ON THE FACTORIZATION OF REDUCIBLE PROPERTIES OF GRAPHS INTO IRREDUCIBLE FACTORS

P. Mihók and R. Vasky
Department of Geometry and Algebra
Faculty of Sciences, P. J. Šafárik’s University
Jesenná 5, 04154 Košice, Slovak Republic

Abstract

A hereditary property R of graphs is said to be reducible if there exist hereditary properties P_1, P_2 such that $G \in R$ if and only if the set of vertices of G can be partitioned into $V(G) = V_1 \cup V_2$ so that $\langle V_1 \rangle \in P_1$ and $\langle V_2 \rangle \in P_2$. The problem of the factorization of reducible properties into irreducible factors is investigated.

Keywords: hereditary property of graphs, additivity, reducibility, vertex partition.

1991 Mathematics Subject Classification: 05C15, 05C75.

1. Introduction

We consider finite undirected graphs without loops and multiple edges. In general, we use the notation and terminology of [2].

Let I is the set of all mutually non-isomorphic graphs. If \mathcal{P} is a nonempty subset of I, then \mathcal{P} also denotes the property that a graph G is a member of \mathcal{P}. A property \mathcal{P} is said to be hereditary if $G \in \mathcal{P}$ and $H \subseteq G$ implies $H \in \mathcal{P}$ and \mathcal{P} is called additive if for each graph G whose all components have property \mathcal{P} it follows $G \in \mathcal{P}$, too (see [1]).

Many known properties of graphs are both hereditary and additive. Let us mention some of them:

$\mathcal{O} = \{G \in I|G \text{ is totally disconnected}\}$,
$\mathcal{O}^2 = \{G \in I|G \text{ is bipartite}\}$,
$\mathcal{I}_k = \{G \in I|G \text{ does not contain } K_{k+2} \text{ as a subgraph}\}$.
We shall denote the set of all additive hereditary properties by L_a.

For any property $P \in L_a$, $P \neq I$, there is a number $c(P)$ called *completeness* of P such that $K_{c(P)+1} \in P$ but $K_{c(P)+2} \notin P$. For given non-negative i, by L^i_a we denote the set of all additive hereditary properties of completeness i.

A hereditary property P can be uniquely determined by the set of minimal forbidden graphs which can be defined as follows:

$$F(P) = \{ F \in I | F \notin P \text{ but each proper subgraph of } F \text{ belongs to } P \}.$$

It is easy to see that $L^0_a = \{ O \}$ and $F(O) = \{ K_2 \}$. The structure of the set L^a of the additive hereditary properties was investigated in [1] and [4], where it is proved that the set L^a, partially ordered by set inclusion, forms a complete distributive lattice.

Let P_1, P_2, \ldots, P_n are any properties of graphs. A *vertex (P_1, P_2, \ldots, P_n)-partition* of a graph G is a partition (V_1, V_2, \ldots, V_n) of $V(G)$ such that for each $i = 1, 2, \ldots, n$ the induced subgraph $\langle V_i \rangle_G$ has the property P_i.

A property $R = P_1 \circ P_2 \circ \ldots \circ P_n$ is defined as a set of all graphs having a vertex (P_1, P_2, \ldots, P_n)-partition.

A property $P \in L^a$ is called *reducible* if there exist $P_1 \in L^a, P_2 \in L^a$ such that $P = P_1 \circ P_2$. Otherwise P is called *irreducible*.

Let us start with some easy observations. Lemma 1 follows immediately from the definitions.

Lemma 1. If $P = P_1 \circ P_2$, then $c(P) = c(P_1) + c(P_2) + 1$.

Lemma 2. Let P_1, P_2 are hereditary properties of graphs. If $P_2 \subseteq P_1$, then there exists a graph $G \in P_2$ such that $G \in F(P_1)$.

