are the vertices of \(C_n(1, t) \) such that \(d(v_{t(x-p)+p}, v_0) = x \).

It remains to show that these vertices are resolved by \(v_i \), \(i = 1, 2, \ldots, t - 1 \). It suffices to consider only those vertices \(v_{t(x-p)+p} \) which are not in \(W \), so we can assume that \(t(x-p)+p > i \). For \(i = 1, 2, \ldots, t - 1 \), by (1),

\[d(v_{t(x-p)+p}, v_i) = \begin{cases}
-\frac{p+i}{t} + p - i = x - i & \text{if } p \geq i, \\
-x - p + \left\lfloor \frac{p-i}{t} \right\rfloor + p - i + t = x + t - 1 - i & \text{if } p < i.
\end{cases} \]

We know that the first entry of \(r(v_{t(x-p)+p}|W) \) is \(x \). From (3) it follows that the next \(p \) entries (where \(0 \leq p \leq t - 1 \)) are \(x - i \) and the last \(t - 1 - p \) entries of \(r(v_{t(x-p)+p}|W) \) are \(x + t - 1 - i \).

So if \(p = 0 \) (and if \(v_{tx} \) exists), the first entry of \(r(v_{tx}|W) \) is \(x \) and the other entries are \(x + t - 1 - i \) which means that \(r(v_{tx}|W) = (x, x + t - 2, x + t - 3, \ldots, x + t - 1 - (t - 1)) \). If \(p = 1 \), the first entry of \(r(v_{t(x-1)+1}|W) \) is \(x \), the second entry is \(x - 1 \) and the other entries are \(x + t - 1 - i \), so \(r(v_{t(x-1)+1}|W) = \).
(x, x - 1, x + t - 3, x + t - 4, \ldots, x + t - 1 - (t - 1)). Similarly \(r(v_i(x-2)+2|W) = (x, x - 1, x - 2, x + t - 4, \ldots, x + t - 1 - (t - 1)), \ldots, r(v_i(x-(t-1))+(t-1)|W) = (x, x - 1, x - 2, \ldots, x - (t - 1)).

Since all vertices \(v_j, 1 \leq j \leq n - 1, \) such that \(d(v_j, v_0) = x\) are resolved by \(W,\) we have \(\dim(C_n(-1, -t)) \leq |W| = t.\)

From Theorems 1 and 2 we obtain Corollary 3.

Corollary 3. Let \(t \geq 2\) and \(n \geq 2t^2.\) Then \(\dim(C_n(-1, -t)) = t.\)

Since the graphs \(C_n(-1, -t)\) and \(C_n(1, t)\) are isomorphic, we get the following corollary.

Corollary 4. Let \(t \geq 2\) and \(n \geq 2t^2.\) Then \(\dim(C_n(1, t)) = t.\)

3. Undirected Circulant Graphs

We give an upper bound on the metric dimension of undirected circulant graphs \(C_n(\pm 1, \pm 2, \ldots, \pm t)\) for \(n \equiv r \mod 2t,\) where \(r = 1\) and \(r = t + 1, t + 3, \ldots, 2t - 1.\)

The distance between two vertices \(v_i\) and \(v_j\) in \(C_n(\pm 1, \pm 2, \ldots, \pm t),\) where \(0 \leq i < j < n,\) is

\[
d(v_i, v_j) = \min\left\{\left\lfloor \frac{j - i}{t} \right\rfloor, \left\lfloor \frac{n - (j - i)}{t} \right\rfloor \right\}.
\]

This equation can be simplified as

\[
d(v_i, v_j) = \begin{cases}
\left\lfloor \frac{j - i}{t} \right\rfloor & \text{if } 0 \leq j - i \leq \frac{n}{2}, \\
\left\lfloor \frac{n - (j - i)}{t} \right\rfloor & \text{if } \frac{n}{2} < j - i < n.
\end{cases}
\]

Theorem 5. Let \(n = 2tk + t + p\) where \(t \geq 4, p \text{ is odd, } 1 \leq p \leq t + 1,\) and \(k \geq 1.\) Then

\[
\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p + 1}{2}.
\]

Proof. Let \(n = 2tk + t + p\) where \(k \geq 1, t \geq 4, p \text{ is even, } 1 \leq p \leq t + 1.\) Let

\[
W_1 = \{v_0, v_2, \ldots, v_{t-2}\}, \quad W_2 = \{v_{t-1}, v_{t+1}, \ldots, v_{2t-3}\}, \\
W_3 = \{v_{tk+t-1}, v_{tk+t+1}, \ldots, v_{tk+t+p-2}\}.
\]

