DECOMPOSITIONS OF MULTIGRAPHS INTO PARTS WITH TWO EDGES

JAROSLAV IVANČO

Department of Geometry and Algebra
Safárik University
Jesenná 5, 041 54 Košice, Slovakia
e-mail: ivanco@duro.upjs.sk

MARIAUSZ MESZKA AND ZDZISLAW SKUPIEŃ

Faculty of Applied Mathematics AGH
University of Mining and Metallurgy
al. Mickiewicza 30, 30–059 Kraków, Poland
e-mail: grmeszka@cyf-kr.edu.pl
e-mail: skupien@uci.agh.edu.pl

Abstract

Given a family F of multigraphs without isolated vertices, a multigraph M is called F-decomposable if M is an edge disjoint union of multigraphs each of which is isomorphic to a member of F. We present necessary and sufficient conditions for the existence of such decompositions if F comprises two multigraphs from the set consisting of a 2-cycle, a 2-matching and a path with two edges.

Keywords: edge decomposition, multigraph, line graph, 1-factor.

2000 Mathematics Subject Classification: 05C70.

1. Introduction

All multigraphs considered in what follows are loopless. Given a family F of multigraphs without isolated vertices, an F-decomposition of a multigraph M is a collection of submultigraphs which partition the edge set $E(M)$ of M...
and are all isomorphic to members of \mathcal{F}. If such a decomposition exists, M is called \mathcal{F}-decomposable; and also H-decomposable if H is the only member of \mathcal{F}. Let $\mathcal{F} = \{H_1, H_2, \ldots, H_t\}$. By an H_i-edge in an \mathcal{F}-decomposition of M we mean an edge belonging to any decomposition part isomorphic to H_i for some $i = 1, 2, \ldots, t$.

If M is a multigraph, we write $M = (V, E)$ where $V = V(M)$ and $E = E(M)$ stand for the vertex set and edge set of M, respectively. Cardinalities of those sets, denoted by $v(M)$ and $e(M)$, are called the order and size of M, respectively. For $S \subset V(M)$, $M[S]$ denotes the submultigraph of M induced by S. The number of edges incident to a vertex x in M, denoted by $\text{val}_M(x)$, is called the valency of x, whilst the number of neighbours of x in M, denoted by $\text{deg}_M(x)$, is called the degree of x. As usual $\Delta(M)$ stands for the maximum valency among vertices of M. For any two vertices x, y of M, let $p_M(x, y)$ denote the number of edges joining x and y. We call $p_M(x, y)$ the multiplicity of an edge xy in M. Edges joining the same vertices are called parallel edges (if they are distinct).

The aim of our paper is to provide necessary and sufficient conditions for a multigraph M to be $\{H_1, H_2\}$-decomposable, where H_1, H_2 are any two multigraphs out of C_2 (2-cycle), P_3 (path with two edges), and $2K_2$ (2-matching). Obviously, if M is H_i-decomposable for some $i = 1, 2$, then M is $\{H_1, H_2\}$-decomposable. Therefore the following known results are quoted.

Theorem 1 (Skupień [7], see [4] for a proof). A multigraph M is $2K_2$-decomposable iff its size $e(M)$ is even, $\Delta(M) \leq \frac{e(M)}{2}$ and $e(M[\{x, y, z\}]) \leq \frac{e(M)}{2}$ for all $\{x, y, z\} \subset V(M)$.

If M is a simple graph then the very last condition in Theorem 1 means that $M \neq K_3 \cup K_2$, cf. Caro [2].

Proposition 2. A multigraph M is C_2-decomposable iff $p_M(x, y) \equiv 0 \pmod{2}$ for all $x, y \in V(M)$.

Theorem 3 [5, 3]. A simple graph G is P_3-decomposable iff each component of G is of even size.

Corollary 4. A graph G is $\{P_3, 2K_2\}$-decomposable iff the size $e(G)$ of G is even.
Given a multigraph M, define the \ast-line graph of M, denoted by $L^\ast(M)$, to be the graph with vertex set $V(L^\ast(M)) = E(M)$ and edge set $E(L^\ast(M)) = \{w_1w_2 : w_1, w_2 \in E(M), |w_1 \cap w_2| = 1\}$. Evidently, $L^\ast(M)$ is obtainable from the ordinary line graph $L(M)$ by removal of all edges which represent multiple adjacency of edges in the root multigraph M. In other words, the operator L^\ast represents doubly adjacent edges in M as if they were nonadjacent in M.