Proof. It is obvious that $P_2 \setminus P_1$ is nonempty, because of $P_2 \subseteq P_1$. If $G \in P_2 \setminus P_1$, then either $G \in F(P_1)$ or G possesses $H \in F(P_1)$ as a subgraph. Since P_2 is hereditary, it follows that $H \in P_2$ and the proof is complete. ■

In connection with the Four Colour Theorem, different types of partitions of the vertices of planar graphs have been investigated. The problem of the determination of the “minimal reducible bounds for planar graphs” (see [2], p.266, [5]) is closely related to the characterization of the structure of the reducible properties of completeness 3 in the lattice L^a.

The basic and natural question whether the factorization of any reducible property $R \in L^a$ into irreducible factors is unique seems to be extremely difficult (see [2], p.266).
The aim of this paper is to prove that the factorization of any reducible property \(R \in L^a \) of completeness \(c(R) \leq 3 \) into irreducible factors is unique. We shall use the following result of [3].

Theorem 1. Let \(P \) is an additive hereditary property with \(c(P) \leq 1 \). Let \(P_1, P_2 \) are any additive hereditary properties. If \(P \circ P_1 = P \circ P_2 \), then \(P_1 = P_2 \).

2. Main Results

Theorem 2. A property \(P \in L^a \) with \(c(P) = 1 \) is reducible if and only if \(P = O^2 \) (i.e., \(P \) is the set of all bipartite graphs).

Proof. The proof follows immediately from Lemma 1, since \(L^0_0 = \{O\} \).

Theorem 3. A factorization of each reducible property \(P \in L^a_2 \) into irreducible factors is unique, apart from the order of the factors.

Proof. Let \(P \) be any reducible property, \(P \in L^a_2 \). Thus there exist \(P_1 \in L^a, P_2 \in L^a \) such that \(P = P_1 \circ P_2 \). By Lemma 1 either \(P_1 = O \) or \(P_2 \in L^a_1 \). Suppose, without loss of generality, \(P_1 = O \), \(P_2 \in L^a_1 \). If there exists a property \(P_3, P_3 \neq P_2 \), such that \(O \circ O = P \), then \(O \circ P_3 = O \circ P_2 \) and by Theorem 1 we obtain \(P_3 = P_2 \), a contradiction.

Two cases can occur now:

1. \(P_2 \) is irreducible and then \(O \circ P_2 \) is the unique factorization of \(P \) into irreducible factors.
2. \(P_2 \) is reducible. By Theorem 2 \(P_2 = O^2 \), which implies that \(O \circ O \circ O \) is the unique factorization of the property \(P \) into irreducible factors.

Theorem 4. A factorization of any reducible additive hereditary property \(P \) of completeness 3 into irreducible factors is unique, apart from the order of the factors.

3. The Proof of the Main Result

The proof of Theorem 4 is based on the following Lemmas.