We have \(|W_1| = |W_2| = \frac{t}{2} \text{ and } |W_3| = \frac{p+1}{2}.\) Let us prove that \(W = W_1 \cup W_2 \cup W_3\) is a resolving set of the graph \(C_n(1, 2, \ldots, t).\)
We divide the vertex set of $C_n(\pm 1, \pm 2, \ldots, \pm t)$ into four disjoint sets:

$V_1 = \{v_0, v_1, \ldots, v_t\}$, $V_2 = \{v_{t+1}, v_{t+2}, \ldots, v_{tk+t}\}$, $V_3 = \{v_{tk+t+1}, v_{tk+t+2}, \ldots, v_{tk+t+p-1}\}$, $V_4 = \{v_{tk+t+p}, v_{tk+t+p+1}, \ldots, v_{n-1}\}$.

First we prove that any two vertices of V_2 have different representations of distances with respect to W. For $x = 1, 2, \ldots, k - 1$; $j = 1, 2, \ldots, t$; $i = 0, 2, \ldots, t - 2$, we have $v_i \in W_1$ and by (5),

$$d(v_{tx+j}, v_i) = x + \left\lceil \frac{j - i}{t} \right\rceil = \begin{cases} x + 1 & \text{if } i < j, \\ x & \text{if } i \geq j, \end{cases}$$

and if $x = k$; $j = 1, 2, \ldots, t$, by (4), we get

$$d(v_{tk+j}, v_i) = \min\left\{ \left\lceil \frac{(tk + j) - i}{t} \right\rceil, \frac{n - [(tk + j) - i]}{t} \right\} = \left\lfloor \frac{k + 1}{t} \right\rfloor = \begin{cases} k + 1 & \text{if } i < j, \\ k & \text{if } i \geq j. \end{cases}$$

Since j (where $1 \leq j \leq t$) is greater than $\left\lfloor \frac{1}{2} \right\rfloor$ elements from the set $\{0, 2, \ldots, t-2\}$, the first $\left\lfloor \frac{1}{2} \right\rfloor$ entries of $r(v_{tx+j}|W_1)$ for $x = 1, 2, \ldots, k$ are equal to $x + 1$ and the other $\frac{n}{2} - \left\lfloor \frac{1}{2} \right\rfloor$ entries are x; $r(v_{tx+j}|W_1) = (x + 1, \ldots, x + 1, x, \ldots, x)$. Therefore the only vertices in V_2 with the same representations of distances with respect to W_1 are the pairs $(v_{t+1}, v_{t+2}), (v_{t+3}, v_{t+4}), \ldots, (v_{tk+t-1}, v_{tk+t})$. But since for $x = 1, 2, \ldots, k$ and $j = 1, 3, \ldots, t - 3$, we obtain $v_{t+j} \in W_2$ and by (5),

$$d(v_{tx+j}, v_{t+j}) = x - 1, \quad d(v_{tx+j+1}, v_{t+j}) = x - 1 + \left\lceil \frac{1}{t} \right\rceil = x,$$

and for $v_{t-1} \in W_2$, we have

$$d(v_{tx+t-1}, v_{t-1}) = x, \quad d(v_{tx+t}, v_{t-1}) = x + \left\lceil \frac{1}{t} \right\rceil = x + 1,$$

vertices in W_2 resolve the pairs $(v_{t+1}, v_{t+2}), (v_{t+3}, v_{t+4}), \ldots, (v_{tk+t-1}, v_{tk+t})$. Thus no two vertices in V_2 have the same representations of distances with respect to W.

Let us study representations of distances of the vertices in V_4. For $x = 1, 2, \ldots, k - 1$; $j = 0, 1, \ldots, t - 1$; $i = 0, 2, \ldots, t - 2$; we have $v_i \in W_1$ and by (6),

$$d(v_{n-tx+j}, v_i) = \left\lfloor \frac{n - [(n - tx + j) - i]}{t} \right\rfloor = x + \left\lceil \frac{i - j}{t} \right\rceil = \begin{cases} x & \text{if } i \leq j, \\ x + 1 & \text{if } i > j, \end{cases}$$
and if \(x = k \), we get
\[
d(v_{n-tk+j}, v_i) = \min \left\{ \left\lceil \frac{(n-tk+j-i)}{t} \right\rceil, \left\lceil \frac{(n-((n-tk+j)-i)}{t} \right\rceil \right\}
= \min \left\{ k + 1 + \left\lceil \frac{p+j-i}{t} \right\rceil, k + \left\lceil \frac{i-j}{t} \right\rceil \right\} = \begin{cases} k & \text{if } i \leq j, \\ k+1 & \text{if } i > j. \end{cases}
\]

