NICHE HYPERGRAPHS OF PRODUCTS OF DIGRAPHS

MARTIN SONNTAG

Faculty of Mathematics and Computer Science
TU Bergakademie Freiberg
Prüferstraße 1, D–09596 Freiberg, Germany

e-mail: sonntag@tu-freiberg.de

AND

HANNS-MARTIN TEICHERT

Institute of Mathematics
University of Lübeck
Ratzeburger Allee 160, D–23562 Lübeck, Germany

e-mail: teichert@math.uni-luebeck.de

Abstract

If \(D = (V, A) \) is a digraph, its niche hypergraph \(N\mathcal{H}(D) = (V, E) \) has the edge set \(E = \{ e \subseteq V \mid |e| \geq 2 \wedge \exists v \in V : e = N^-(D)(v) \lor e = N^+(D)(v) \} \). Niche hypergraphs generalize the well-known niche graphs and are closely related to competition hypergraphs as well as common enemy hypergraphs.

For several products \(D_1 \circ D_2 \) of digraphs \(D_1 \) and \(D_2 \), we investigate the relations between the niche hypergraphs of the factors \(D_1, D_2 \) and the niche hypergraph of their product \(D_1 \circ D_2 \).

Keywords: niche hypergraph, product of digraphs, competition hypergraph.

2010 Mathematics Subject Classification: 05C65, 05C76, 05C20.

1. Introduction and Definitions

All hypergraphs \(\mathcal{H} = (V(\mathcal{H}), E(\mathcal{H})) \), graphs \(G = (V(G), E(G)) \) and digraphs \(D = (V(D), A(D)) \) considered in the following may have isolates but no multiple edges. Moreover, in digraphs loops are forbidden. With \(N_D^-(v), N_D^+(v), d_D^-(v) \) and \(d_D^+(v) \) we denote the in-neighborhood, the out-neighborhood, the in-degree
and the out-degree of $v \in V(D)$, respectively. In standard terminology we follow Bang-Jensen and Gutin [1].

In 1968, Cohen [3] introduced the competition graph $C(D) = (V, E(C(D)))$ of a digraph $D = (V, A)$ representing a food web of an ecosystem. Here the vertices correspond to the species and different vertices v_1, v_2 are connected by an edge if and only if they compete for a common prey w, i.e.,

$$E(C(D)) = \{v_1, v_2 \mid v_1 \neq v_2 \land \exists w \in V : v_1 \in N_D^-(w) \land v_2 \in N_D^+(w)\}.$$

Surveys of the large literature around competition graphs (and its variants) can be found in [5, 6, 11]; for (a selection of) recent results see [4, 7–10, 12–17, 21].

Meanwhile the following variants of E have been investigated. The common enemy graph $CE(D)$ (cf. [11]) with the edge set

$$E(CE(D)) = \{v_1, v_2 \mid v_1 \neq v_2 \land \exists w \in V : v_1 \in N_D^+(w) \land v_2 \in N_D^+(w)\},$$

the double competition graph or competition-common enemy graph $DC(D)$ with the edge set $E(DC(D)) = E(C(D)) \cap E(CE(D))$ (cf. [18]), and the niche graph $N(D)$ with $E(N(D)) = E(C(D)) \cup E(CE(D))$ (cf. [2]).

In 2004, the concept of competition hypergraphs was introduced by Sonntag and Teichert [19]. The competition hypergraph $CH(D)$ of a digraph $D = (V, A)$ has the vertex set V and the edge set

$$E(CH(D)) = \{e \subseteq V \mid |e| \geq 2 \land \exists v \in V : e = N_D^+(v)\}.$$

As a second hypergraph generalization, recently Park and Sano [16] defined the double competition hypergraph $DCH(D)$ of a digraph $D = (V, A)$, which has the vertex set V and the edge set

$$E(DCH(D)) = \{e \subseteq V \mid |e| \geq 2 \land \exists v_1, v_2 \in V : e = N_D^-(v_1) \cap N_D^+(v_2)\}.$$

Our paper [5] was a third step in this direction; there we considered the niche hypergraph $NH(D)$ of a digraph $D = (V, A)$, again with the vertex set V and the edge set

$$E(NH(D)) = \{e \subseteq V \mid |e| \geq 2 \land \exists v \in V : e = N_D^-(v) \lor e = N_D^+(v)\}.$$

Note that $NH(D) = NH(D)$ holds for any digraph D, if \overline{D} denotes the digraph obtained from D by reversing all arcs.

In [5] we present results on several properties of niche hypergraphs and the so-called niche number \hat{n} of hypergraphs. In most of the investigations in [5] the generating digraph D of $NH(D)$ is assumed to be acyclic.
Niche Hypergraphs of Products of Digraphs

For technical reasons, we define another hypergraph generalization. The common enemy hypergraph \(CEH(D) \) of a digraph \(D = (V, A) \) has the vertex set \(V \) and the edge set

\[
E(CEH(D)) = \{ e \subseteq V \mid |e| \geq 2 \land \exists v \in V : e = N_D^+(v) \}.
\]

In the hypergraphs \(CH(D) \), \(CEH(D) \) and \(NH(D) \) no loops are allowed. Therefore, by definition the in-neighborhoods and out-neighborhoods of cardinality 1 in the digraph \(D \) play no role in the corresponding hypergraphs. This loss of information proved to be disadvantageous in the investigation of competition hypergraphs of products of digraphs (cf. [20]).

So, considering niche hypergraphs of products of digraphs, it seems to be consequent to allow loops in niche hypergraphs, too. Therefore, we define the \(l \)-competition hypergraph \(CH^l(D) \), the \(l \)-common enemy hypergraph \(CEH^l(D) \) and the \(l \)-niche hypergraph \(NH^l(D) \) (with loops) having the edge sets

\[
E(CH^l(D)) = \{ e \subseteq V \mid \exists v \in V : e = N_D^+(v) \neq \emptyset \},
E(CEH^l(D)) = \{ e \subseteq V \mid \exists v \in V : e = N_D^+(v) \neq \emptyset \} \quad \text{and}
E(NH^l(D)) = \{ e \subseteq V \mid \exists v \in V : e = N_D^+(v) \neq \emptyset \lor e = N_D^+(v) \neq \emptyset \}
\]

\[
= E(CH^l(D)) \cup E(CEH^l(D)).
\]

For the sake of brevity, in the following we often use the term \((l)\)-competition hypergraph (sometimes in connection with the notation \(CH^l(D) \)) for the competition hypergraph \(CH(D) \) as well as for the \(l \)-competition hypergraph \(CH^l(D) \), analogously for \((l)\)-common enemy and \((l)\)-niche hypergraphs with the notations \(CEH^l(D) \) and \(NH^l(D) \), respectively.

For five products \(D_1 \circ D_2 \) (Cartesian product \(D_1 \times D_2 \), Cartesian sum \(D_1 + D_2 \), normal product \(D_1 \ast D_2 \), lexicographic product \(D_1 \cdot D_2 \) and disjunction \(D_1 \lor D_2 \)) of digraphs \(D_1 = (V_1, A_1) \) and \(D_2 = (V_2, A_2) \) we investigate the construction of the \((l)\)-niche hypergraph \(NH^{(l)}(D_1 \circ D_2) = \left(V, E^{(l)}_v\right)\) from \(NH^{(l)}(D_1) = \left(V_1, E^{(l)}_1\right)\), \(NH^{(l)}(D_2) = \left(V_2, E^{(l)}_2\right)\) and vice versa.