Lemma 3. Let \(P_1, P_2, P_3, P_4 \) be the additive hereditary properties all of completeness 1. If for every \(i \in \{1, 2\} \) and \(j \in \{3, 4\} \), \(P_i \neq P_j \), then \(P_1 \circ P_2 \neq P_3 \circ P_4 \).
Proof. Because of transitivity of set inclusion there exists \(i \in \{1, 2, 3, 4\} \) such that for every \(j \in \{1, 2, 3, 4\}, j \neq i, P_j \not\subset P_i \). Without loss of generality, we can suppose that \(i = 3 \). The facts that \(P_1 \neq P_3 \) and \(P_2 \neq P_3 \) imply that both
\[
(1) \quad P_1 \not\subset P_3 \text{ and } P_2 \not\subset P_3.
\]
Let us suppose, on the contrary, that \(P_1 \circ P_2 = P_3 \circ P_1 \). From (1) and Lemma 2 it follows that there exist graphs \(G'_1, G'_2 \) such that
\[
(2) \quad G'_1 \in P_1 \text{ and } G'_1 \not\subset P_3,
\]
\[
(3) \quad G'_2 \in P_2 \text{ and } G'_2 \not\subset P_3.
\]
Let we state \(n = \max\{|V(G'_1)|, |V(G'_2)|\} \) and let the graphs \(G_1 \) and \(G_2 \) consist of \(n \) disjoint copies of \(G'_1 \) and \(G'_2 \), respectively. Let
\[
(4) \quad G = G_1 + G_2.
\]
Let us denote \(V_1 = V(G_1), V_2 = V(G_2) \). It is obvious that \((V_1, V_2) \) is a vertex \((P_1, P_2) \)-partition of \(G \). If the graph \(G \in P_3 \circ P_4 \), then there exists a vertex \((P_3, P_4) \)-partition of \(G \), say \((U_1, U_2) \). Since for every \(i \in \{1, 2\} \) \(G'_i \not\subset P_3 \), then \(G'_1 \) cannot be a subgraph of \((V_1 \cap U_1)_G \) and \(G_2 \) cannot be a subgraph of \((V_2 \cap U_1)_G \). Moreover, as \(E(G'_1) \neq \emptyset \) then \(G'_1 \) cannot be a subgraph of \((V_1 \cap U_2)_G \), otherwise necessarily \(V_2 \cap U_2 = \emptyset \) what implies that \(G'_2 \subset (V_2 \cap U_1)_G \), a contradiction. By the similar reason \(G'_2 \) cannot be a subgraph of \((V_2 \cap U_2)_G \). These imply, according to the number of components of \(G'_1 \) and \(G'_2 \) in the graphs \(G_1 \) and \(G_2 \), respectively, that
\[
(5) \quad |V_i \cap U_j| \geq n, \text{ for every } i, j \in \{1, 2\}.
\]
Two cases can appear.

Case 1. Both graphs \(G'_1 \) and \(G'_2 \) are bipartite.
Thus, according to the choice of \(n \), we have
\[
G'_1 \subset K_{n,n} \subset (U_1)_G,
\]
\[
G'_2 \subset K_{n,n} \subset (U_2)_G,
\]
this contradicts our assumption \((U_1)_G \in P_3 \) and \((U_2)_G \in P_4 \).

Case 2. At least one of the graphs \(G'_1 \) and \(G'_2 \) is not bipartite.
Suppose, without loss of generality, that \(G'_1 \) is not bipartite. Then necessarily either \(E((V_1 \cap U_1)_G) \neq \emptyset \) or \(E((V_1 \cap U_2)_G) \neq \emptyset \). In accordance with (5)
these facts imply that either $K_3 \subseteq \langle U_1 \rangle_G$ or $K_3 \subseteq \langle U_2 \rangle_G$, which contradicts our assumption $\langle U_1 \rangle_G \in \mathcal{P}_3$ and $\langle U_2 \rangle_G \in \mathcal{P}_4$.

Since there exists no vertex $(\mathcal{P}_3, \mathcal{P}_4)$-partition of G, thus $G \notin \mathcal{P}_3 \circ \mathcal{P}_4$. Because of $G \in \mathcal{P}_1 \circ \mathcal{P}_2$, the proof is complete.

The proof of the following simple but helpful Lemma is trivial and thus we omit it.

Lemma 4. Let G_1, G_2 are two arbitrary nonbipartite graphs. Let $G = G_1 + G_2$ be the join of G_1 and G_2. Then for every \mathcal{O}-independent subset S of a vertex set $V(G)$, the graph $K_4 \subseteq G\text{-}S$.

Lemma 5. Let \mathcal{P} be any reducible additive hereditary property of completeness 3. Let \mathcal{P}_1 and \mathcal{P}_2 be the irreducible additive hereditary properties both of completeness 1. If $\mathcal{P} = \mathcal{P}_1 \circ \mathcal{P}_2$ then there exists no additive hereditary property \mathcal{P}', $c(\mathcal{P}') = 2$, such that $\mathcal{P} = \mathcal{O} \circ \mathcal{P}'$.

Proof. Let us suppose that $\mathcal{P}_1, \mathcal{P}_2$ are the irreducible additive hereditary properties of completeness 1. Three cases can occur. We shall prove the Lemma for every case separately.

