ON THE STAR CHROMATIC INDEX OF GENERALIZED PETERSEN GRAPHS

ENQIANG ZHU1,2 AND ZEHUI SHAO

Institute of Computing Science and Technology
Guangzhou University, Guangzhou 510006, China

\textit{e-mail:} zhuenqiang@gzhu.edu.cn

Abstract

The star k-edge-coloring of graph G is a proper edge coloring using k colors such that no path or cycle of length four is bichromatic. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G, denoted by $\chi'_s(G)$. Let $\text{GCD}(n,k)$ be the greatest common divisor of n and k. In this paper, we give a necessary and sufficient condition of $\chi'_s(P(n,k)) = 4$ for a generalized Petersen graph $P(n,k)$ and show that “almost all” generalized Petersen graphs have a star 5-edge-colorings. Furthermore, for any two integers k and $n (\geq 2k + 1)$ such that $\text{GCD}(n,k) \geq 3$, $P(n,k)$ has a star 5-edge-coloring, with the exception of the case that $\text{GCD}(n,k) = 3$, $k \neq \text{GCD}(n,k)$ and $\frac{n}{3} \equiv 1 \pmod{3}$.

\textbf{Keywords:} star edge-coloring, star chromatic index, generalized Petersen graph.

\textbf{2010 Mathematics Subject Classification:} 05C15.

1. Introduction

All graphs considered in this paper are simple, finite and undirected; for the terminologies and notations not defined here, we follow [3]. For any graph G, we denote by $V(G)$ and $E(G)$ the vertex set and the edge set of G, respectively. For any vertex v in G, a vertex $u \in V(G)$ is said to be a neighbor of v if $uv \in E(G)$. We use $N_G(v)$ to denote the set of neighbors of v. For positive integers n and k, let $\text{GCD}(n,k)$ be the greatest common divisor of n and k.

1This work was supported by the National Natural Science Foundation of China under Grants 61672051, 61872101, and the Natural Science Foundation of Guangdong Province under Grant 2018A0303130115.

2Corresponding author.
A star k-edge-coloring of a graph G is a proper edge-coloring using k colors such that at least three distinct colors are assigned to the edges of every path and cycle of length four. The minimum number k for which G admits a star k-edge-coloring is called the star chromatic index of G and is denoted by $\chi'_s(G)$.

The star edge-coloring was motivated by the vertex version [1, 4, 5, 7], which was first studied by Liu and Deng [8], who gave an upper bound on the star chromatic index of graph with maximum degree at least 7. Dvořák et al. [6] provided some upper and lower bounds for complete graphs. They also considered cubic graphs and showed that the star chromatic index of such graphs lies between 4 and 7.

Since there exist many cubic graphs with a star chromatic index equal to 6, e.g., $K_{3,3}$ or the Heawood graph, and no example of a subcubic graph with star chromatic index 7 is known, Dvořák et al. proposed the following conjecture.

Conjecture 1.1 [6]. If G is a subcubic graph, then $\chi'_s(G) \leq 6$.

Recently, Bezegová et al. [2] established tight upper bounds for trees and subcubic outerplanar graphs; they derived upper bounds for outerplanar graphs. In this paper, we obtain a necessary and sufficient condition of $\chi'_s(P(n,k)) = 4$, and present a construction of a star 5-edge-colorings of $P(n,k)$ for “almost all” values of n and k. Furthermore, we find that the generalized Petersen graph $P(n,k)$ with $n = 3, k = 1$ is the only graph with a star chromatic index of 6 among the investigated graphs. Based on these results, we conjecture that $P(3,1)$ is the unique generalized Petersen graph that admits no star 5-edge-coloring.

2. A Necessary and Sufficient Condition of $\chi'_s(P(n,k)) = 4$

Let n and k be positive integers, $n \geq 2k+1$ and $n \geq 3$. The generalized Petersen graph $P(n,k)$, which was introduced in [9], is a cubic graph with $2n$ vertices, denoted by $\{u_0, u_1, \ldots, u_{n-1}, v_0, v_1, \ldots, v_{n-1}\}$, and all edges are of the form u_iu_{i+1}, u_iv_i, v_iv_{i+k} for $0 \leq i \leq n-1$. In the absence of a special claim, all subscripts of vertices of $P(n,k)$ are taken modulo n in the following.

Lemma 1 [6]. If G is a simple cubic graph, then $\chi'_s(G) = 4$ if and only if G covers the graph of the 3-cube Q_3 (as shown in Figure 1), where a graph H is said to be covered by G if there is a locally bijective graph homomorphism from G to H.

Theorem 2. $\chi'_s(P(n,k)) = 4$ if and only if n is a multiple of 4 and k is an odd number.

Proof. Consider an arbitrary generalized Petersen graph $P(n,k)$ with $n \equiv 0 \pmod{4}$ and $k \equiv 1 \pmod{2}$. We then prove that $P(n,k)$ covers Q_3. Define a
On the Star Chromatic Index of Generalized Petersen Graphs