Theorem 5 [4]. Given a multigraph M, the following statements are equivalent.

(i) M is P_3-decomposable.

(ii) $L^\ast(M)$ has a 1-factor.

Therefore checking whether a multigraph M is P_3-decomposable can be done in polynomial time $O(e(M)^{2.5})$, cf [4]. Some original sufficient conditions for M to be P_3-decomposable may be found in [1, 4].

2. $\{C_2, P_3\}$-Decomposition

Theorem 6. Let M be a multigraph and let $L(M)$ be the line graph of M. The following statements are equivalent.

(i) M is $\{C_2, P_3\}$-decomposable.

(ii) Each component of M has an even number of edges.

(iii) Each component of $L(M)$ has an even number of vertices.

(iv) $L(M)$ has a 1-factor.

Proof. Each of the implications in the cycle (i) \Rightarrow (ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (i) is obvious or well-known. Well-known is the implication (iii) \Rightarrow (iv) following from the result of Sumner [8] and Las Vergnas [6] which says that every connected claw-free graph of even order has a 1-factor.

3. $\{P_3, 2K_2\}$-Decomposition

Theorem 7. Let M be a multigraph. Let $L^\ast(M)$ and $\overline{L(M)}$ be the \ast-line graph and the complement of the line graph $L(M)$ of M, respectively. The following statements are mutually equivalent.
(i) M is $\{P_3, 2K_2\}$-decomposable.

(ii) M has an even number, $e(M)$, of edges and the multiplicity of any edge does not exceed $e(M)/2$.

(iii) The graph $\tilde{L} := L^*(M) \cup \overline{L(M)}$ has a 1-factor.

Proof. Implication (i) \Rightarrow (ii) is true because $e(M)/2$ is the number of parts and parallel edges must be in different parts of a decomposition. Implication (ii) \Rightarrow (iii) is true because the order $v(\tilde{L}) = e(M)$ is even and the minimum degree $\delta(\tilde{L}) \geq \frac{1}{2}v(\tilde{L})$, whence, by Dirac’s theorem, the graph \tilde{L} has a Hamiltonian cycle. Implication (iii) \Rightarrow (i) is obvious.

4. $\{C_2, 2K_2\}$-Decomposition

Given a multigraph M, let $G(M)$ denote the graph induced by the edge set $E(G(M)) := \{xy : p_M(x, y) \equiv 1 \pmod{2}\}$. Evidently, a graph isomorphic to $G(M)$ is obtainable from M both by removing all edges of the maximal family of pairwise edge-disjoint copies of C_2 and by removing all resulting isolated vertices. Thus $2K_2$-edges in any $\{C_2, 2K_2\}$-decomposition of M induce a multigraph M' containing a subgraph isomorphic to $G(M)$ (in fact, $p_M'(x, y) \geq 1$ whenever $xy \in E(G(M))$).

If $E' \subset E(M)$, $f \in E(M)$, and $w \in V(M)$ then $M - E'$ (or $M - f$) is the spanning submultigraph of M obtained by removing the edges only (E' or f), while $M - w$ is obtained from M by removing the vertex w together with all edges incident to w.

![Figure 1. Eight families of multigraphs M.](image)

<table>
<thead>
<tr>
<th>edge</th>
<th>heavy</th>
<th>thin</th>
<th>doubled</th>
<th>dotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>multiplicity</td>
<td>odd</td>
<td>1</td>
<td>even ≥ 2</td>
<td>even ≥ 0</td>
</tr>
</tbody>
</table>
Theorem 8. Let M be a multigraph and let $\overline{L^*(M)}$ be the complement of the $*$-line graph $L^*(M)$ of M. The following three statements are mutually equivalent.

(i) M is $\{C_2, 2K_2\}$-decomposable.
(ii) $\overline{L^*(M)}$ has a 1-factor.
(iii) Each of the following five conditions holds:
 (0) $e(M)$ is even,
 (1) $\text{val}_M(x) + \deg_{G(M)}(x) \leq e(M)$ for every $x \in V(M)$,
 (2) if $xy \in E(G(M))$ then $\text{val}_M(x) + \text{val}_M(y) - p_M(x, y) < e(M)$,
 (3) if $yx, xz \in E(G(M))$ then $1 + \text{val}_M(x) + p_M(y, z) < e(M)$,
 (4) M is different from each of the (forbidden) multigraphs shown in Figure 1.