Since \(j \) (where \(0 \leq j \leq t-1 \)) is greater than or equal to \(\left\lceil \frac{2}{t} \right\rceil + 1 \) elements from the set \(\{0, 2, \ldots, t-2\} \), the first \(\left\lceil \frac{2}{t} \right\rceil + 1 \) entries of \(r(v_{n-tx+j}|W_1) \) (for \(x = 1, 2, \ldots, k \)) are equal to \(x \) and the other entries are \(x+1 \). The only vertices in \(V_4 \) with the same representations of distances with respect to \(W_1 \) are the pairs \((v_{n-tk}, v_{n-(tk+1)}), (v_{n-tk+2}, v_{n-(tk+3)}), \ldots, (v_{n-2}, v_{n-1})\). We show that most of these pairs are resolved by vertices in \(W_2 \). For \(x = 1, 2, \ldots, k-1 \) and \(j = 1, 3, \ldots, t-3 \), we have \(v_{t+j} \in W_2 \) and by (6),
\[
d(v_{n-tx+j}, v_{t+j}) = x + 1, d(v_{n-tx+1-j}, v_{t+j}) = x + 1 + \left\lceil \frac{1}{t} \right\rceil = x + 2,
\]
and for \(v_{t-1} \in W_2, x = 1, 2, \ldots, k, \) by (6),
\[
d(v_{n-tx+t-1}, v_{t-1}) = x, d(v_{n-tx+t-2}, v_{t-1}) = x + \left\lceil \frac{1}{t} \right\rceil = x + 1,
\]
so vertices of \(W_2 \) resolve all pairs of vertices \((v_{n-tk+t-2}, v_{n-(tk+t-1)}), (v_{n-tk+t}, v_{n-(tk+t+1)}), \ldots, (v_{n-2}, v_{n-1})\), which are the pairs \((v_{tk+2t+p-2}, v_{tk+2t+p-1}), (v_{tk+2t+p}, v_{tk+2t+p+1}), \ldots, (v_{n-2}, v_{n-1})\). It remains to resolve the pairs \((v_{tk+t+p}, v_{tk+t+p+1}), (v_{tk+t+p+2}, v_{tk+t+p+3}), \ldots, (v_{tk+2t+p-4}, v_{tk+2t+p-3})\).

For \(j = 0, 2, \ldots, t-p-3 \), we have \(v_{t+p+j} \in W_2 \) and by (5),
\[
d(v_{tk+t+p+j}, v_{t+p+j}) = k, \quad d(v_{tk+t+p+j+1}, v_{t+p+j}) = k + \left\lceil \frac{1}{t} \right\rceil = k+1,
\]
so the pairs \((v_{tk+t+p}, v_{tk+t+p+1}), \ldots, (v_{tk+2t-3}, v_{tk+2t-2})\) are resolved by \(W_2 \).

For \(j = t-p-1, t-p+1, \ldots, t-4 \), we have \(v_{tk+p+j} \in W_3 \) and by (5),
\[
d(v_{tk+t+p+j}, v_{tk+p+j}) = 1, \quad d(v_{tk+t+p+j+1}, v_{tk+p+j}) = 1 + \left\lceil \frac{1}{t} \right\rceil = 2,
\]
so the pairs \((v_{tk+2t-1}, v_{tk+2t}), \ldots, (v_{tk+2t+p-4}, v_{tk+2t+p-3})\) are resolved by \(W_3 \). Thus all pairs of vertices in \(V_4 \) are resolved by \(W \).