By the structure of \(V(y) \) of \(\phi \), the three neighbors of \(\phi(\mathbf{u}) \) in \(\mathbf{Q}_3 \) are \(x_i \mod 4, x_{i-1} \mod 4 \) and \(y_i \mod 4 \). Therefore, \(N_{\mathbf{Q}_3}(\phi(\mathbf{u})) = \{ \phi(\mathbf{u}_{i+1}), \phi(\mathbf{u}_{i-1}), \phi(\mathbf{v}_i) \} \). Now, we consider a vertex \(\mathbf{v}_i \) in \(\mathbf{P}(n,k) \). The three neighbors of \(\mathbf{v}_i \) in \(\mathbf{P}(n,k) \) are \(\mathbf{u}_i, \mathbf{v}_{i+k}, \mathbf{v}_{i-k} \), and the three neighbors of \(\phi(\mathbf{v}_i) = y_i \mod 4 \) in \(\mathbf{Q}_3 \) are \(x_i \mod 4, y_{i+1} \mod 4, y_{i-1} \mod 4 \). Observe that \(k \) is an odd number, which implies that \(i + k \mod 4 \neq i - k \mod 4 \), and \(i + k \mod 2 = i - k \mod 2 \neq i \mod 2 \). Therefore, \(\{ \phi(\mathbf{v}_{i+k}), \phi(\mathbf{v}_{i-k}) \} = \{ y_{i+1} \mod 4, y_{i-1} \mod 4 \} \), that is, \(N_{\mathbf{Q}_3}(\phi(\mathbf{v}_i)) = \{ \phi(\mathbf{u}_i), \phi(\mathbf{v}_{i+k}), \phi(\mathbf{v}_{i-k}) \} \). Hence, \(\mathbf{P}(n,k) \) covers \(\mathbf{Q}_3 \), and \(\chi_s(\mathbf{P}(n,k)) = 4 \) by Lemma 1.

For the inverse implication, suppose that \(\mathbf{P}(n,k) \) has a star 4-edge-coloring \(f \). For any vertex \(w \in V(\mathbf{P}(n,k)) \), define a (vertex) 4-coloring \(f' \) of \(\mathbf{P}(n,k) \) by letting \(f'(w) \) be the unique color that is missing on edges incident with \(w \) under \(f \). Then, the three neighbors of any vertex are assigned to different colors under \(f' \). Otherwise, assume that there exist some vertex \(w \) and its two neighbors \(w_1, w_2 \) in \(\mathbf{P}(n,k) \) satisfying \(f'(w) = c_1, f'(w_1) = f'(w_2) = c_2, f(ww_1) = c_3 \) and \(f(ww_2) = c_4 \), where \(\{ c_1, c_2, c_3, c_4 \} = \{ 1, 2, 3, 4 \} \). Then color \(c_4 \) appears on an edge incident with \(w_1 \), and \(c_3 \) appears on an edge incident with \(w_2 \). This creates a bichromatic path or cycle of length 4. Thus, if \(f'(w) = c_1 \), the incident edges and adjacent vertices of \(w \) are \(c_2, c_3, c_4 \) under \(f \) and \(f' \), respectively. There are exactly two possibilities as follows: either the edges incident with \(w \) colored \(c_2, c_3, c_4 \) lead to corresponding vertices \((w's \) neighbors) colored \(c_3, c_4, c_2 \), respectively, or to corresponding vertices colored \(c_4, c_2, c_3 \). These two possibilities are called the local color pattern at \(w \). Then, \(f \) and \(f' \) induce a covering map \(\Phi: \mathbf{P}(n,k) \rightarrow \mathbf{Q}_3 \) such that for each \(w \in V(\mathbf{P}(n,k)) \), \(f'(w) = f'((\Phi(w)) \) (we use \(f' \) also for the vertex coloring of \(\mathbf{Q}_3 \) shown in Figure 1), and \(w \) and \(\Phi(w) \) have the same local color pattern.
Let X_i and Y_i denote the set of vertices of $P(n, k)$ that are mapped to x_i and y_i, respectively, under Φ, $i = 0, 1, 2, 3$. Thus, under f' vertices in X_0 and Y_2 are colored with 1, in X_1 and Y_3 vertices are colored with 2, in X_2 and Y_0 vertices are colored with 3, and in X_3 and Y_1 vertices are colored with 4.

Claim. $|X_i| = |Y_j| = \frac{n}{4}$ for $i, j \in \{0, 1, 2, 3\}$.

Proof. Observe that by the definition of Φ, for every vertex $w \in X_0$, there is exactly one neighbor of w that belongs to Y_0; for every vertex $w' \in Y_0$, there is exactly one neighbor of w' that belongs to X_0. This implies that there is a bijection between X_0 and Y_0. Therefore, $|X_0| = |Y_0|$. Analogously, we have $|X_0| = |X_1| = |X_3|$, $|X_1| = |X_2| = |Y_1|$, $|X_2| = |X_3| = |Y_2|$, and $|X_3| = |Y_3|$. Therefore, $|X_i| = |Y_j|$, and $|V(P(n,k))| = 2n = 8|X_i|$, which indicates that $n = 4|X_i|$, and the claim holds.

Clearly, n is a multiple of 4 by the above claim. In what follows, we show k is an odd number.

From the definition of covering projections, we see that every cycle of length ℓ in $P(n, k)$ is mapped to a cycle of length ℓ' in Q_3 such that $\ell = m\ell'$ for some nonnegative integer m. Therefore, the cycle $C = u_0u_1 \cdots u_nu_0$ is mapped to a cycle C' of length 4 or 8. Note that Q_3 is a bipartite graph that does not contain any cycle with odd number of vertices. In addition, if C' is a 6-cycle, then with a similar analysis as below, the subgraph of Q_3 induced by vertices corresponding to $v_0, v_1, \ldots, v_{n-1}$ consists of two paths with length 1 and a contraction.