The products considered here have always the vertex set \(V := V_1 \times V_2 \); using the notation \(\tilde{A} := \{((a, b), (a', b')) \mid a, a' \in V_1, b, b' \in V_2\} \) their arc sets are defined as follows:

\[
A(D_1 \times D_2) := \{((a, b), (a', b')) \in \tilde{A} \mid (a, a') \in A_1 \land (b, b') \in A_2\},
A(D_1 + D_2) := \{((a, b), (a', b')) \in \tilde{A} \mid ((a, a') \in A_1 \land b = b') \lor (a = a' \land (b, b') \in A_2)\},
A(D_1 \ast D_2) := A(D_1 \times D_2) \cup A(D_1 + D_2),
A(D_1 \cdot D_2) := \{((a, b), (a', b')) \in \tilde{A} \mid (a, a') \in A_1 \lor (a = a' \land (b, b') \in A_2)\},
A(D_1 \lor D_2) := \{((a, b), (a', b')) \in \tilde{A} \mid (a, a') \in A_1 \lor (b, b') \in A_2\}.
\]
It follows immediately that \(A(D_1 + D_2) \subseteq A(D_1 \ast D_2) \subseteq A(D_1 \lor D_2) \) and \(A(D_1 \times D_2) \subseteq A(D_1 \ast D_2) \). Except the lexicographic product all these products are commutative in the sense that \(D_1 \circ D_2 \simeq D_2 \circ D_1 \), where \(\circ \in \{ \times, +, \ast, \lor \} \).

Usually we number the vertices of \(D_1 \) and \(D_2 \) such that \(V_1 = \{1, 2, \ldots, r\} \), \(V_2 = \{1, 2, \ldots, s\} \) and arrange the vertices of \(V = V_1 \times V_2 \) according to the places of an \((r, s) \)-matrix.

In analogy with the rows and the columns of the described \((r, s) \)-matrix we call the set \(Z_i = \{(i, j) \mid j \in V_2\} \) \((i \in V_1) \) and the set \(S_j = \{(i, j) \mid i \in V_1\} \) \((j \in V_2) \) the \(i \)-th row and the \(j \)-th column of \(D_1 \circ D_2 \), respectively.

Then, for each \(\circ \in \{+, \ast, \cdot, \lor\} \), the subdigraph \(\langle S_j \rangle_{D_1 \circ D_2} \) of \(D_1 \circ D_2 \) induced by the vertices of a column \(S_j \) is isomorphic to \(D_1 \), and, analogously, the subdigraph \(\langle Z_i \rangle_{D_1 \circ D_2} \) of \(D_1 \circ D_2 \) induced by the vertices of a row \(Z_i \) is isomorphic to \(D_2 \). Moreover, if an arc \(a \in A(D_1 \circ D_2) \) consists only of vertices of one row \(Z_i \) \((i \in V_1) \), we refer to \(a \) as a horizontal arc. Analogously, an arc \(a \) containing only vertices of one column \(S_j \) \((j \in V_2) \) is called a vertical arc.

Considering \((l) \)-niche hypergraphs, the question arises, whether or not \(NH^{(l)}(D_1 \circ D_2) \) can be obtained from \(NH^{(l)}(D_1) \) and \(NH^{(l)}(D_2) \) and vice versa.

As an instance for competition hypergraphs \(CH^{(l)} \), we cite two results from [20].

Theorem 1 [20]. The \(l \)-competition hypergraph \(CH^l(D_1 \times D_2) = (V, \mathcal{E}^l_1) \) of the Cartesian product can be obtained from the \(l \)-competition hypergraphs \(CH^l(D_1) = (V_1, \mathcal{E}^l_1) \) and \(CH^l(D_2) = (V_2, \mathcal{E}^l_2) \) of \(D_1 \) and \(D_2 : \mathcal{E}^l_1 = \{ e_1 \times e_2 \mid e_1 \in \mathcal{E}^l_1 \land e_2 \in \mathcal{E}^l_2 \} \).

Theorem 2 [20]. The \(l \)-competition hypergraph \(CH^l(D_1 \lor D_2) = (V, \mathcal{E}^l_1) \) of the disjunction can be obtained from the \(l \)-competition hypergraphs \(CH^l(D_1) = (V_1, \mathcal{E}^l_1) \) and \(CH^l(D_2) = (V_2, \mathcal{E}^l_2) \) of \(D_1 \) and \(D_2 \), if for each of the following conditions is known whether it is true or not:

1. \(\exists v_2 \in V_2 : N^-_2(v_2) = \emptyset \) and \(\exists v_1 \in V_1 : N^-_1(v_1) = \emptyset \).

In general, \(CH^l(D_1 \lor D_2) \) cannot be obtained from \(CH^l(D_1) \) and \(CH^l(D_2) \) without the extra information on points (a) and (b).

Note that in some cases under certain conditions \(D_1 \circ D_2 \) and even \(D_1 \) and \(D_2 \) can be reconstructed from \(CH^l(D_1 \circ D_2) \). For niche hypergraphs such strong results are not expectable.

The main reason why the reconstruction of \(D_1 \) and \(D_2 \) from \(NH^{(l)}(D_1 \circ D_2) \) is much more difficult is the following. In general, for any hyperedge \(e \in \mathcal{E}(NH^{(l)}(D)) \) it is not possible to see whether \(e \) is a set of predecessors \(e = N^-_D(v) \) or a set of successors \(e = N^+_D(v) \) of a certain vertex \(v \in V(D) \).

It is interesting that, in general, for the same reason also the construction of \(NH(D_1 \circ D_2) \) from \(NH^l(D_1) \) and \(NH^l(D_2) \) is impossible.
2. Construction of \(NH^{(l)}(D_1 \circ D_2) \) from \(NH^{(l)}(D_1) \) and \(NH^{(l)}(D_2) \)

The digraphs \(D = (V, A) \) and \(D' = (V, A') \) are \((l)\)-niche equivalent if and only if \(D \) and \(D' \) have the same \((l)\)-niche hypergraph, i.e., \(NH^{(l)}(D) = NH^{(l)}(D') \).

Theorem 3. Let \(D_1 = (V_1, A_1) \) and \(D_2 = (V_2, A_2) \) be digraphs. In general, for \(\circ \in \{\times, +, \cdot, \vee\} \), the niche hypergraph \(NH(D_1 \circ D_2) = (V, E') \) of \(D_1 \circ D_2 \) cannot be obtained from the \(l \)-niche hypergraphs \(NH^{l}(D_1) = (V_1, E'_1) \) and \(NH^{l}(D_2) = (V_2, E'_2) \) of \(D_1 \) and \(D_2 \).

Proof. It suffices to present digraphs \(D_1 = (V_1, A_1) \), \(D'_1 = (V_1, A'_1) \), \(D_2 = (V_2, A_2) \) with \(A_1 \neq A_2 \), such that \(D_1 \) and \(D'_1 \) are \((l)\)-niche equivalent, but the niche hypergraphs \(NH^{l}(D_1) \) and \(NH^{l}(D'_1) \) of \(D_1 \circ D_2 \) and \(D'_1 \circ D_2 \) are distinct, i.e., \(NH^{(l)}(D_1 \circ D_2) \neq NH^{(l)}(D'_1 \circ D_2) \).

So let us consider the following digraphs and their niche hypergraphs:

\[D_1 = (V_1, A_1) = (V_1, (1, 2), (1, 2), (2, 4), (4, 5), (2, 4)) \]
\[D'_1 = (V_1, A'_1) = (V_1, (1, 2), (3, 2), (1, 2), (4, 5)) \]
\[D_2 = (V_2, A_2) = (V_2, (1, 2, 3)) \]
\[D'_2 = (V_2, A'_2) = (V_2, (1, 2, 3)) \]

Clearly, \(D_1 \) and \(D'_1 \) are \((l)\)-niche equivalent, they have the \((l)\)-niche hypergraph \(NH^{l}(D_1) = NH^{l}(D'_1) = (V_1, E'_1) \), where \(E'_1 = \{(1, 3), \{2\}, \{4\}, \{5\}\} \).

In detail, looking at \(D_1 \) we have

\[E'_1 = E(NH^{l}(D_1)) = \{(1, 3) = N_{D_1}(2), \{2\} = N_{D_1}(4) = N_{D_1}^+(1) = N_{D_1}^+(3), \{4\} = N_{D_1}(5) = N_{D_1}^+(2), \{5\} = N_{D_1}^+(4)\} \]

regarding \(D'_1 \) we get

\[E'_1 = E(NH^{l}(D'_1)) = \{(1, 3) = N_{D'_1}(2), \{2\} = N_{D'_1}(4) = N_{D'_1}^+(1) = N_{D'_1}^+(3), \{4\} = N_{D'_1}(5), \{5\} = N_{D'_1}^+(4)\} \]

Note that \(D_1 \) and \(D'_1 \) — despite having one and the same \((l)\)-niche hypergraph — are significantly different in the sense that \(D'_1 \neq D_1, D_1 \neq D'_1 \), and, moreover, \(D_1 \) is connected but \(D'_1 \) consists of two components. Of course, using \(D_1 \) and \(D'_1 \) instead of \(D_1 \) and \(D'_1 \) could be an alternative approach for proving Theorem 3.