1. Case $\mathcal{P}_1 \subseteq \mathcal{O}^2$ and $\mathcal{P}_2 \subseteq \mathcal{O}^2$.

In this case there exist the graphs $K_{p,p}$ and $K_{q,q}$ such that $K_{p,p} \notin \mathcal{P}_1$ and $K_{q,q} \notin \mathcal{P}_2$. Let us assume, on the contrary, that there exists an additive hereditary property \mathcal{P}' of completeness 2 such that $\mathcal{P}_1 \circ \mathcal{P}_2 = \mathcal{O} \circ \mathcal{P}'$. Then each graph $G \in \mathcal{O} \circ \mathcal{P}'$ must belong to $\mathcal{P}_1 \circ \mathcal{P}_2$, too. Let us take the graph G as follows:

$$G = D_n + \bigcup_{i=1}^{n} K_3,$$

where D_n is a totally disconnected graph of order $n = \max\{p, q\}$. It is easy to see that $G \in \mathcal{O} \circ \mathcal{P}'$ for every $\mathcal{P}' \in \mathcal{L}_2^n$. We must only realize that $K_3 \in \mathcal{P}'$ whenever $c(\mathcal{P}') = 2$. Then (V_1, V_2), if $V_1 = V(D_n)$ and $V_2 = V(\bigcup_{i=1}^{n} K_3)$, is a vertex $(\mathcal{O}, \mathcal{P}')$-partition of G. Now we shall prove that $G \notin \mathcal{P}_1 \circ \mathcal{P}_2$. Let us assume, on the contrary, that G has $(\mathcal{P}_1, \mathcal{P}_2)$-partition of a vertex set $V(G)$, denote it (U_1, U_2). It is obvious that the sets of vertices of each copy of K_3 must be partitioned into two nonempty subsets. Then $|U_1 \cap V_2| \geq n$ and $|U_2 \cap V_2| \geq n$, too. Moreover, as K_3 is not bipartite, then either $E(\langle U_1 \cap V_2 \rangle_G)$ or $E(\langle U_2 \cap V_2 \rangle_G)$ is nonempty. This implies that then necessarily either $U_1 \cap V_1 = \emptyset$ or $U_2 \cap V_2 = \emptyset$, respectively (otherwise $K_3 \subseteq \langle U_1 \cap V_2 \rangle_G$ or $K_3 \subseteq \langle U_2 \cap V_2 \rangle_G$). Then either $K_{n,n} \subseteq \langle U_1 \rangle_G$ or $K_{n,n} \subseteq \langle U_2 \rangle_G$, respectively, but as it was stated before, neither $K_{n,n} \notin \mathcal{P}_1$.

nor \(K_{n,n} \not\in \mathcal{P}_2 \). This is a contradiction to the assumption that \(\langle U_1 \rangle_G \in \mathcal{P}_1 \) and \(\langle U_2 \rangle_G \in \mathcal{P}_2 \).

So we found the graph \(G \) which belongs to each additive hereditary property \(\mathcal{O} \circ \mathcal{P}' \), \(\mathcal{P}' \in L^2_n \), but \(G \not\in \mathcal{P}_1 \circ \mathcal{P}_2 \). This refutes our assumption about the existence of such a property \(\mathcal{P}' \in L^2_n \) that \(\mathcal{P}_1 \circ \mathcal{P}_2 = \mathcal{O} \circ \mathcal{P}' \).

Case 2. \(\mathcal{P}_1 \not\subseteq \mathcal{O}^2 \) and \(\mathcal{P}_2 \not\subseteq \mathcal{O}^2 \).

If both \(\mathcal{P}_1 \not\subseteq \mathcal{O}^2 \) and \(\mathcal{P}_2 \not\subseteq \mathcal{O}^2 \) then there exist non bipartite graphs \(G_1 \in \mathcal{P}_1 \), \(G_2 \in \mathcal{P}_2 \). Let us construct the graph \(G \)

\[G = G_1 + G_2. \]

Then by Lemma 4, for every partition \((V_1, V_2) \) of a vertex set \(V(G) \) such that \(\langle V_1 \rangle_G \in \mathcal{O} \), the graph \(K_4 \subseteq \langle V_2 \rangle_G \). This implies that there exists no additive hereditary property \(\mathcal{P}' \), \(c(\mathcal{P}') = 2 \) and \(\mathcal{P}_1 \circ \mathcal{P}_2 = \mathcal{O} \circ \mathcal{P}' \) holds.