If C' is a cycle of length 4, without loss of generality, it is assumed that $C' = x_0x_1y_1y_0x_0$, and then any 4 consecutive vertices on C are mapped to x_0, x_1, y_1, y_0 in one order of $(x_0, x_1, y_1, y_0), (y_1, y_0, x_0, x_1)$ or (y_0, x_0, x_1, y_1). In this way, we can assume the following without the loss of generality

$$
\Phi(u_i) = \begin{cases}
 x_0, i \equiv 0 \pmod{4}, \\
 x_1, i \equiv 1 \pmod{4}, \\
 y_1, i \equiv 2 \pmod{4}, \\
 y_0, i \equiv 3 \pmod{4}.
\end{cases}
$$

Then,

$$
\Phi(v_i) = \begin{cases}
 x_3, i \equiv 0 \pmod{4}, \\
 x_2, i \equiv 1 \pmod{4}, \\
 y_2, i \equiv 2 \pmod{4}, \\
 y_3, i \equiv 3 \pmod{4},
\end{cases}
$$

$x_3y_2 \notin E(Q_3)$ and $x_2y_3 \notin E(Q_3)$, so the vertex mapped to x_3 (or x_2) is not adjacent to the vertex mapped to y_2 or x_3 (or y_3 or x_2) in $P(n, k)$. Therefore, k is an odd number in this case.
If \(C' \) is a cycle of length 8, then \(n \) is a multiple of 8, and \(C' \) is a Hamilton cycle such as \(C' = x_0x_1x_2x_3y_3y_2y_1y_0x_0 \). Clearly, any 8 consecutive vertices on \(C \) are mapped to \(x_0, x_1, x_2, x_3, y_3, y_2, y_1, y_0 \), preserving the adjacent relation in \(C' \).

Without loss of generality, we assume

\[
\Phi(u_i) = \begin{cases}
 x_0, i \equiv 0 \pmod{8}, \\
 x_1, i \equiv 1 \pmod{8}, \\
 x_2, i \equiv 2 \pmod{8}, \\
 x_3, i \equiv 3 \pmod{8}, \\
 y_3, i \equiv 4 \pmod{8}, \\
 y_2, i \equiv 5 \pmod{8}, \\
 y_1, i \equiv 6 \pmod{8}, \\
 y_0, i \equiv 7 \pmod{8}.
\end{cases}
\]

Then, it follows that

\[
\Phi(v_i) = \begin{cases}
 x_3, i \equiv 0 \pmod{8}, \\
 y_1, i \equiv 1 \pmod{8}, \\
 y_2, i \equiv 2 \pmod{8}, \\
 x_0, i \equiv 3 \pmod{8}, \\
 y_0, i \equiv 4 \pmod{8}, \\
 x_2, i \equiv 5 \pmod{8}, \\
 x_1, i \equiv 6 \pmod{8}, \\
 y_3, i \equiv 7 \pmod{8}.
\end{cases}
\]

Since in \(Q_3 \), \(x_3 \) is not adjacent to \(y_2, y_0, x_1 \) or \(x_3 \) itself, it follows that the vertex mapped to \(x_3 \) is not adjacent to the vertex mapped to \(y_2, y_0, x_1 \) or \(x_3 \), in \(P(n,k) \). Therefore, \(k \) is an odd number, which completes the proof.

3. Construction of Star 5-Edge-Colorings for \(P(n,k) \)

A list \(L \) of a graph \(G \) is a mapping from a finite set of colors (positive integers) to each vertex of \(G \). For any \(V' \subseteq V(G) \), \(L(V') \) denotes the set of colors that are assigned to the vertices of \(V' \), i.e., \(L(V') = \{ L(v) \mid v \in V' \} \). A proper edge-coloring \(f \) of \(G \) is called an irlist-edge-coloring if \(f(e) \notin L(u) \cup L(v) \) for any edge \(e(=uv) \in E(G) \). An edge-coloring of \(G \) is strong if any two edges within distance two apart receive different colors.

Let \(C = v_1v_2 \ldots v_nv_1 \) be a cycle of length \(m, m \geq 3 \). We call \(C \) a listed-cycle if \(C \) has a list \(L \) and refer to the colors in \(L(V(C)) \) as listed-colors of \(C \). In particular, if there are exactly two consecutive vertices \(v_i, v_{i+1} \) satisfying \(L(v_i) \) (respectively, \(L(v_{i+1}) \)) \(\neq L(v_j) \) and \(L(v_j) = L(v_{j'}) \) for all \(j, j' \in \{1, 2, \ldots, m\} \setminus \{i, i + 1\} \), then we say \(C \) is quaint and \(v_i \) and \(v_{i+1} \) are the quaint vertices of \(C \), where \(v_{m+1} = v_m \).
Lemma 3. Let $C = v_1v_2 \cdots v_mv_1$ be a cycle, $m \geq 3$ and $m \neq 5$. Then, C has a star 3-edge-coloring. Particularly, when $m \equiv 0 \pmod{3}$, C has a strong edge-coloring using three colors.

Proof. We construct our desired colorings as follows. When $m \equiv 0 \pmod{3}$, we color edges $v_1v_2, v_2v_3, \ldots, v_mv_1$ with three colors 1, 2, 3, repeatedly. When $m \equiv 1 \pmod{3}$, we color edges $v_1v_2, v_2v_3, \ldots, v_{m-1}v_m$ with three colors 1, 2, 3, repeatedly, and v_mv_1 with color 2. When $m \equiv 2 \pmod{3}$, it follows that $m \geq 8$. We color edges $v_1v_2, v_2v_3, \ldots, v_{m-5}v_{m-4}$ with three colors 1, 2, 3, repeatedly, and color $v_{m-4}v_{m-3}, v_{m-3}v_{m-2}, v_{m-2}v_{m-1}, v_{m-1}v_m$ and v_mv_1 with 1, 2, 1, 3 and 2, respectively.