A vertex \(v \in V_2 \) and a vertex in \(V_1 \) can have the same representations of distances with respect to \(W_1 \) only if all entries of \(r(v|W_1) \) are the same numbers. For \(x = 1, 2, \ldots, k \), we have \(v_{tx+t-1}, v_{tx+t} \in V_2 \) and \(r(v_{tx+t-1}|W_1) = r(v_{tx+t}|W_1) = (x+1, \ldots, x+1) \). For \(v_{n-tx+t-2}, v_{n-tx+t-1} \in V_4 \) we have \(r(v_{n-tx+t-2}|W_1) = r(v_{n-tx+t-1}|W_1) = (x, \ldots, x) \), which implies that for \(x = 1, 2, \ldots, k-1 \), we obtain \(r(v_{n-tx+1}|W_1) = r(v_{tx+t}|W_1) = r(v_{n-tx-2}|W_1) = r(v_{n-tx-1}|W_1) \). Since for \(v_{2t-3} \in W_2 \), by (5),
\[
d(v_{tx+t-1}, v_{2t-3}) = x - 1 + \left\lceil \frac{2}{t} \right\rceil = x, \quad d(v_{tx+t}, v_{2t-3}) = x - 1 + \left\lceil \frac{2}{t} \right\rceil = x,
\]
and by (6),
\[
d(v_{n-tx-2}, v_{2t-3}) = x + 2 + \left\lceil \frac{-1}{2} \right\rceil = x + 2, \quad d(v_{n-tx-1}, v_{2t-3}) = x + 2 + \left\lceil \frac{-2}{2} \right\rceil = x + 2,
\]
any vertex in \(V_2 \) and any vertex in \(V_4 \) have different representations of distances with respect to \(W \).

We study representations of the vertices in \(V_3 \). For \(j = 1, 2, \ldots, p - 1 \) and \(i = 0, 2, \ldots, t - 2 \), we have \(v_i \in W_1 \) and by (4),
\[
d(v_{tk+t+j}, v_i) = \min \left\{ k + 1 + \left\lceil \frac{j-i}{t} \right\rceil, k + \left\lceil \frac{p+j-2}{t} \right\rceil \right\} = k + 1,
\]
thus \(r(v_{tk+t+j}|W_1) = (k + 1, \ldots, k + 1) \). The only vertices in \(V_2 \cup V_4 \) with the same representations of distances with respect to \(W_1 \) are \(v_{tk+t} \).

Let us prove that any two vertices in \(V_3 \cup \{ v_{tk+t-1}, v_{tk+t} \} \) have different representations with respect to \(W \). It suffices to consider the vertices in \(V' = (V_3 \cup \{ v_{tk+t-1}, v_{tk+t} \}) \setminus W_3 = \{ v_{tk+t}, v_{tk+t+2}, \ldots, v_{tk+t+p-1} \} \). For \(j = 0, 2, \ldots, p - 1 \) and \(i = 1, 3, \ldots, t - 3 \), we have \(v_{t+i} \in W_2 \) and by (5)
\[
d(v_{tk+t+j}, v_{t+i}) = k + \left\lceil \frac{j-i}{2} \right\rceil = \begin{cases} k & \text{if } i \geq j, \\ k + 1 & \text{if } i < j. \end{cases}
\]
Since \(j \) (for \(j \leq t - 2 \)) is greater than \(\frac{t}{2} \) elements from the set \(\{1, 3, \ldots, t - 3\} \), the first \(\frac{t}{2} \) entries of \(r(v_{tk+t+j}|W_2') \) where \(W_2' = W_2 \setminus \{ v_{t-1} \} \) are equal to \(k + 1 \) and the other \(\frac{t}{2} - \frac{t}{2} - 1 \) entries are \(k \). If \(p = t + 1 \) and \(j = t \), we obtain
\[
r(v_{tk+t+j}|W_2') = r(v_{tk+2t}|W_2') = (k + 1, \ldots, k + 1).
\]
It follows that the only vertices of \(V' \) having the same representations of distances with respect to \(W_2' \) are \(v_{tk+2t} \) and \(v_{tk+2t-2} \) if \(p = t + 1 \). These vertices are resolved by \(v_{tk+t-1} \in W_3 \), since by (5),
\[
d(v_{tk+2t}, v_{tk+t-1}) = 1 + \left\lceil \frac{1}{2} \right\rceil = 2 \quad \text{and} \quad d(v_{tk+2t-2}, v_{tk+t-1}) = 1 + \left\lceil \frac{-1}{2} \right\rceil = 1.
\]
Thus all vertices of \(V_3 \) are resolved by \(W \).