Case 3. Either \((\mathcal{P}_1 \subseteq \mathcal{O}^2 \) and \(\mathcal{P}_2 \not\subseteq \mathcal{O}^2 \) or \((\mathcal{P}_1 \not\subseteq \mathcal{O}^2 \) and \(\mathcal{P}_2 \subseteq \mathcal{O}^2 \).

Let us assume that \(\mathcal{P}_1 \subseteq \mathcal{O}^2 \) and \(\mathcal{P}_2 \not\subseteq \mathcal{O}^2 \). In case \(\mathcal{P}_2 \subseteq \mathcal{O}^2 \) and \(\mathcal{P}_1 \not\subseteq \mathcal{O}^2 \) the proof goes in analogical way.

If \(\mathcal{P}_1 \subseteq \mathcal{O}^2 \), then there exists a natural number \(m \) such that \(K_{m,m} \not\in \mathcal{P}_1 \). Let us define

\[n = \min \{ m \in \mathbb{N} | K_{m,m} \not\in \mathcal{P}_1 \} - 1. \]

Let \(G_2 \) be the graph with property \(\mathcal{P}_2 \) such that \(G_2 \) is not bipartite. Now we define the graph \(G^* \) as follows:

\[G^* = K_{n,n} + G_2. \]

If we denote \(W_1 = V(K_{n,n}) \) and \(W_2 = V(G_2) \), then it is easy to see that \((W_1, W_2) \) is a vertex \((\mathcal{P}_1, \mathcal{P}_2) \)-partition of \(G^* \). Let us suppose, on the contrary, that there exists a property \(\mathcal{P}' \in L^2_n \) such that \(\mathcal{P}_1 \circ \mathcal{P}_2 = \mathcal{O} \circ \mathcal{P}' \) holds. As \(\mathcal{P}_1 \circ \mathcal{P}_2 = \mathcal{O} \circ \mathcal{P}' \) and \(G^* \in \mathcal{P}_1 \circ \mathcal{P}_2 \), then \(G^* \in \mathcal{O} \circ \mathcal{P}' \). This implies that there exists \(\mathcal{O} \)-independent subset \(S \) of a vertex set \(V(G^*) \) so that \(G^*-S \in \mathcal{P}' \). Because of \(K_4 \not\subseteq \mathcal{P}' \) the vertex set \(S \) has to be a subset of \(V(K_{n,n}) \) such that \(K_{n,n}-S \in \mathcal{O} \). Thus \(|S| = n \) and \(|V(K_{n,n}-S)| = n \). This implies

\[D_n + G_2 \in \mathcal{P}'. \]

We showed, supposing the existence of \(\mathcal{P}' \in L^2_n \): \(\mathcal{P}_1 \circ \mathcal{P}_2 = \mathcal{O} \circ \mathcal{P}' \), that the graph \(D_n + G_2 \) has a property \(\mathcal{P}' \).

Let us define the graphs \(G_3, G_4, G_5 \) and \(G \) as follows:

\[G_3 = D_n + G_2, \quad G_4 = D_{n+1}, \quad G_5 = G_3 \cup G_3, \quad G = G_4 + G_5. \]
As O and P' are both additive hereditary properties, then $G_4 \in O$ and $G_5 \in P'$. Further, it is obvious that the graph $G \in O \circ P'$ and then it has a vertex (O, P')-partition, say (V_1, V_2). Let $V_1 = V(G_4)$ and $V_2 = V(G_5)$. We shall prove that $G \notin P_1 \circ P_2$. Let us suppose, on the contrary, that $G \in P_1 \circ P_2$. Then there exists some vertex (P_1, P_2)-partition of G. Let (U_1, U_2) be the vertex partition mentioned above. As graph G_5 is not bipartite it follows immediately that either $\langle V_2 \cap U_1 \rangle_G \notin O$ or $\langle V_2 \cap U_2 \rangle_G \notin O$. We will distinguish the following two subcases.