Lemma 4. Let $C = v_1v_2 \cdots v_mv_1$, $m \geq 3$, be a quiant listed-cycle with list L such that $|L(v)| = 2$ for every $v \in V(C)$. Suppose that v_{m-1} and v_m are the two quiant vertices of C. If $L(v_i) \subseteq (L(v_{m-1}) \cup L(v_m))$ for $i \in \{1, 2, \ldots, m-2\}$, then

(1) when $m \equiv 1 \pmod{3}$, C has a strong irlist-edge-coloring using at most two non-listed-colors;

(2) when $m \equiv 2 \pmod{3}$, C has an irlist-edge-coloring using at most two non-listed-colors, for which any three consecutive edges receive different colors except $v_{m-2}v_{m-1}, v_{m-1}v_m$ and v_mv_1.

Proof. Let $L(v_i) = \{c_1, c'_1\}, i \in \{1, 2, \ldots, m-2\}$, and $L(v_{m-1}) = \{c_2, c'_2\}$, $L(v_m) = \{c_3, c'_3\}$. Since $L(v_i) \not\subseteq (L(v_{m-1}) \cup L(v_m))$, there exist three colors, say c_1, c_2 and c_3, such that $c_1 \in L(v_i)$ and $c_2 \not\in L(v_{m-1}) \cup L(v_m)$, $c_2 \in L(v_{m-1})$ and $c_2 \not\in \{c_1, c'_1\}$, and $c_3 \in L(v_m)$ and $c_3 \not\in \{c_1, c'_1\}$. Let c_4, c'_4 be two distinct non-listed-colors. We construct the desired irlist-edge-colorings f of C by the following four rules.

For (1), $m-1 \equiv 0 \pmod{3}$. If $c_2 \in \{c_3, c'_3\}$ and $c_3 \in \{c_2, c'_2\}$, let f be the following: $f(v_{m-1}v_m) = c_1$, $f(v_mv_1) = c_4$, and for $i = 1, 2, \ldots, m-2$, $f(v_{i}v_{i+1}) = c_2$ when $i \equiv 1 \pmod{3}$, $f(v_{i}v_{i+1}) = c'_2$ when $i \equiv 2 \pmod{3}$ and $f(v_{i}v_{i+1}) = c_4$ when $i \equiv 0 \pmod{3}$ (Rule (*1)). Clearly, under f, any two edges within distance two receive distinct colors. Note that $c_1 \not\in L(v_{m-1}) \cup L(v_m)$ and $\{c_2, c_4, c'_4\} \cap \{c_1, c'_1\} = \emptyset$. Therefore, f is a strong irlist-edge-coloring of C using two non-listed-colors c_4, c'_4. If $c_2 \not\in \{c_3, c'_3\}$ or $c_3 \not\in \{c_2, c'_2\}$, then $c_2 \neq c_3$. Let f be the following: $f(v_{m-1}v_m) = c_1$, $f(v_mv_1) = c_2$ (or c_4), and for $i = 1, 2, \ldots, m-2$, $f(v_{i}v_{i+1}) = c_3$ (or c_2) when $i \equiv 1 \pmod{3}$, $f(v_{i}v_{i+1}) = c_4$ (or c_3) when $i \equiv 2 \pmod{3}$ and $f(v_{i}v_{i+1}) = c_2$ (or c_4) when $i \equiv 0 \pmod{3}$ (Rule (*2)). Additionally, under f, any two edges within distance two receive distinct colors. Since $\{c_2, c_3\} \cap \{c_1, c'_1\} = \emptyset$ and $c_1 \not\in L(v_{m-1}) \cup L(v_m)$, it holds that f is a strong irlist-edge-coloring of C using one non-listed-color c_4.

For (2), $m-2 \equiv 0 \pmod{3}$. If $c_2 = c_3$, let f be $f(v_{m-1}v_m) = c_1$, $f(v_mv_1) = c_4$, and for $i = 1, 2, \ldots, m-2$, $f(v_{i}v_{i+1}) = c_2$ when $i \equiv 1 \pmod{3}$, $f(v_{i}v_{i+1}) = c'_4$
when $i \equiv 2 \pmod{3}$ and $f(u_ivi_{i+1}) = c_4$ when $i \equiv 0 \pmod{3}$ (Rule (⋆3)). By the definition of f, it has that $f(e) \neq f(e')$ for any $e, e' \in (E(C) \setminus \{v_{m_2}v_{m_1}, v_1v_{i+1}\})$ such that the distance between them is at most two. Additionally, $c_1 \notin L(v_{m_1}) \cup L(v_{m_2})$ and $\{c_2, c_4, c'_4\} \cap \{c_1, c'_1\} = \emptyset$. Therefore, f is the desired irlist-edge-coloring of C using two non-listed-colors c_4, c'_4.

If $c_2 \neq c_3$, let f be the following: $f(v_{m_2}v_{m_1}) = c_1, f(v_1v_{i+1}) = c_4$, and for $i = 1, 2, \ldots, m - 2$, $f(v_1v_{i+1}) = c_2$ when $i \equiv 1 \pmod{3}$, $f(v_1v_{i+1}) = c_3$ when $i \equiv 2 \pmod{3}$ and $f(v_1v_{i+1}) = c_4$ when $i \equiv 0 \pmod{3}$ (Rule (⋆4)). Analogously, f is the desired irlist-edge-coloring of C using one non-listed-colors c_4.

Theorem 5. Let ℓ be the greatest common divisor of n and k. When $\ell \geq 3$, with the exception of $\ell = 3$, $k \neq \ell$, and $\frac{n}{\ell} \equiv 1 \pmod{3}$, $P(n,k)$ has a star 5-edge-coloring.

Proof. Let $i_j = i + (j - 1)k$ for $j = 1, 2, \ldots, p = \frac{n}{\ell}$. Then, by the definition, the subgraph of $P(n,k)$ induced by $\{v_0, v_1, \ldots, v_{n-1}\}$ is the union of ℓ vertex-disjoint p-cycles, denoted by $C_i = v_{i_1}v_{i_2} \cdots v_{i_p}v_{i_1}$, $i = 0, 1, \ldots, \ell - 1$. Let $C = u_0u_1 \cdots u_{n-1}u_0$.