For the sake of completeness, we give the \((l)\)-niche hypergraph \(NH^{l}(D_2) = (V_2, E'_2) \), with \(E'_2 = \{\{1, 2\} = N_{D_2}(3), \{3\} = N_{D_2}(4) = N_{D_2}^+(3)\} \).

Now we compare the \((l)\)-niche hypergraphs of the products \(D_1 \circ D_2 \) and \(D'_1 \circ D_2 \).

- **Cartesian product** \(D_1^{(l)} \times D_2 \).

Since the Cartesian product has not so many arcs and, consequently, its niche hypergraph \(NH \left(D_1^{(l)} \times D_2 \right) \) includes only few hyperedges, we present the whole edge sets \(E \left(NH \left(D_1^{(l)} \times D_2 \right) \right) \) here (in case of the other four products the edge sets of \(NH \left(D_1^{(l)} \circ D_2 \right) \) will be considerably larger, hence in these cases we will give up on writing down these sets completely).
\[E(NH(D_1 \times D_2)) = \{(1, 1), (1, 2), (3, 1), (3, 2)\} = N_{D_1 \times D_2}^-(2, 3), \]
\[\{(2, 1), (2, 2)\} = N_{D_1 \times D_2}^-((2, 3)), \]
\[\{(4, 1), (4, 2)\} = N_{D_1 \times D_2}^-((5, 3)) \]

and
\[E(NH(D'_1 \times D_2)) = \{(1, 1), (1, 2), (3, 1), (3, 2)\} = N_{D'_1 \times D_2}^-((2, 3)), \]
\[\{(4, 1), (4, 2)\} = N_{D'_1 \times D_2}^-((5, 3)) \} \].

- **Cartesian sum** \(D_1^{(r)} + D_2 \), **normal product** \(D_1^{(r)} \ast D_2 \) and **lexicographic product** \(D_1^{(r)} \cdot D_2 \).

Since \(D_1 \) is connected, the Cartesian sum \(D_1 + D_2 \), the normal product \(D_1 \ast D_2 \) as well as the lexicographic product \(D_1 \cdot D_2 \) are connected, too. Considering the (disconnected) digraph \(D'_1 \), obviously \(D'_1 + D_2, D'_1 \ast D_2 \) and \(D'_1 \cdot D_2 \) are disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected. In detail, each of the products \(D'_1 \circ D_2, D'_1 \circ D_2 \) is disconnected.

Therefore, in the niche hypergraph \(NH(D'_1 \circ D_2) \) hyperedges containing vertices of both components cannot exist:

\[\forall e \in E(NH(D'_1 \circ D_2)) : e \cap (Z_1 \cup Z_2 \cup Z_3) = \emptyset \ \text{and} \ \ e \cap (Z_4 \cup Z_5) = \emptyset. \]

Consequently, to show \(NH(D_1 \circ D_2) \neq NH(D'_1 \circ D_2) \), it suffices to find a hyperedge \(e \in E(NH(D_1 \circ D_2)) \) such that both \(e \cap (Z_1 \cup Z_2 \cup Z_3) \) and \(e \cap (Z_4 \cup Z_5) \) are nonempty.

For each of the three products \(D_1 \circ D_2 \) we will obtain such a hyperedge by considering the set of the predecessors of the vertex \((4, 3) \in V(D_1 \circ D_2)\), i.e., \(e = N_{D_1 \circ D_2}^-((4, 3)) \).

Clearly, \(e \) results from \(N_{D_1}^-((4, 3)) = \{2\} \) and \(N_{D_2}^-((4, 3)) = \{1, 2\} \).

For the Cartesian sum \(D_1 + D_2 \), we have
\[e = \{(2, 3), (4, 1), (4, 2)\} = N_{D_1 + D_2}^-((4, 3)). \]

In case of the normal product \(D_1 \ast D_2 \), we obtain
\[e = \{(2, 1), (2, 2), (2, 3), (4, 1), (4, 2)\} = N_{D_1 \ast D_2}^-((4, 3)). \]

It is easy to see that in the lexicographic product \(D_1 \cdot D_2 \) the vertex \((4, 3) \) has the same predecessors as in the normal product, hence
\[e = N_{D_1 \cdot D_2}^-((4, 3)) = N_{D_1 \ast D_2}^-((4, 3)) = \{(2, 1), (2, 2), (2, 3), (4, 1), (4, 2)\}. \]

- **Disjunction** \(D_1^{(r)} \lor D_2 \).

Now both \(D_1 \lor D_2 \) and \(D'_1 \lor D_2 \) are connected. Nevertheless, as in the previous cases, we consider the predecessors of the vertex \((4, 3) \) and get the hyperedge
\[e = N_{D_1 \lor D_2}^-((4, 3)) \]
\[= \{(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)\} \]
\[= S_1 \cup S_2 \cup \{(2, 3)\} = S_1 \cup S_2 \cup Z_2 \in E(NH(D_1 \lor D_2)). \]
Niche Hypergraphs of Products of Digraphs

Note that \(S_1 \cup S_2 \) in the result from \(N_{D_2}^{-}(3) = \{1, 2\} \) and \(Z_2 \) from \(N_{D_1}^{-}(4) = \{2\} \).

We search for this hyperedge \(e \) in \(N\mathcal{H}(D_1' \lor D_2) \).

Assume \(e = N_{D_1' \lor D_2}^{+}((i, j)) \) or \(e = N_{D_1' \lor D_2}^{-}((i, j)) \). Since \(D_1' \) and \(D_2 \) are loopless digraphs, we obtain \((i, j) \notin e \) and \((i, j) \in \{ (1, 3), (3, 3), (4, 3), (5, 3) \} \), i.e., \(j = 3 \).

Let \(e = N_{D_1' \lor D_2}^{+}((i, 3)) \). Because of \(N_{D_2}^{+}(3) = \emptyset \) and \(S_1 \subseteq e \), all vertices of \(S_1 \) have to be successors of \((i, 3)\) in \(D_1' \lor D_2 \) and \(\{1, 2, \ldots, 5\} = N_{D_1'}^{+}(i) \), where \(i \in \{1, 2, \ldots, 5\} \). This contradicts the fact that \(D_1' \) is loopless.

Consequently, \(e = N_{D_1' \lor D_2}^{-}((i, 3)) \). Then, \(S_1 \cup S_2 \subseteq e \) holds trivially. Owing to \((2, 3) \in e \) we get \((2, 3) \in N_{D_1' \lor D_2}^{-}((i, 3)) \), i.e., \(2 \in N_{D_1'}^{+}(i) \) with \(i \in \{1, 2, \ldots, 5\} \). This contradicts \(N_{D_1'}^{+}(2) = \emptyset \).

Hence, \(e \notin \mathcal{E}(N\mathcal{H}(D_1' \lor D_2)) \), thus \(D_1 \lor D_2 \) and \(D_1' \lor D_2 \) are not niche equivalent. Therefore, the niche hypergraph of the disjunction \(D_1 \lor D_2 \) cannot be constructed from the niche hypergraphs of \(D_1 \) and \(D_2 \) in general.

Using Theorems 1 and 2, for the Cartesian product and the disjunction some positive construction results can be derived. For this end we have to make use of \(\mathcal{E}(N\mathcal{H}^{(l)}(D)) = \mathcal{E}(C\mathcal{H}^{(l)}(D)) \cup \mathcal{E}(C\mathcal{E}H^{(l)}(D)) \) and \(C\mathcal{E}H^{(l)}(D) = C\mathcal{H}^{(l)}(\overline{D}) \).