A vertex y is called an odd neighbour of a vertex x if M has an edge xy whose multiplicity $p_M(x, y)$ is odd.

Proposition 9. The following condition (i') is an equivalent of (i) above for $i = 1, 2, 3$.

$(1')$ The number of odd neighbours of any vertex x does not exceed the number of all edges nonincident to x;
$(2')$ There is no edge xy adjacent to every other edge and with odd multiplicity $p_M(x, y)$;
$(3')$ There are no two adjacent edges yx, xz both with odd multiplicities and such that among the remaining edges at most one is not a neighbour of both yx and xz.

Proposition 10. Each multigraph depicted in Figure 1 satisfies all conditions (0)–(3) and is not $\{C_2, 2K_2\}$-decomposable.

The following converse result is of importance.

Lemma 11. Every multigraph M which satisfies conditions (0)–(3), has $e(G(M)) \leq 4$, and is not $\{C_2, 2K_2\}$-decomposable is depicted in Figure 1.
Proof. Suppose that M is a counterexample. Since M is not C_2-decomposable, $e(G(M)) > 0$. Due to (0), $G(M)$ has two or four edges. Consider two main cases A and B.

A. $e(G(M)) = 4$. As $G(M)$ is not $2K_2$-decomposable, either $G(M)$ contains a triangle or otherwise $\Delta(G(M)) \geq 3$. Consider the following subcases.

A1. $\Delta(G(M)) = 4$. Then $G(M)$ is a star with a central vertex w and $M - w$ is C_2-decomposable. Moreover, $e(M - w) \geq 4$ by (1). Since M satisfies (2), not all edges of $M - w$ are incident to one vertex of $G(M)$. On the other hand, each edge of $M - w$ has both endvertices in $G(M)$ as well as there is no $2K_2$ in $M - w$ because otherwise $G(M)$ together with any two pairs of parallel edges of $M - w$ which do not intersect at $G(M)$ is $2K_2$-decomposable. Consequently, edges of $M - w$ induce a “multiple triangle” on three hanging vertices of $G(M)$. Therefore no parallel edges can join w to a vertex off the “triangle”. Hence M appears in Figure 1, a contradiction.

A2. $\Delta(G(M)) = 3$ and $G(M)$ contains no triangle. Let w be the degree-3 central vertex of the star of $G(M)$, let f and wx_i with $i = 1, 2, 3$ be the four edges of $G(M)$ with notation such that the edge f is incident to x_3 if $G(M)$ is connected. Then $e(M - w) > 2$ by (1). It is easily seen that each pair of parallel edges of $M - w$ has a vertex in $\{x_1, x_2, x_3\}$. Hence the multiplicity of f is one if f is not incident to x_3. The multiplicity of f is one, too, otherwise. Namely, by (2), M has a pair of parallel edges which are nonadjacent to the edge wx_3 of $G(M)$. These are $x_1 - x_2$ edges because otherwise the pair together with $G(M)$ is $2K_2$-decomposable (the edge f being matched with wx_i if x_i is an endvertex of the pair, $i \neq 3$). Now, clearly, the multiplicity of f is one. Consequently, by (3), each vertex x_i is incident to parallel edges of $M - w$; moreover, one can see that all parallel edges of $M - w$ are of the form x_ix_j only. Similarly, $\deg_M(w) = 3$ only, whence M appears in Figure 1, a contradiction.

A3. $G(M)$ contains a triangle. Let the vertices of the triangle be denoted by $x_i, i = 1, 2, 3$. Let f stand for the remaining edge of $G(M)$. Then each pair of parallel edges are incident to some x_i because otherwise the pair and $G(M)$ make up a $2K_2$-decomposable submultigraph. Assume that the edge f has no vertex in the triangle of $G(M)$. Hence the multiplicity of f is one. Moreover, by (3), M has two pairs of parallel edges of the form x_iz and $x_j\tilde{z}$ where x_i, x_j are distinct vertices of the triangle of $G(M)$ and z, \tilde{z} are both off the triangle. Then $\tilde{z} = z$ because otherwise the two pairs
Decompositions of Multigraphs Into Parts ... 119

and $G(M)$ would be $2K_2$-decomposable. Moreover, f is either incident to z or not; and in either case M appears in Figure 1, a contradiction.