We first partition C into five edge-disjoint paths as follows.

Path-A. $u_0u_1u_2, \ldots, u_{n-2k-1}u_{n-2k}$.

Path-B. $u_{n-2k}u_{n-2k+1}u_{n-2k+2} \cdots u_{n-2k+\ell-1}u_{n-2k+\ell}$.

Path-C. $u_{n-2k+\ell}u_{n-2k+\ell+1}u_{n-2k+\ell+2} \cdots u_{n-1}u_{n-k}$.

Path-D. $u_{n-k}u_{n-k+1}u_{n-k+2} \cdots u_{n-k+\ell-1}u_{n-k+\ell}$.

Path-E. $u_{n-k+\ell}u_{n-k+\ell+1}u_{n-k+\ell+2} \cdots u_{n-1}u_0$.

Note that the length of each path defined above is a multiple of ℓ. Both Path-B and Path-D contain exactly ℓ edges, and when $k = \ell$, Path-C and Path-E are empty.

We now color edges of C by coloring edges of Paths-A, C, E, B and D, respectively, according to the coloring rules indicated in Table 1. We distinguish 11 cases (each row denotes one case) based on values of p and ℓ. Each column contains 11 coloring rules of the corresponding paths (for example, the second column corresponds to Path-A, Path-C and Path-E). Each rule is a cyclic coloring of ℓ colors. When we use the rule to color the edges of the corresponding path, say $P = u_xu_{x+1} \cdots u_{x+m}$, we first partition the path into q small paths of length $\ell(\geq 3)$, P_1, P_2, \ldots, P_q, where $P_1 = u_xu_{x+1} \cdots u_{x+\ell}, P_2 = u_{x+\ell+1}u_{x+\ell+2} \cdots u_{x+2\ell+1}, \ldots, P_q = u_{x+m-\ell}u_{x+m-\ell+1} \cdots u_{x+m}$; then, for each P_i, we color it from the first edge to the last edge one by one consecutively, according to the rule. For example, in the case of $p \equiv 1 \pmod{3}$ and $\ell \equiv 1 \pmod{3}$, if $P \in \{\text{Path-A, Path-C, Path-E}\}$, then we color P_i (P_i is a subgraph of P) with 1, 2, 3, 1, 2, 3, and 4 when $|E(P_i)| = 7$ and with 1, 2, 3, and 4 when $|E(P_i)| = 4$;
Table 1. Coloring rules of edges of C.

<table>
<thead>
<tr>
<th>values of p and ℓ</th>
<th>Path-A, Path-C, Path-E</th>
<th>Path-B</th>
<th>Path-D</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p \equiv 0 \pmod{3}$ and $\ell \equiv 0 \pmod{3}$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3$, repeatedly</td>
<td>ℓ elements</td>
<td>ℓ elements</td>
</tr>
<tr>
<td>$p \equiv 0 \pmod{3}$ and $\ell \equiv 1 \pmod{3}$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3, 1, 2, 3, 4$, repeatedly</td>
<td>ℓ elements</td>
<td>ℓ elements</td>
</tr>
<tr>
<td>$p \equiv 0 \pmod{3}$ and $\ell \equiv 2 \pmod{3}$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3, 1, 2, 3, 4, 5$, repeatedly</td>
<td>ℓ elements</td>
<td>ℓ elements</td>
</tr>
<tr>
<td>$p \equiv 1 \pmod{3}$ and $\ell \equiv 0 \pmod{3}$</td>
<td>$\ell = k$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3$, repeatedly</td>
<td>by $4, 1, 3, \ldots, 4, 1, 3$</td>
</tr>
<tr>
<td>$p \equiv 1 \pmod{3}$ and $\ell \equiv 0 \pmod{3}$</td>
<td>$\ell \neq k$ and $\ell \geq 6$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3$, repeatedly</td>
<td>by $4, 1, 3, \ldots, 4, 1, 3, 2, 4, 3$</td>
</tr>
<tr>
<td>$p \equiv 1 \pmod{3}$ and $\ell \equiv 1 \pmod{3}$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3, 1, 2, 3, 4, 5$, repeatedly</td>
<td>ℓ elements</td>
<td>by $2, 3, 1, \ldots, 2, 3, 1, 2, 3, 5, 4$</td>
</tr>
<tr>
<td>$p \equiv 1 \pmod{3}$, $\ell \equiv 2 \pmod{3}$</td>
<td>$\ell \geq 8$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3, 1, 2, 3, 4, 5$, repeatedly</td>
<td>by $3, 2, 4, \ldots, 3, 2, 4, 1, 3, 4, 2, 5$</td>
</tr>
<tr>
<td>$p \equiv 2 \pmod{3}$ and $\ell \equiv 0 \pmod{3}$</td>
<td>$\ell = 5$</td>
<td>by $1, 2, 3, 4, 5$, repeatedly</td>
<td>by $1, 3, 4, 5, 3$</td>
</tr>
<tr>
<td>$p \equiv 2 \pmod{3}$ and $\ell \equiv 1 \pmod{3}$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3, 1, 2, 3, 4$, repeatedly</td>
<td>ℓ elements</td>
<td>by $2, 3, 5, \ldots, 2, 3, 5, 2, 3, 5, 4$</td>
</tr>
<tr>
<td>$p \equiv 2 \pmod{3}$ and $\ell \equiv 2 \pmod{3}$</td>
<td>by $1, 2, 3, \ldots, 1, 2, 3, 1, 2, 3, 4, 5$, repeatedly</td>
<td>ℓ elements</td>
<td>by $2, 4, 1, \ldots, 2, 4, 1, 2, 4, 1, 3, 5$</td>
</tr>
</tbody>
</table>
if $P \in \{\text{Path-B}, \text{Path-D}\}$, then we color P_i with $2, 3, 1, 2, 3, 5$ and 4 when $|E(P_i)| = 7$ and with $2, 3, 5$, and 4 when $|E(P_i)| = 4$.