Remark 4. The \(l \)-niche hypergraph \(N\mathcal{H}^{(l)}(D_1 \times D_2) \) of the Cartesian product can be obtained from the \(l \)-competition hypergraphs \(C\mathcal{H}^{(l)}(D_1), C\mathcal{H}^{(l)}(D_2) \) and the \(l \)-common enemy hypergraphs \(C\mathcal{E}H^{(l)}(D_1), C\mathcal{E}H^{(l)}(D_2) \):

\[
\mathcal{E}(N\mathcal{H}^{(l)}(D_1 \times D_2)) = \mathcal{E}(C\mathcal{H}^{(l)}(D_1 \times D_2)) \cup \mathcal{E}(C\mathcal{E}H^{(l)}(D_1 \times D_2)) \]

\[= \{ e_1 \times e_2 | e_1 \in \mathcal{E}(C\mathcal{H}^{(l)}(D_1)) \land e_2 \in \mathcal{E}(C\mathcal{H}^{(l)}(D_2)) \} \]

\[\cup \{ e_1 \times e_2 | e_1 \in \mathcal{E}(C\mathcal{E}H^{(l)}(D_1)) \land e_2 \in \mathcal{E}(C\mathcal{E}H^{(l)}(D_2)) \} \].

Remark 5. The \(l \)-niche hypergraph \(N\mathcal{H}^{(l)}(D_1 \lor D_2) \) of the disjunction can be obtained from the \(l \)-competition hypergraphs \(C\mathcal{H}^{(l)}(D_1), C\mathcal{H}^{(l)}(D_2) \) and the \(l \)-common enemy hypergraphs \(C\mathcal{E}H^{(l)}(D_1), C\mathcal{E}H^{(l)}(D_2) \) provided that each of the following conditions is known to be true or false:

(a) \(\exists v_2 \in V_2 : N_{D_2}^{-}(v_2) = \emptyset \) and \(\exists v_1 \in V_1 : N_{D_1}^{-}(v_1) = \emptyset \) and

(c) \(\exists v_2 \in V_2 : N_{D_2}^{+}(v_2) = \emptyset \) and \(\exists v_1 \in V_1 : N_{D_1}^{+}(v_1) = \emptyset \).

In general, \(N\mathcal{H}^{(l)}(D_1 \lor D_2) \) cannot be obtained from \(C\mathcal{H}^{(l)}(D_1), C\mathcal{H}^{(l)}(D_2), C\mathcal{E}H^{(l)}(D_1) \) and \(C\mathcal{E}H^{(l)}(D_2) \) without the extra information on points (a)–(d).

3. Reconstruction of \(N\mathcal{H}^{(l)}(D_1) \) and \(N\mathcal{H}^{(l)}(D_2) \) from \(N\mathcal{H}^{(l)}(D_1 \circ D_2) \)

In the following, for a set \(e = \{\{i_1, j_1\}, \ldots, \{i_k, j_k\}\} \subseteq V_1 \times V_2 \) we define \(\pi_1(e) := \)
\{i_1, \ldots, i_k\} \text{ and } \pi_2(e) := \{j_1, \ldots, j_k\}, \text{ respectively, } i.e., \pi_i \text{ denotes the projection of vertices of } NH^{(i)}(D_1 \circ D_2) \text{ onto their } i-th \text{ components, for } i \in \{1, 2\}.

Theorem 6 (Cartesian product \(D_1 \times D_2\)).

(a) If \(E(NH(D_1 \times D_2)) \neq \emptyset\), then \(NH(D_1)\) and \(NH(D_2)\) can be obtained from \(NH(D_1 \times D_2)\).

(b) If \(E(NH^l(D_1 \times D_2)) \neq \emptyset\), then \(NH^l(D_1)\) and \(NH^l(D_2)\) can be obtained from \(NH^l(D_1 \times D_2)\).

Proof. Note that \(E(NH(D_1 \times D_2)) \neq \emptyset\) implies \(A_1 \neq \emptyset \neq A_2\) and \(\max(|A_1|, |A_2|) \geq 2\). Moreover, \(E(NH^l(D_1 \times D_2)) \neq \emptyset\) is equivalent to \(A_1 \neq \emptyset \neq A_2\) and, consequently, to \(E(NH^l(D_1)) \neq \emptyset \neq E(NH^l(D_2))\).

(b) Let \(e \in E(NH^l(D_1 \times D_2))\). This is equivalent to \(e \in E(CNH^l(D_1 \times D_2))\) or \(e \in E(CNH^l(D_1 \times D_2))\), i.e., \(e = N_{D_1 \times D_2}^{-}(i, j)) \text{ or } e = N_{D_1 \times D_2}^{+}(i, j))\), with a certain \((i, j) \in V_1 \times V_2\).

This holds if and only if there is a vertex \((i, j) \in V_1 \times V_2\) such that

\[\pi_1(e) = N_{D_1}^{-}(i) \text{ and } \pi_2(e) = N_{D_2}^{-}(j) \text{ or } \pi_1(e) = N_{D_1}^{+}(i) \text{ and } \pi_2(e) = N_{D_2}^{+}(j),\]

which implies \(\pi_1(e) \in E(NH^l(D_1))\) and \(\pi_2(e) \in E(NH^l(D_2))\).

Clearly, this way we can get all hyperedges \(e_1 \in E(NH^l(D_1))\) and \(e_2 \in E(NH^l(D_2))\).

(a) An analog argumentation holds if we consider the niche hypergraphs \(NH\) instead of the \(l\)-niche hypergraphs \(NH^l\), since hyperedges \(e \in E(NH^l(D_1 \times D_2))\) of cardinality 1 can be omitted if we are interested only in hyperedges \(e_i \in E(NH(D_i))\) (which have cardinality greater than 1), for \(i = 1, 2\).

Theorem 7 (Cartesian sum \(D_1 + D_2\)).

(a) \(NH(D_1)\) and \(NH(D_2)\) can be obtained from \(NH(D_1 + D_2)\).

(b) \(NH^l(D_1)\) and \(NH^l(D_2)\) can be obtained from \(NH^l(D_1 + D_2)\), provided that one of the following conditions is true:

1. \(E(NH^l(D_1 + D_2)) = \emptyset\);
2. \(\forall e \in E(NH^l(D_1 + D_2)): |\pi_1(e)| \geq 1\) and \(\exists e \in E(NH^l(D_1 + D_2)): |\pi_2(e)| \geq 2\);
3. \(\forall e \in E(NH^l(D_1 + D_2)): |\pi_2(e)| \geq 1\) and \(\exists e \in E(NH^l(D_1 + D_2)): |\pi_1(e)| \geq 2\);
4. \(\exists (i, j) \in V_1 \times V_2 \forall e \in E(NH^l(D_1 + D_2)): (i, j) \notin e\).

Proof. (a) Let \(e \in E(NH(D_1 + D_2))\) and \((i, j) \in V_1 \times V_2\) with \(e = N_{D_1 + D_2}^{-}(i, j)) \text{ or } e = N_{D_1 + D_2}^{+}(i, j))\). Then \(e = \{(i, j), \ldots, (i, j), (i_1, j), \ldots, (i_2, j)\}\), where \(i, i_1, \ldots, i_l\) and \(j, j_1, \ldots, j_k\) are pairwise distinct vertices in \(V_1\) and \(V_2\), respectively.

...
To construct $E(NH(D_1))$, we need only those hyperedges $e \in E(NH(D_1 + D_2))$ which contain $l \geq 2$ vertices with one and the same second component:

$$E(NH(D_1)) = \left\{ \pi_1(e) \mid I \in E(NH(D_1 + D_2)) \wedge e = \{(i, j_1), \ldots, (i, j_k), (i_1, j), \ldots, (i_l, j)\} \wedge l \geq 2 \wedge I = \left\{ \{i\}, k \geq 1 \right\} \{\emptyset, k = 0\} \right\}.$$

Analogously, we obtain $E(NH(D_2))$:

$$E(NH(D_2)) = \left\{ \pi_2(e) \mid J \in E(NH(D_1 + D_2)) \wedge e = \{(i, j_1), \ldots, (i, j_k), (i_1, j), \ldots, (i_l, j)\} \wedge k \geq 2 \wedge J = \left\{ \{j\}, l \geq 1 \right\} \{\emptyset, l = 0\} \right\}.$$

(b) The proof of (1)–(3) is similar to the proof of (1)–(3) of Proposition 2 in [20].