Assume that f is incident to a vertex, say x_1, in the triangle of $G(M)$. Then, by (2), M has parallel edges of the form x_2z and $x_3\tilde{z}$ where z, \tilde{z} are vertices off the triangle of $G(M)$. Hence $\tilde{z} = z$ can be seen. Moreover, the multiplicity of f is one if f is not incident to z. Then, as well as if $f = x_1z$, the multigraph M appears in Figure 1, a contradiction.

B. $e(G(M)) = 2$. As $G(M)$ is not $2K_2$-decomposable, $\Delta(G(M)) = 2$, i.e., $E(G(M)) = \{wx_1, wx_2\}$. Each pair of parallel edges of $M - w$ has an endvertex in $\{x_1, x_2\}$ because otherwise $G(M)$ together with a nonincident pair is $2K_2$-decomposable. Then also two mutually nonadjacent pairs of parallel edges in $M - w$ taken together with $G(M)$ make up a $2K_2$-decomposable submultigraph of M. By (2), however, $M - w$ has parallel edges nonadjacent to either edge of $G(M)$. Hence, there is a vertex y of M which is adjacent to both x_1 and x_2 and $y \neq w$. Moreover, one can see that no other vertex can be a neighbour of w. Therefore M appears in Figure 1, a contradiction.

Proof of Theorem 8. Note that the equivalence (i)\Leftrightarrow(ii) and implication (i)\Rightarrow(iii) are clear.

It remains to prove the converse implication (iii)\Rightarrow(i) for all M with $e(G(M)) \geq 6$. To this end, let us assume to the contrary that M is a multigraph with a minimum number of edges and $e(G(M)) \geq 6$, which satisfies (0)–(3) and still M is not $\{C_2, 2K_2\}$-decomposable. Then M contains parallel edges because otherwise $G(M) = M$ and, by (0), (1), (3) and Theorem 1, M is $2K_2$-decomposable. By the minimality of M, for any pair of parallel edges f_1, f_2, at least one of the conditions (1)–(3) is false if $M \leftarrow M - \{f_1, f_2\}$. Moreover, $e(G(M))$ is even by (0) and the definition of $G(M)$. As the simple graph $G(M)$ is not $2K_2$-decomposable, $\Delta(G(M)) = \frac{e(G(M))}{2} \geq 3$ by Theorem 1. Let $w \in V(M)$ satisfy $\deg_{G(M)}(w) = \Delta(G(M))$. One can easily see that if we remove any pair of parallel edges incident to w, we get a multigraph satisfying (0)–(3), a contradiction to the minimality of M. Therefore $\deg_{G(M)}(w) = \text{val}_M(w)$. By Theorem 1, since M is not $2K_2$-decomposable, $\Delta(M) = \frac{e(M)}{2}$ or $e(M[\{x, y, z\}]) > \frac{e(M)}{2}$ for some $\{x, y, z\} \subset V(M)$. Consider the following cases.

A. $\Delta(M) > \frac{e(M)}{2}$. Let $u \in V(M)$ satisfy $\text{val}_M(u) = \Delta(M)$. Then $u \neq w$ because otherwise (1) would be violated. Moreover, $\deg_{G(M)}(w) > \deg_{G(M)}(u)$ is clear. Therefore u is incident to some parallel edges.

Let $t \in V(M)$ satisfy $p_M(u, t) \geq p_M(u, x)$ for any $x \in V(M)$. Then
p_M(u, t) ≥ 2 whence t ≠ w. Define M' to be a submultigraph of M obtained by removing two parallel u − t edges. By the minimality of M, one of the conditions (1)–(3) is false if M ↷ M'.

A1. Suppose that (1) is false for a vertex x of M'. Then x = w is the only possibility whence e(M) − 2 = e(M') < 2val_M(w) ≤ e(M), i.e., val_M(w) = \(\frac{e(M)}{2}\). Hence, since val_M(u) > val_M(w), the vertices u and w are adjacent and the edge uw is adjacent to all remaining edges of M. This contradicts (2) since clearly p_M(u, w) < 2 by the choice of w.