The resulting coloring of C is denoted by f. One can readily check that f is a strong edge-coloring. We now assign list L to C_i for $i = 0, 1, \ldots, \ell - 1$. Let

$$L(v_i) = \{f(u_iu_{i+1}), f(u_iu_{i-1})\}, \quad i = 0, 1, \ldots, n - 1.$$

Then, we obtain ℓ listed-cycles C_i of length $p = \frac{n}{\ell}$, $i = 0, 1, \ldots, \ell - 1$.

Case 1. When $p \equiv 0 \pmod{3}$, then $|L(V(C_i))| = 2$ (since k is a multiple of ℓ) for each $i \in \{0, 1, \ldots, \ell - 1\}$. Observe that $|V(C_i)| = p \equiv 0 \pmod{3}$. Hence, by Lemma 3, C_i has a strong list-edge-coloring with $\{1, 2, 3, 4, 5\} \setminus \{x, y\}$, where x, y are the two listed-colors of C_i.

Case 2. When $p \equiv 1 \pmod{3}$, we further consider the following three subcases.

Case 2.1. $\ell \equiv 0 \pmod{3}$. First, $\ell = k$. Then, C_i is a listed-cycle such that (1) $L(v_{ij}) = \{1, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{3, 4\}$; or (2) $L(v_{ij}) = \{1, 2\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{4, 5\}$; or (3) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{1, 3\}$; or (4) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 3\}$; (5) $L(v_{ij}) = \{1, 2\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 4\}$; (6) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{3, 4\}$.

Case 2.2. $\ell \equiv 1 \pmod{3}$. Then, for $j \in \{1, 2, \ldots, p - 2\}$, it follows that (1) $L(v_{ij}) = \{1, 4\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 4\}$; or (2) $L(v_{ij}) = \{1, 2\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 3\}$; or (3) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{1, 3\}$; or (4) $L(v_{ij}) = \{1, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{1, 2\}$; or (5) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{3, 5\}$; or (6) $L(v_{ij}) = \{3, 4\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{4, 5\}$.

Case 2.3. $\ell \equiv 2 \pmod{3}$. First, when $\ell \geq 8$, it has that for $j \in \{1, 2, \ldots, p - 2\}$, (1) $L(v_{ij}) = \{1, 5\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{3, 5\}$; or (2) $L(v_{ij}) = \{1, 2\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 3\}$; or (3) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{1, 3\}$; or (4) $L(v_{ij}) = \{1, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{3, 4\}$; or (5) $L(v_{ij}) = \{1, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{1, 4\}$; or (6) $L(v_{ij}) = \{1, 2\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{1, 3\}$; or (7) $L(v_{ij}) = \{2, 3\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{3, 4\}$; or (8) $L(v_{ij}) = \{3, 4\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 4\}$; or (9) $L(v_{ij}) = \{4, 5\}$ and $L(v_{ip-1}) = L(v_{ip}) = \{2, 5\}$.

Second, when $\ell = 5$, C_i is a listed-cycle such that (1) $L(v_{ij}) = \{1, 5\}$ for $j \in \{1, 2, \ldots, p\} \setminus \{j', j'+1\}$, and $L(v_{ij'}) = L(v_{ij'+1}) = \{1, 3\}$, where $j', j'+1$ are
read model p; or (2) $L(v_i) = \{1, 2\}$ and $L(v_{p-1}) = \{1, 3\}, L(v_p) = \{1, 4\}$; or (3) $L(v_i) = \{2, 3\}$ and $L(v_{p-1}) = \{3, 4\}, L(v_p) = \{4, 5\}$; or (4) $L(v_i) = \{3, 4\}$ and $L(v_{p-1}) = \{4, 5\}$; or (5) $L(v_i) = \{3, 5\}$ and $L(v_{p-1}) = \{3, 5\}$, where $j \in \{1, 2, \ldots, p-2\}$ in (2)–(5).

Obviously, in each of the above subcases, C_i is a quaint listed-cycle satisfying the condition of Lemma 4(1). Therefore, C_i has a strong irlist-edge-coloring using some colors in $\{1, 2, 3, 4, 5\}$ by Rules (\star1) and (\star2).

Case 3. When $p \equiv 2 \pmod{3}$, there are also three subcases that need to deal with.

Case 3.1. $\ell \equiv 0 \pmod{3}$. Then, one of the following holds. For $j \in \{1, 2, \ldots, p-2\}$, (1) $L(v_i) = \{1, 3\}$ and $L(v_{p-1}) = \{3, 4\};$ (2) $L(v_i) = \{1, 2\}$ and $L(v_{p-1}) = L(v_p) = \{4, 5\};$ (3) $L(v_i) = \{2, 3\}$ and $L(v_{p-1}) = L(v_p) = \{3, 5\}.$

Case 3.2. $\ell \equiv 1 \pmod{3}$. Then, for $j \in \{1, 2, \ldots, p-2\}$, it has that (1) $L(v_i) = \{1, 4\}$ and $L(v_{p-1}) = L(v_p) = \{2, 4\};$ or (2) $L(v_i) = \{1, 2\}$ and $L(v_{p-1}) = L(v_p) = \{2, 3\};$ or (3) $L(v_i) = \{2, 3\}$ and $L(v_{p-1}) = L(v_p) = \{1, 4\};$ or (4) $L(v_i) = \{1, 3\}$ and $L(v_{p-1}) = L(v_p) = \{2, 5\};$ or (5) $L(v_i) = \{3, 4\}$ and $L(v_{p-1}) = L(v_p) = \{4, 5\}.$