Case (1): $E(NH^l(D_1 + D_2)) = \emptyset$. Obviously, $A(D_1 + D_2) = \emptyset = A(D_1) = A(D_2) = E(NH^l(D_1)) = E(NH^l(D_2))$.

Case (2): $\forall e \in E(NH^l(D_1 + D_2)) : |\pi_1(e)| = 1$ and $\exists e \in E(NH^l(D_1 + D_2)) : |\pi_2(e)| \geq 2$.

Let $e \in E(NH^l(D_1 + D_2))$ with $|\pi_2(e)| \geq 2$, i.e., $e = \{(i, j_1), \ldots, (i, j_k)\} = N_{D_1+D_2}^+(\{i, j\})$ or $e = \{(i, j_1), \ldots, (i, j_k)\} = N_{D_1+D_2}^-(\{i, j\})$ with $k \geq 2$ and suitable $i \in V_1$, $j \in V_2$ and $j_1, \ldots, j_k \in V_2$.

We discuss only the situation $e = N_{D_1+D_2}^+(\{i, j\})$, since $e = N_{D_1+D_2}^-(\{i, j\})$ can be proved analogously.

Clearly, $N_{D_2}^-(\{j_1, \ldots, j_k\}) = \pi_2(e)$. The assumption that there are $i' \in V_1$, $l \geq 1$ and $i'_1, \ldots, i'_l \in V_1$ with $N_{D_1}^-(i') = \{i'_1, \ldots, i'_l\} \neq \emptyset$ would lead to $e' = N_{D_1+D_2}^-(\{i', j\}) = \{(i'_1, j), \ldots, (i'_l, j), (i', j_1), \ldots, (i', j_k)\}$ with $|\pi_1(e')| \geq 2$, a contradiction.

Therefore, $E(NH^l(D_1)) = \emptyset$ and $E(NH^l(D_2)) = \left\{ \pi_2(e) \mid e \in E(NH^l(D_1 + D_2)) \wedge |\pi_1(e)| \geq 2 \right\}$.

Case (3): $\forall e \in E(NH^l(D_1 + D_2)) : |\pi_2(e)| = 1$ and $\exists e \in E(NH^l(D_1 + D_2)) : |\pi_1(e)| \geq 2$.

This can be treated in the same way as Case (2).

Case (4): $\exists (i, j) \in V_1 \times V_2 \forall e \in E(NH^l(D_1 + D_2)) : (i, j) \notin e$. Since for every $e \in E(NH^l(D_1 + D_2))$ we have $(i, j) \notin e$, the vertex $i \in V_1$ is an isolate in
\(NH^l(D_1)\) and in \(D_1\). For the same reason, \(j \in V_2\) is an isolate in \(NH^l(D_2)\) and in \(D_2\). We discuss only the construction of \(NH^l(D_2)\), the rest follows analogously.

Since \(i\) is an isolate, in \(D_1 + D_2\) there is no arc between the \(i\)-th row \(Z_i\) and any other row. Therefore, all arcs with an initial or a terminal vertex in \(Z_i\) result from arcs in \(D_2\) and we have

\[
\forall a \in A(D_1 + D_2): V(a) \cap Z_i \neq \emptyset \Rightarrow V(a) \subseteq Z_i.
\]

Hence, denoting by \(\langle Z_i \rangle_{D_1 + D_2}\) and by \(\langle Z_i \rangle_{NH^l(D_1 + D_2)}\) the subdigraph of \(D_1 + D_2\) and the subhypergraph of \(NH^l(D_1 + D_2)\) generated by the vertices of \(Z_i\), respectively, we obtain

- \(\langle Z_i \rangle_{D_1 + D_2} \simeq D_2\);
- \(\langle Z_i \rangle_{NH^l(D_1 + D_2)} \simeq NH^l(D_2)\) and
- \(E(NH^l(D_2)) = \{\pi_2(e) | e \in E(NH^l(D_1 + D_2)) \land e \subseteq Z_i\}\).

Note that, being interested in \(l\)-niche hypergraphs, loops \(e = \{(i, j)\} \in E(NH^l(D_1 + D_2))\) could lead to the problem that \(\{(i, j)\}\) can be a loop in \(NH^l(D_1 + D_2)\) either because of \(\langle Z_i \rangle_{NH^l(D_1 + D_2)} \simeq NH^l(D_2)\) and \(j\) is an isolate in \(D_2\) or because of \(i\) is an isolate in \(D_1\) and \(\{j\} \in E(NH^l(D_2))\) — and without further information it cannot be decided which of these cases occurs.

In comparison with Proposition 2(4) of our paper [20] we see that for the reconstruction of the \(l\)-competition graphs \(CH^l(D_1)\) and \(CH^l(D_2)\) from \(CH^l(D_1 + D_2)\) there is another sufficient condition, namely:

\[
\exists e \in E(CH^l(D_1 + D_2)) : |\pi_1(e)| \geq 3 \land |\pi_2(e)| \geq 3.
\]

Remark 8. In general, for niche hypergraphs an analogous condition to Proposition 2(4) in [20], i.e.,

\[
(a) \quad \exists e \in E(NH^l(D_1 + D_2)) : |\pi_1(e)| \geq 3 \land |\pi_2(e)| \geq 3
\]

is unsuited to ensure that \(NH^l(D_1)\) and \(NH^l(D_2)\) can be reconstructed from \(NH^l(D_1 + D_2)\).

Proof. Without loss of generality, let \(e = \{(i, j_1), \ldots, (i, j_l), (i_1, j), \ldots, (i_l, j)\}\) be a hyperedge in \(NH^l(D_1 + D_2)\) with \(k \geq 2\) and \(l \geq 2\).

There are two possibilities for the hyperedge \(e\), namely \(e = \{N^{-}_{D_1 + D_2}((i, j))\}\),

\[
\pi_1(e) \setminus \{i\} = \{i_1, \ldots, i_l\} = \begin{cases}
N^-_{D_1}(i) \\
N^+_{D_1}(i)
\end{cases}, \quad \text{and}
\]

\[
\pi_2(e) \setminus \{j\} = \{j_1, \ldots, j_k\} = \begin{cases}
N^-_{D_2}(j) \\
N^+_{D_2}(j)
\end{cases}.
\]
Then we have \(e \in E \left(CH^l(D_1 + D_2) \right) \), which is equivalent to \(e = N_{D_1 + D_2}^{-}(i, j) \), or otherwise \(e \in E \left(CEH^l(D_1 + D_2) \right) \), i.e., \(e = N_{D_1 + D_2}^{+}(i, j) \). In the first case it follows \(\pi_1(e) \setminus \{i\} = N_{D_1}^{-}(i) \) and \(\pi_2(e) \setminus \{j\} = N_{D_2}^{-}(j) \), in the second case \(\pi_1(e) \setminus \{i\} = N_{D_1}^{+}(i) \) and \(\pi_2(e) \setminus \{j\} = N_{D_2}^{+}(j) \) is valid.

In both cases we obtain \(\pi_1(e) \setminus \{i\} \in E \left(NH^{l}(D_1) \right) \) and \(\pi_2(e) \setminus \{j\} \in E \left(NH^{l}(D_2) \right) \) and both sets \(\pi_1(e) \setminus \{i\} \) and \(\pi_2(e) \setminus \{j\} \) are hyperedges in the corresponding competition hypergraph \(CH^l(D_\tau) \) (\(\tau \in \{1, 2\} \)) or both are hyperedges in the common enemy hypergraph \(CEH^l(D_\tau) \) (\(\tau \in \{1, 2\} \)).

Our argumentation is the following.