We consider the vertices in \(V_1 \). For \(j = 1, 3, \ldots, t - 1 \) and \(t; i = 0, 2, \ldots, t - 2 \), we have \(v_i \in W_1 \) and \(d(v_j, v_i) = \left\lceil \frac{j-i}{t} \right\rceil = 1 \), thus \(r(v_j|W_1) = (1, \ldots, 1) \) for \(v_j \in V_1 \setminus W_1 \). From the previous part of this proof we know that the only vertices in \(V_2 \cup V_3 \cup V_4 \) having the representation with respect to \(W_1 \) equal to \((1, \ldots, 1) \) are \(v_{n-2} \) and \(v_{n-1} \). Since \(v_{t-1} \in W_2 \), it remains to resolve all pairs of vertices in the set \(V'' = \{ v_1, v_3, \ldots, v_{t-3}; v_t, v_{n-2}, v_{n-1} \} \).

We study their representations with respect to \(W_2 \). For \(j = 1, 3, \ldots, t - 3 \) and \(i = -1, 1, \ldots, t - 3 \), we have \(v_{t+i} \in W_2 \) and by (5),
\[
d(v_j, v_{t+i}) = 1 + \left\lceil \frac{j-i}{2} \right\rceil = \begin{cases} 1 & \text{if } i \leq j, \\ 2 & \text{if } i > j. \end{cases}
\]
Since \(j \) is greater than or equal to \(\frac{t+3}{2} \) elements from the set \(\{-1, 1, \ldots, t - 3\} \), the first \(\frac{i+3}{2} \) entries of \(r(v_j|W_2) \) are equal to 1 and the other \(\frac{t}{2} - \frac{i+3}{2} \) entries
are 2. The first two entries of \(r(v_j|W_3) \) are always 1. For \(v_t \) and any \(v_{t+i} \in W_2 \),
\[
d(v_t, v_{t+i}) = \left\lceil \frac{|i|}{t} \right\rceil = 1,
\]
therefore \(r(v_t|W_2) = (1, \ldots, 1) \).

For \(i = -1, 1, \ldots, t-3 \), by (6),
\[
d(v_{n-1}, v_{t+i}) = 1 + \left\lceil \frac{|i+1|}{t} \right\rceil = \begin{cases} 1 & \text{if } i = -1, \\ 2 & \text{if } i \geq 1, \end{cases}
\]
so \(r(v_{n-1}|W_2) = (1, 2, \ldots, 2) \). We have \(d(v_{n-2}, v_{t+i}) = 1 + \left\lceil \frac{|i+2|}{t} \right\rceil = 2 \), thus \(r(v_{n-2}|W_2) = (2, \ldots, 2) \).

The only pair of vertices in \(V'' \) having the same representations with respect to \(W_2 \) is \((v_{t-3}, v_t) \), which is resolved by \(v_{tk+t-1} \in W_3 \), since by (5) we have
\[
d(v_{t-3}, v_{tk+t-1}) = k + \left\lceil \frac{2}{t} \right\rceil = k + 1 \text{ and } d(v_t, v_{tk+t-1}) = k + \left\lceil \frac{1}{t} \right\rceil = k.
\]

Every two distinct vertices of the graph \(C_n(\pm 1, \pm 2, \ldots, \pm t) \) have different representations of distances with respect to \(W \), thus \(W \) is a resolving set of \(C_n(\pm 1, \pm 2, \ldots, \pm t) \). Hence \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq |W| = t + \frac{p+1}{2} \).

\[\Box\]

4. Conclusion

We studied the metric dimension of undirected and directed circulant graphs. Results on the metric dimension of undirected circulant graphs \(C_n(\pm 1, \pm t) \) are available only for special values of \(t \). In Section 2 we found exact values of the metric dimension for directed circulant graphs \(C_n(1, t) \) by showing that if \(t \geq 2 \) and \(n \geq 2t^2 \), then \(\dim(C_n(1, t)) = t \).

In Section 3 we presented a bound on the metric dimension of undirected circulant graphs. We proved that for \(n = 2tk + t + p \), where \(t \geq 4 \) is even, \(p \) is odd, \(1 \leq p \leq t + 1 \) and \(k \geq 1 \), \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p+1}{2} \). Note that by [13], \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \frac{p}{2} \) if \(t \) and \(p \) are even, \(2 \leq p \leq t \), thus we have \(\dim(C_n(\pm 1, \pm 2, \ldots, \pm t)) \leq t + \left\lceil \frac{p}{2} \right\rceil \) for \(n = 2tk + t + p \), where \(t \geq 4 \) is even, \(1 \leq p \leq t + 1 \) and \(k \geq 1 \).

Acknowledgments

This work has been supported by the National Research Foundation of South Africa; grant numbers: 112122, 90793.

References

Received 25 May 2017
Revised 23 January 2018
Accepted 23 January 2018