Case 3.3. $\ell \equiv 2 \pmod{3}$. Then, for $j \in \{1, 2, \ldots, p-2\}$, one of the following situations holds. (1) $L(v_i) = \{1, 5\}$ and $L(v_{p-1}) = L(v_p) = \{2, 5\};$ (2) $L(v_i) = \{1, 2\}$ and $L(v_{p-1}) = L(v_p) = \{2, 4\};$ (3) $L(v_i) = \{2, 3\}$ and $L(v_{p-1}) = L(v_p) = \{1, 4\};$ (4) $L(v_i) = \{1, 3\}$ and $L(v_{p-1}) = L(v_p) = \{1, 2\};$ (5) $L(v_i) = \{3, 4\}$ and $L(v_{p-1}) = L(v_p) = \{1, 3\};$ (6) $L(v_i) = \{4, 5\}$ and $L(v_{p-1}) = L(v_p) = \{3, 5\}.$

One can readily check that in Cases 3.1–3.3, C_i is also a quaint listed-cycle. Therefore, C_i has a strong irlist-edge-coloring using colors 1, 2, 3, 4, and 5 by Rules (\star3) and (\star4) in Lemma 4(2).

Until now, we have colored edges of C_i, $i = 0, 1, \ldots, \ell - 1$. We denote the resulting coloring of C_i by f'. Obviously, for each $i \in \{0, 1, \ldots, n-1\}$, it has that $|\{f(u_i u_{i+1}), f(u_i u_{i-1}), f'(v_i v_{i+1}), f'(v_i v_{i-1})\}| = 4$. We then color each $u_i v_i$ with the unique color $\{1, 2, 3, 4, 5\} \setminus \{f(u_i u_{i+1}), f(u_i u_{i-1}), f'(v_i v_{i+1}), f'(v_i v_{i-1})\}$. This completes the edge-coloring of $P(n, k)$. We now show that such the coloring is a star 5-edge-coloring.

If not, let P be a bichromatic 4-path. Since f is a strong edge-coloring of C_i, and $\{f(u_i u_{i+1}), f(u_i u_{i-1})\} \cap \{f'(v_i v_{i+1}), f'(v_i v_{i-1})\} = \emptyset$ for any $i \in \{0, 1, \ldots, n-1\}$, P does not contain any edges of C. In addition, by Lemma 4, any three edges of C_i receive different colors under f', except $v_{ip-2}v_{ip-1}, v_{ip-1}v_p, v_pv_{ip}$. Therefore, $P = v_{p-2}v_{p-1}v_pv_iu_i$ or $P = u_{ip-2}v_{ip-2}v_{ip-1}v_pv_i$. However, by Lemma 4 Rule (\star3) and (\star4), $f'(v_{ip-1}v_p)$ is a listed-color not in $L(v_{ip})$. Then, by the coloring rule of u_iv_i, $i = 0, 1, \ldots, n - 1$, it has that $f'(v_{ip-1}v_p) \neq f(v_i u_i)$.
and \(f'(v_{ip-1}v_{ip}) \neq f(u_{ip-2}v_{ip-2}) \). Therefore, \(P \) is not bichromatic, and it is a contradiction.

Lemma 6. Let \(P(n,k) \) be a generalized Petersen graph such that \(\text{GCD}(n,k) = 1 \), \(n \equiv 0 \pmod{2} \) and \(k \equiv 1 \pmod{2} \). Then, \(P(n,k) \) has a star 5-edge-coloring.

Proof. It is sufficient to construct a star 5-edge-coloring for \(P(n,k) \) in this case. Let \(C = u_0u_1 \cdots u_{n-1}u_0 \) be the cycle induced by \(\{u_0,u_1,\ldots,u_{n-1}\} \). Since \(\text{GCD}(n,k) = 1 \), i.e., \(n, k \) are coprime, the subgraph induced by \(\{v_0,v_1,\ldots,v_{n-1}\} \) is also a cycle, denoted by \(C' \). Since \(n \equiv 0 \pmod{2} \), it follows that \(n \not\equiv 5 \) and by Lemma 3 both \(C \) and \(C' \) have a star 3-edge-coloring. Let \(f_1 \) and \(f_2 \) be the two star edge-colorings of \(C \) and \(C' \), respectively, using colors 1, 2, and 3. Then, we color \(u_iv_i \) with 4 when \(i \equiv 0 \pmod{2} \) and with 5 when \(i \equiv 1 \pmod{2} \), for \(i = 0,1,\ldots,n-1 \). Denote by \(f_3 \) the resulting coloring, and let \(f = f_1 \cup f_2 \cup f_3 \). We now show that \(f \) is a star edge-coloring. On the contrary, we assume there is a bichromatic 4-path \(P \). Let \(c_1 \) and \(c_2 \) be the two colors appearing on the edges of \(P \). By \(f_1 \) and \(f_2 \), it is by no means that \(\{c_1,c_2\} \subset \{1,2,3\} \). In addition, since \((n,k) = 1 \), \(n \equiv 0 \pmod{2} \) and \(k \equiv 1 \pmod{2} \), \(f_3(u_iv_i) \neq f_3(u_{i+1}v_{i+1}) \) and \(f_3(u_{n-k}v_{n-k}) \neq f_3(u_{n-k+1}v_{n-k+1}) \). Therefore, together with \(f_3 \), \(\{c_1,c_2\} \cap \{4,5\} = \emptyset \). Hence, \(P \) is not bichromatic and is a contradiction.