- The above implies that, in this sense, "competition hyperedges" \(e \in E \left(CH^l(D_1 + D_2) \right) \) include only information on "competition hyperedges" in \(E \left(CH^l(D_1) \right) \subseteq E \left(NH^{l}(D_1) \right) \) and \(E \left(CH^l(D_2) \right) \subseteq E \left(NH^{l}(D_2) \right) \), respectively. The same applies to "common enemy hyperedges" \(e \in E \left(CEH^{l}(D_1 + D_2) \right) \) and "common enemy hyperedges" in \(E \left(CEH^{l}(D_1) \right) \subseteq E \left(NH^{l}(D_1) \right) \) and \(E \left(CEH^{l}(D_2) \right) \subseteq E \left(NH^{l}(D_2) \right) \).

- Below, we will describe the reconstruction of the hyperedges of \(CH^l(D_1) \) and \(CH^l(D_2) \) from \(CH^l(D_1 + D_2) \) according to Case 4 of the proof of Proposition 2 in [20]. We will see that in this reconstruction procedure the conditions \(|\pi_1(e)| \geq 3 \) and \(|\pi_2(e)| \geq 3 \) (for a certain hyperedge \(e \in E \left(CH^l(D_1 + D_2) \right) \)) are essential. Obviously, an analog reconstruction procedure can be used to obtain \(CEH^l(D_1) \) and \(CEH^l(D_2) \) from \(CEH^l(D_1 + D_2) \), if there is a hyperedge \(e \in E \left(CEH^{l}(D_1 + D_2) \right) \) with \(|\pi_1(e)| \geq 3 \) and \(|\pi_2(e)| \geq 3 \). Clearly, the described reconstruction will fail if there is no such hyperedge \(e \) with the required properties.

- Now let \(D_1 \) and \(D_2 \) be digraphs fulfilling (a). Note that, in general, for an arbitrarily chosen hyperedge \(e \) in \(NH^{l}(D_1 + D_2) \) it cannot be found out whether \(e \) is a "competition hyperedge", i.e., \(e \in E \left(CH^l(D_1 + D_2) \right) \), or a "common enemy hyperedge", i.e., \(e \in E \left(CEH^{l}(D_1 + D_2) \right) \).

- We additionally assume that in \(NH^{l}(D_1 + D_2) \) all hyperedges fulfilling (a) are edges of the competition hypergraph \(CH^l(D_1 + D_2) \) but not edges of the common enemy hypergraph \(CEH^l(D_1 + D_2) \). Then, clearly, the reconstruction method from Proposition 2 in [20] has to fail for hyperedges in \(E \left(CEH^{l}(D_2) \right) \setminus E \left(CH^l(D_2) \right) \).

It remains to describe the reconstruction method from Case 4 of the proof of Proposition 2 in [20].

Under the assumptions given above, let \(e \in E \left(NH^{l}(D_1 + D_2) \right) \) be a hyperedge with (a), i.e., \(e \in E \left(CH^l(D_1 + D_2) \right) \). Because of \(|\pi_1(e)| \geq 3 \) and \(|\pi_2(e)| \geq 3 \), there are vertices \(i \in V_1 \) and \(j \in V_2 \) with \(k := |\{(i, j') \mid j' \in V_2 \} \cap e| \geq 2 \) and \(l := |\{(i', j) \mid i' \in V_1 \} \cap e| \geq 2 \).
Then \(e = \{(i, j_1), \ldots, (i, j_k), (i_1, j), \ldots, (i_l, j)\} = \mathcal{N}_{D_1+D_2}((i, j)) \) and therefore \(\mathcal{N}_{D_1}^{-1}(i) = \{i_1, \ldots, i_l\} = \pi_1(e) \setminus \{i\} \) and \(\mathcal{N}_{D_2}(-1)(j) = \{j_1, \ldots, j_k\} = \pi_2(e) \setminus \{j\} \).

For each \(x \in V_1 \) let \(e^x := \{(x, j_1), \ldots, (x, j_k), (x_1, j), \ldots, (x_l, j)\} \in \mathcal{E}(\mathcal{C}\mathcal{H}^l(D_1 + D_2)) \) with \(l_x \geq 0 \). Obviously, \(e^x = \mathcal{N}_{D_1+D_2}((x, j)) \) and \(\mathcal{N}_{D_1}(x) = \{x_1, \ldots, x_l\} = \pi_1(e^x) \setminus \{x\} \). This way we obtain \(D_1 = (V_1, A_1) \) as well as \(\mathcal{E}(\mathcal{C}\mathcal{H}^l(D_1)) = \left\{ \mathcal{N}_{D_1}^{-1}(x) \mid x \in V_1 \land \mathcal{N}_{D_1}(x) \neq \emptyset \right\} \).

Analogously, for each \(y \in V_2 \) let \(e^y := \{(i_1, y), \ldots, (i, y), (i, y_1), \ldots, (i, y_{k_y})\} \in \mathcal{E}(\mathcal{C}\mathcal{H}^l(D_1 + D_2)) \) with \(k_y \geq 0 \). Then \(e^y = \mathcal{N}_{D_1+D_2}((i, y)) \) and \(\mathcal{N}_{D_2}(y) = \{y_1, \ldots, y_{k_y}\} = \pi_2(e^y) \setminus \{y\} \).

\textbf{Theorem 9} (Normal product \(D_1 \ast D_2 \)).

(a) \(\mathcal{N}\mathcal{H}(D_1) \) and \(\mathcal{N}\mathcal{H}(D_2) \) can be obtained from \(\mathcal{N}\mathcal{H}(D_1 \ast D_2) \).

(b) If there is a hyperedge \(e \in \mathcal{E}(\mathcal{N}\mathcal{H}(D_1 \ast D_2)) \) with \(|\pi_1(e)| \geq 2 \) and \(|\pi_2(e)| \geq 2 \), then \(\mathcal{N}\mathcal{H}^l(D_1) \) and \(\mathcal{N}\mathcal{H}^l(D_2) \) can be obtained from \(\mathcal{N}\mathcal{H}(D_1 \ast D_2) \).

\textbf{Proof.} (b) The existence of a hyperedge \(e \in \mathcal{E}(\mathcal{N}\mathcal{H}(D_1 \ast D_2)) \) with \(|\pi_1(e)| \geq 2 \) and \(|\pi_2(e)| \geq 2 \) is equivalent to \(A_1 \neq \emptyset \neq A_2 \). Let

\[e = \{(i, j_1), \ldots, (i, j_k), (i_1, j), \ldots, (i, j), (i, j_1), (i_1, j_1), \ldots, (i_1, j), \ldots, (i, j_1), (i_1, j_1), (i, j_1), \ldots, (i, j), \ldots, (i, j_1), (i_1, j_1), \ldots, (i_1, j)\} \]

\[\in \mathcal{E}(\mathcal{N}\mathcal{H}(D_1 \ast D_2)) = \mathcal{E}(\mathcal{C}\mathcal{H}(D_1 \ast D_2)) \cup \mathcal{E}(\mathcal{C}\mathcal{E}\mathcal{H}(D_1 \ast D_2)), \]

with \(|\pi_1(e)| \geq 2 \) and \(|\pi_2(e)| \geq 2 \).

We will follow the idea of the proof of Case 2 of Corollary 2 in our paper [20], where a similar result for competition hypergraphs was given.

But by contrast to Corollary 2 in [20], in the case of niche hypergraphs it is impossible to reconstruct the digraphs \(D_1 \) and \(D_2 \) themselves in general. The reason is the same as mentioned before for the Cartesian sum (see the proof of Remark 8). Although for a hyperedge \(e \in \mathcal{E}(\mathcal{N}\mathcal{H}(D_1 \ast D_2)) \) we can find out the vertex \((i, j)\) with \(e = \mathcal{N}_{D_1+D_2}^+((i, j)) \) or \(e = \mathcal{N}_{D_1+D_2}^-((i, j)) \), in general it will be impossible to determine whether \(e \) is the set of predecessors (\(e \) is a ”competition hyperedge”) or the set of successors (\(e \) is a ”common enemy hyperedge”) of the vertex \((i, j)\) in \(D_1 \ast D_2 \).