A2. Suppose that (2) is false for M'. Then there is a vertex y ∈ V(M) such that wy ∈ E(G(M)) and wy is adjacent to all remaining edges of M'. As M satisfies (2), y ∉ \{u, t\} whence p_M(u, t) = 2 (and moreover, p_M(u, x) ≤ 2 for any x ∈ V(M)). Thus \(4 ≤ \Delta(G(M)) < \Delta(M) ≤ \val_M(u) = p_M(u, t) + p_M(u, y) + p_M(u, w) ≤ 5\). Hence \(\Delta(M) = 5\) and p_M(u, y) = 2. Therefore \(10 = 2\Delta(M) > e(M) ≥ e(G(M)) + p_M(u, t) + p_M(u, y) ≥ 10\), a contradiction.

A3. Suppose that (3) is false for M'. As M satisfies (3) as well as val_M(w) = \deg_M(w) ≥ 4 and val_M(u) ≥ 5, there is a vertex y ∉ \{t, u, w\} such that uw, wy ∈ E(G(M)) and e(M) > 1 + val_M(w) + p_M(u, y) ≥ e(M') = e(M) − 2. Since M satisfies (2), M' has an edge different from nonadjacent to uw. Hence p_M(u, t) = 2 (and p_M(u, x) ≤ 2 for any x ∈ V(M)) whence \(5 ≥ p_M(u, t) + p_M(u, y) + p_M(u, w) = \val_M(u) ≥ 5\). Therefore \(\Delta(M) = 5\), p_M(u, y) = 2 and \(10 = 2\Delta(M) > e(M) ≥ e(G(M)) + p_M(u, t) + p_M(u, y) ≥ 10\), a contradiction.

B. \(\Delta(M) ≤ \frac{e(M)}{2}\). Then there are three vertices x, y, z ∈ V(M) such that \(e(M[\{x, y, z\}]) ≥ \frac{e(M)}{2}\) where the notation is chosen so that \(p_M(y, z) ≥ p_M(z, x) ≥ p_M(x, y) ≥ 1\). As \(e(M) ≥ 8\), \(p_M(y, z) ≥ 2\). Let \(M^+\) be a multigraph obtained from M by removing two y–z edges. Clearly, one of the conditions (1)–(3) is false if M ↷ M^+.

B1. Suppose that (1) is false for \(M^+\). Then \(e(M) − 2 = e(M^+) < 2\val_M(w) ≤ e(M), i.e., \val_M(w) = \frac{e(M)}{2}\). Since \(e(M[\{x, y, z\}]) > \frac{e(M)}{2}\), it follows that \(x = w\), \(p_M(y, z) ≥ \frac{e(M)}{2} − 1\) and \(wy, wz \in E(G(M))\), contrary to (3).

B2. Suppose that (2) is false for \(M^+\). As M satisfies (2), \(p_M(y, z) = 2\). Hence \(6 ≥ e(M[\{x, y, z\}]) ≥ \val_M(w) ≥ 4\), i.e., \(p_M(z, x) = 2 ≥ p_M(x, y)\). Therefore a contradiction arises since either \(p_M(x, y) = 1\) and \(10 = 2e(M[\{x, y, z\}]) > e(M) ≥ e(G(M)) + p_M(y, z) + p_M(x, z) ≥ 10\) or \(p_M(x, y) = 2\) and \(12 = 2e(M[\{x, y, z\}]) > e(M) ≥ e(G(M)) + p_M(y, z) + p_M(x, z) +\)
\[p_M(x, y) \geq 12. \]

B3. Suppose that (3) is false for \(M^+ \). As \(M \) satisfies (3), \(w \notin \{x, y, z\} \) and \(p_M(y, z) = 2 \). Since \(e(M) \geq 8 \), \(e(M[\{x, y, z\}]) \geq 5 \) and therefore \(p_M(x, z) = 2 \). Thus \(wx, wz \in E(G(M)) \) and \(1 + \text{val}_M(w) + p_M(x, z) \geq e(M^+) = e(M) - 2. \) Hence \(p_M(x, y) = 1. \) This implies \(5 = e(M[\{x, y, z\}]) > \frac{e(M)}{2} \geq \text{val}_M(z) = p_M(y, z) + p_M(x, z) + p_M(w, z) = 5 \), a contradiction. ■

Acknowledgement

Research of the second author was partially supported by the Foundation for Polish Science Grant for Young Scholars.

References

Received 4 October 2000
Revised 28 May 2001