Theorem 7. \(P(n,1), n \geq 5 \), has a star 5-edge-coloring.

Proof. By Lemma 6, we only need to consider the case \(n \equiv 1 \pmod{2} \). In this case, we can also obtain a star 5-edge-coloring by a slight change of the coloring in Lemma 6. Let \(P_1 = u_{n-1}u_0u_1 \cdots u_{n-2} \) and \(P_2 = v_0v_1 \cdots v_{n-1} \) be two paths. We now define a star 3-edge-coloring \(f_1 \) of \(P_1 \) as follows. First, let \(f_1(u_{n-1}u_0) = 2, f_1(u_0u_1) = f_1(u_{n-3}u_{n-2}) = 3 \). Then, color edges of sub-path \(u_1u_2 \cdots u_{n-3} \) as follows: when \(n = 5 \), let \(f_1(u_1u_2) = 1 \); when \(n \geq 7 \), color edges \(u_1u_2u_3, \ldots, u_{n-4}u_{n-3} \) by 1, 3, and 2, repeatedly, if \(n - 4 \equiv 0 \pmod{3} \); by 1, 3, 2, \ldots, 1, 3, 2, 1 and 2 if \(n - 4 \equiv 2 \pmod{3} \). Obviously, \(P_2 \) also has a star 3-edge-coloring, say \(f_2 \). By color permutation, we can assume \(f_2(v_{n-3}v_{n-2}) = 3 \), and \(f_2(v_{n-2}v_{n-1}) = 2 \). Based on \(f_1 \) and \(f_2 \), we color \(u_{n-2}u_{n-1} \) with 4 and \(v_{n-1}v_0 \) with 5. And for any \(i \in \{0,1,\ldots,n-2\} \), color \(u_iv_i \) with 4 for \(i \equiv 0 \pmod{2} \) and with 5 for \(i \equiv 1 \pmod{2} \), and finally, color \(u_{n-1}v_{n-1} \) with 1. Until now, we typically obtain an edge-coloring of \(P(n,1) \). One can easily see that such the coloring is a star 5-edge-coloring.

Note that when \(n = 3 \), Theorem 7 by no means hold. However, by a coloring \(P(n,3) \) with an exhausting search, we can see that \(P(n,3) \) does not contain any star 5-edge-coloring.
Lemma 8. Let $P(n, k)$ be a generalized Petersen graph such that $(n, k) = 2$. Let $C_0 = v_0v_k\cdots v_{(n-1)k}v_0$. If C_0 has a star 3-edge-coloring f such that $C_f(v_i) \neq C_f(v_{i+1})$ for any $i \in \{0, 1, \ldots, n-1\}$ and $i \equiv 0 \pmod{2}$, then $P(n, k)$ has a star 5-edge-coloring, where $C_f(v_i) = \{f(v_{i+k}), f(v_{i-k})\}$.

Proof. Since GCD$(n, k) = 2$, it has that n is an even number. Let f be a star 3-edge-coloring of C_0, such that $C_f(v_i) \neq C_f(v_{i+1})$ for any $i \equiv 0 \pmod{2}$ and $i \in \{0, 1, \ldots, n-1\}$. We now color $C_1 = v_1v_{1+k}\cdots v_{1+(\frac{n}{2}-1)k}v_1$ with the same pattern as C_0, that is, color each edge v_jv_{j+k} with the color $f(v_{j-1}v_{j+k-1})$, for $j \equiv 1 \pmod{2}$ and $j \in \{0, 1, \ldots, n-1\}$. Denote the resulting coloring of C_0 and C_1 also by f. Then, $C_f(v_i) = C_f(v_{i+1})$ for any $i = 0, 2, 4, \ldots, n-2$. Based on f, for any $i \in \{0, 1, \ldots, n-1\}$, we color u_iu_{i+1} with the color in $\{1, 2, 3\} \setminus C_f(v_i)$ when $i \equiv 0 \pmod{2}$, and with 4 when $i \equiv 1 \pmod{2}$. Finally, color u_iv_i with 5, $i = 0, 1, \ldots, n-1$. Obviously, such the coloring is a star 5-edge-coloring.

Theorem 9. $P(6m, 2)$ has a star 5-edge-coloring, where $m \geq 1$ is a positive number.

Proof. Let $n = 6m$, and $C_0 = v_0v_k\cdots v_{(n-1)k}v_0$. Obviously, C_0 has a star 3-edge-coloring f such that $C_f(v_i) \neq C_f(v_{i+1})$ for any $i \in \{0, 1, \ldots, n-1\}$ and $i \equiv 0 \pmod{2}$ (since $\frac{n}{2} = 3m \equiv 0 \pmod{3}$, we can color edges of C_0 with 1, 2, 3, repeated). Therefore, by Lemma 8, $P(6m, 2)$ has a star 5-edge-coloring.

In this article, we determine the star chromatic index of generalized Petersen graphs $P(n, k)$ for “almost all” values of n and k. By using more involved analysis, we can also prove $P(n, k)$ has a star 5-edge-coloring for some remaining values of n and k, particularly, for the case $\ell = 3$, $k \neq \ell$, and $\frac{n}{2} \equiv 1 \pmod{3}$. However, we prefer to present a short or uniform proof. In addition, we would like to stress that only one generalized Petersen graph, i.e., $P(3, 1)$, is found to have the star chromatic index 6. Therefore, we conjecture that $P(n, k)$ has a star 5-edge-coloring for any $n \geq 4$.

References

Received 24 October 2017
Revised 27 November 2018
Accepted 28 November 2018