Note that, in spite of the distinction of cases below, it is unnecessary to know for the actual hyperedge \(e \in \mathcal{E}(\mathcal{N}\mathcal{H}(D_1 \ast D_2)) \) under investigation whether or not it is a ”competition hyperedge“ (\(e \in \mathcal{E}(\mathcal{C}\mathcal{H}(D_1 \ast D_2)) \)) or it is an ”common enemy hyperedge“ (\(e \in \mathcal{E}(\mathcal{C}\mathcal{E}\mathcal{H}(D_1 \ast D_2)) \)). This will become clear by the remarks to Case (2) below.

\textit{Case} (1): \(e \in \mathcal{E}(\mathcal{C}\mathcal{H}(D_1 \ast D_2)) \). With some modifications of the proof of Case 2 of Corollary 2 in [20] we get the following.
(a) Because of \(l = |\pi_1(e)| - 1 \geq 1 \) and \(k = |\pi_2(e)| - 1 \geq 1 \), the vertices \(i \in V_1 \) and \(j \in V_2 \) with \(N_{D_1 \ast D_2}(i, j) = e \) can be identified as the only vertices which occur exactly \(k \) and \(l \) times in \(\pi_1(e) \) and \(\pi_2(e) \), respectively. Moreover, \(\pi_1(e) \setminus \{i\} = \{i_1, \ldots, i_l\} = N_{D_1}(i) \) and \(\pi_2(e) \setminus \{j\} = \{j_1, \ldots, j_k\} = N_{D_2}(j) \).

(b) Obviously, for every vertex of \(x \), there are at least 3 vertices: \((x, j_1), (x', j), (x', j_1) \), where \(x' \in N_{D_1}(x) \). Therefore \(N_{D_1 \ast D_2}((x, j)) \in E(\mathcal{CH}(D_1 \ast D_2)) \subseteq E(\mathcal{NH}(D_1 \ast D_2)) \). Analogously, for each \(y \in V_2 \) we get \(N_{D_1 \ast D_2}((i, y)) \in E(\mathcal{CH}(D_1 \ast D_2)) \subseteq E(\mathcal{NH}(D_1 \ast D_2)) \).

(c) Note that if \(x \in V_1 \) with \(N_{D_1}(x) = \emptyset \), then \(N_{D_1 \ast D_2}((x, j)) = \{(x, j_1), \ldots, (x, j_k)\} \); i.e., \(N_{D_1 \ast D_2}((x, j)) \in E(\mathcal{CH}(D_1 \ast D_2)) \subseteq E(\mathcal{NH}(D_1 \ast D_2)) \) if and only if \(k \geq 2 \). Analogously, for every \(y \in V_2 \) we get \(N_{D_1 \ast D_2}((i, y)) \in E(\mathcal{CH}(D_1 \ast D_2)) \subseteq E(\mathcal{NH}(D_1 \ast D_2)) \) if and only if \(l \geq 2 \).

Because of (b), for all vertices of \(D_1 \) and \(D_2 \), respectively, with positive indegree we get their sets of predecessors applying the procedure described in (a) to all hyperedges \(e \in E(\mathcal{CH}(D_1 \ast D_2)) \) with \(|\pi_1(e)| \geq 2 \) and \(|\pi_2(e)| \geq 2 \). (In general, for a vertex \(v_1 \in V_1 \) and \(v_2 \in V_2 \), respectively, with positive indegree, procedure (a) will produce its set of predecessors more than once.) Trivially, each vertex for which (a) does not provide a set of predecessors has indegree 0 (cf. (c)).

Thus we obtain the edge set \(E(\mathcal{CH}(D_1)) \) and \(E(\mathcal{CH}(D_2)) \) of the \(l \)-competition hypergraph \(\mathcal{CH}(D_1) \) and \(\mathcal{CH}(D_2) \), respectively.

Note that we did not need hyperedges \(e \in E(\mathcal{CH}(D_1 \ast D_2)) \setminus E(\mathcal{CH}(D_1 \ast D_2)) \), i.e., hyperedges of cardinality 1.

Case (2): \(e \in E(\mathcal{CEH}(D_1 \ast D_2)) \). Note that \(\mathcal{CH}(D) = \mathcal{CEH}(\overline{D}) \), for any digraph \(D \). Applying the following substitutions to the proof of Case (1), word-for-word we obtain the verification of Case (2):

\[
\begin{align*}
\mathcal{CH} & \mapsto \mathcal{CEH}, \\
N^− & \mapsto N^+, \\
\text{indegree} & \mapsto \text{outdegree} \quad \text{and} \\
\text{predecessor} & \mapsto \text{successor}.
\end{align*}
\]

(a) Because of (b) it suffices to consider the case when \(A_1 = \emptyset \) or \(A_2 = \emptyset \) holds. Replacing "+" by "*" in (1)–(3) of Theorem 7, we see that the occurrence of (1), (2) or (3) is equivalent to \(A_1 = \emptyset \) or \(A_2 = \emptyset \) and we can use an analog argumentation as in the corresponding part of the proof of Theorem 7. So using (2) we obtain \(E(\mathcal{NH}(D_2)) = \{\pi_2(e) \mid e \in E(\mathcal{NH}(D_1 \ast D_2))\} \) and \(E(\mathcal{NH}(D_2)) = \{\pi_2(e) \mid e \in E(\mathcal{NH}(D_1 \ast D_2)) \land |\pi_2(e)| \geq 2\} \), respectively. ■
Note that \(A_1 = \emptyset \) or \(A_2 = \emptyset \) implies \(D_1 \ast D_2 = D_1 + D_2 \). Therefore, the last part of the above proof in connection with Theorem 7 lead to the following consequence.

Corollary 10. \(NH^l(D_1) \) and \(NH^l(D_2) \) can be obtained from \(NH^l(D_1 \ast D_2) \), provided that one of the following conditions is true:

1. \(\exists e \in \mathcal{E}(NH^l(D_1 \ast D_2)) \) such that \(|\pi_1(e)| = 1 \) and \(|\pi_2(e)| \geq 2 \);
2. \(\exists e \in \mathcal{E}(NH^l(D_1 \ast D_2)) \) such that \(|\pi_2(e)| = 1 \) and \(|\pi_1(e)| \geq 2 \).

Theorem 11 (Lexicographic product : \(NH^l(D_1 \ast D_2) \)).

(a) \(NH(D_1) \) and \(NH(D_2) \) can be obtained from \(NH(D_1 \ast D_2) \).

(b) If \(|V_2| \geq 2 \), then \(NH^l(D_1) \) can be obtained from \(NH(D_1 \ast D_2) \).

(c) \(NH^l(D_1) \) and \(NH^l(D_2) \) can be obtained from \(NH(D_1 \ast D_2) \).

Proof. First we will show (c), i.e., \(NH^l(D_1) \) and \(NH^l(D_2) \) can be reconstructed from \(NH^l(D_1 \ast D_2) \). Then we obtain (b) and (a) as follows:

Since for \(|V_2| \geq 2 \) every loop \(e_1 = \{i\} \) in \(NH^l(D_1) \) leads to a non-loop \(e \) in \(NH^l(D_1 \ast D_2) \) (containing at least all vertices of the row \(Z_i \)), we will see that we need no loops of \(NH^l(D_1 \ast D_2) \) in order to obtain \(NH^l(D_1) \), this includes (b).

Analogously, it is obvious that non-loops \(e_i \) of \(NH^l(D_1) \) and \(NH^l(D_2) \), respectively, result in non-loops in \(NH^l(D_1 \ast D_2) \). In our considerations it will become clear that for the reconstruction of \(NH^l(D_1) \) and \(NH^l(D_2) \) we do not need the loops in \(NH^l(D_1 \ast D_2) \), so we get (a).

In order to prove (c), we consider a hyperedge \(e \in \mathcal{E}(NH^l(D_1 \ast D_2)) \). Then there is a vertex \((i, j) \in V_1 \times V_2 \) such that \(e = N_{D_1 \ast D_2}((i, j)) \) or \(e = N_{D_1 \ast D_2}^+(i, j) \). In order to simplify our depictions, we write down the considerations only for the case \(e = N_{D_1 \ast D_2}((i, j)) \in \mathcal{E}(CH^l(D_1 \ast D_2)) \); the hyperedges \(e = N_{D_1 \ast D_2}^+(i, j) \in \mathcal{E}(CEH^l(D_1 \ast D_2)) \) can be treated analogously.

In \(NH^l(D_1 \ast D_2) \) there are two possibilities for the hyperedge \(e \).

Case 1. \(\exists l \geq 1 \exists i_1, \ldots, i_l \in V_1 : e = Z_{i_1} \cup \cdots \cup Z_{i_l} \). Without loss of generality let \(i_1, \ldots, i_l \) be pairwise distinct.

Hence, \(e \) is the union of the complete rows \(Z_{i_1}, \ldots, Z_{i_l} \) of \(D_1 \ast D_2 \) and from the definition of \(D_1 \ast D_2 \) it follows \(i \notin \{i_1, \ldots, i_l\} \), \(N_{D_1}^{-}(i) = \{i_1, \ldots, i_l\} \) and \(N_{D_2}^{-}(j) = \emptyset \).

Case 2. \(\exists l \geq 0 \exists i_1, \ldots, i_l, i' \in V_1 \exists Z' \subseteq Z_{i'} : e = Z_{i_1} \cup \cdots \cup Z_{i_l} \cup Z' \wedge Z' \neq \emptyset \). We get \(i = i' \in V_1 \setminus \{i_1, \ldots, i_l\} \) as well as \(N_{D_1}^{-}(i') = \{i_1, \ldots, i_l\} \).
\[\mathcal{E}(N \mathcal{H}_1^l(D_1)) \text{ and } N^-_{D_2}(j) = \pi_2(e \cap Z') = \pi_2(Z') \in \mathcal{E}(N \mathcal{H}_1^l(D_2)) \] with a certain \(j \in V_2 \). In general, if \(|Z'| < |V_2| - 1\) holds, the vertex \(j \) cannot be determined.

Again, for any hyperedge \(e \in \mathcal{E}(N \mathcal{H}_1^l(D_1 \cdot D_2)) \) it cannot be found out whether \(e \) is a competition hyperedge (i.e., \(e \in \mathcal{E}(C \mathcal{H}_1^l(D_1 \cdot D_2)) \)) or \(e \) is a common enemy hyperedge (i.e., \(e \in \mathcal{E}(C \mathcal{E} \mathcal{H}_1^l(D_1 \cdot D_2)) \)) in general. But for the reconstruction of \(N \mathcal{H}_1^l(D_1) \) and \(N \mathcal{H}_1^l(D_2) \) this plays no role, since the considerations of Case 1 and Case 2 are valid for competition hyperedges (i.e., sets of predecessors) as well as, analogously, for common enemy hyperedges (i.e., sets of successors).

Moreover, we remark that Cases 1 and 2 (together with their analogs for the common enemy hyperedges) provide all hyperedges of the \((l)\)-niche hypergraphs \(N \mathcal{H}_1^l(D_1) \) and \(N \mathcal{H}_1^l(D_2) \).

Now we discuss the disjunction \(D_1 \vee D_2 \). The case \(|V_1| = 1 \) or \(|V_2| = 1\) implies \(D_1 \vee D_2 = D_1 \cdot D_2 \). Therefore, because of Theorem 11 it suffices to investigate the case \(|V_1|, |V_2| \geq 2\).

Theorem 12 (Disjunction \(D_1 \vee D_2 \)). If \(|V_1|, |V_2| \geq 2\), then \(N \mathcal{H}_1^l(D_1) \) and \(N \mathcal{H}_1^l(D_2) \) can be obtained from \(N \mathcal{H}(D_1 \vee D_2) \).

Proof. Since both \(V_1 \) and \(V_2 \) contain at least two vertices, in \(N \mathcal{H}_1^l(D_1 \vee D_2) \) there are no loops and \(N \mathcal{H}_1^l(D_1 \vee D_2) = N \mathcal{H}(D_1 \vee D_2) \).

Moreover, for every hyperedge \(e \in \mathcal{E}(N \mathcal{H}(D_1 \vee D_2)) \) it holds
\[\exists l \geq 0 \exists i_1, \ldots, i_l \in V_1 \exists k \geq 0 \exists j_1, \ldots, j_k \in V_2 : e = Z_{i_1} \cup \ldots \cup Z_{i_l} \cup S_{j_1} \cup \ldots \cup S_{j_k} \]
and, clearly, \(\min(l, k) > 0 \).

By analogy with the proof of Theorem 11 let \((i,j) \in V_1 \times V_2 \) be a vertex such that \(e = N^-_{D_1 \vee D_2}(i,j) \) or \(e = N^+_{D_1 \vee D_2}(i,j) \). Now we follow the idea of the proof of Proposition 2 in [20], subsection 3.5, and use the abbreviations \(\mathcal{E}_1^l := \mathcal{E}(N \mathcal{H}_1^l(D_1)) \), \(\mathcal{E}_2^l := \mathcal{E}(N \mathcal{H}_1^l(D_2)) \) and \(\mathcal{E}_v := \mathcal{E}(N \mathcal{H}(D_1 \vee D_2)) \).

In case of \(\mathcal{E}_v = \emptyset \) both \(\mathcal{E}_1^l \) and \(\mathcal{E}_2^l \) are empty, too.

So let \(\mathcal{E}_v \neq \emptyset \). Additionally, for an arbitrary hyperedge \(e \in \mathcal{E}_v \) we define \(\pi_1(e) := \{ i \mid (i,j) \in e \} \) (for \(j \in \pi_2(e) \)) and \(\pi_2(e) := \{ j \mid (i,j) \in e \} \) (for \(i \in \pi_1(e) \)).

In \(\mathcal{N}(D_1 \vee D_2) \) we have three types of hyperedges:
\[A := \{ e \in \mathcal{E}_v \mid \pi_1(e) \subset V_1 \}, \]
\[B := \{ e \in \mathcal{E}_v \mid \pi_2(e) \subset V_2 \} \text{ and } \]
\[C := \{ e \in \mathcal{E}_v \mid \pi_1(e) = V_1 \land \pi_2(e) = V_2 \}. \]

We obtain
\[A = C = \emptyset \text{ if and only if } A_1 = \emptyset, \mathcal{E}_1^l = \emptyset \text{ and } \mathcal{E}_2^l = \{ \pi_2(e) \mid e \in \mathcal{E}_v \}; \]
\[B = C = \emptyset \text{ if and only if } A_2 = \emptyset, \mathcal{E}_2^l = \emptyset \text{ and } \mathcal{E}_1^l = \{ \pi_1(e) \mid e \in \mathcal{E}_v \}; \]
\[C \neq \emptyset \text{ if and only if } A_1 \neq \emptyset \neq A_2. \]

It remains to investigate the case \(C \neq \emptyset \). Here we see that, to determine \(\mathcal{E}_1^l \) and \(\mathcal{E}_2^l \), it suffices to make use of the hyperedges in \(C \):
\[E_1^i = \{ (i \in V_1 \mid \pi_2^i(e) = V_2) \mid e \in C \} \]

\[and \]

\[E_2^j = \{ (j \in V_2 \mid \pi_1^j(e) = V_1) \mid e \in C \}. \]

(Note that in case \(A \neq \emptyset \) we have \(E_1^i = \{ \pi_1^i(e) \mid e \in A \} \) and, analogously, if \(B \neq \emptyset \) it follows \(E_2^j = \{ \pi_2^j(e) \mid e \in B \}. \)

\[\Box \]

Acknowledgements

The authors would like to thank the referees for their valuable suggestions and remarks.

References

doi:10.1016/0166-218X(89)90015-2

doi:10.1051/mmnp/20116602

doi:10.7151/dmgt.1893

doi:10.1016/S0167-5060(08)70396-0

doi:10.1016/j.dam.2014.10.014

doi:10.1016/j.dam.2012.05.005
Niche Hypergraphs of Products of Digraphs

Received 14 March 2017
Revised 13 March 2018
Accepted 13 March 2018