Subcase 3.1. $\langle V_2 \cap U_2 \rangle_G \notin O$.

Then the condition $V_1 \subseteq U_1$ has to be fulfilled. Because of $K_3 \notin P_1$, it is obvious that $V_2 \cap U_1$ has to be an independent set of vertices. As also $K_3 \notin P_2$, we are forced to move just all the vertices of the subgraph D_n of each copy of the graph G_3 in the graph G_5 into the set $V_2 \cap U_1$ (otherwise $K_3 \subseteq \langle V_2 \cap U_2 \rangle_G$). This implies that

$$K_{n+1,n+1} \subseteq \langle U_1 \rangle_G$$

which is a contradiction because of $K_{n+1,n+1} \notin P_1$.

Subcase 3.2. $\langle V_2 \cap U_1 \rangle_G \notin O$.

Then the condition $V_1 \subseteq U_2$ must be fulfilled. By an easy observation we can see that all the vertices of the subgraphs D_n of each copy of G_3 in G_5 must belong to the set $V_2 \cap U_2$ (otherwise $K_3 \subseteq \langle V_2 \cap U_1 \rangle_G$). So the thing is completed because the graph

$$G_2 \subseteq \langle U_1 \rangle_G$$

which contradicts our supposition $\langle U_1 \rangle_G \in P_1$.

We showed that the graph $G \in O \circ P'$ and $G \notin P_1 \circ P_2$. This fact contradicts our assumption that there exists $P' \in L_2$ in such a way that the equation $P_1 \circ P_2 = O \circ P'$ holds.

As there are no more possibilities for existence of the properties P_1 and P_2, the proof is complete.

\[\]

Lemma 6. Let P' be an irreducible additive hereditary property, $c(P') = 2$. Then there exist no additive hereditary properties P_1 and P_2, both of completeness 1, such that $O \circ P' = P_1 \circ P_2$.

Proof. Let $P' \in L_2$ be an arbitrary irreducible property. Let us suppose, on the contrary, that there exist additive hereditary properties $P_1 \in L_1$, $P_2 \in L_2$ such that $O \circ P' = P_1 \circ P_2$. There are two possibilities for the existence of the above mentioned properties P_1 and P_2.

\[\]
Case 1. Both P_1 and P_2 are irreducible. By Lemma 5 there exists no additive hereditary property $P^* \in L_2^a$ such that $P_1 \circ P_2 = O \circ P^*$. This fact contradicts our assumption $O \circ P' = P_1 \circ P_2$.

Case 2. Either P_1 or P_2 is reducible. We can suppose, without loss of generality, that P_1 is reducible. By Theorem 2 we have that $P_1 = O \circ O$. Thus

$$O \circ O \circ P_2 = O \circ P'$$

and by cancellation of O (see [3]) we obtain

$$P' = O \circ P_2$$

which is a contradiction to our assumption that P' is irreducible.

The Proof of Theorem 4. Let P be any reducible property, $P \in L_3^a$, so that $P = P_1 \circ P_2$. Then from Lemma 1 either $c(P_1) = c(P_2) = 1$ or $P_1 = O$ and $c(P_2) = 2$. We shall distinguish three cases.

Case 1. Both P_1 and P_2 are irreducible. Then the uniqueness of a factorization $P_1 \circ P_2$ of P into irreducible factors follows by Lemmas 3, 5 and 6 using the cancellation law according to Theorem 1.

Case 2. Both P_1 and P_2 are reducible. Then by Theorem 2, $P_1 = P_2 = O^2$ and $P = O \circ O \circ O \circ O$. This factorization is unique by Lemmas 3, 5, 6 and by Theorem 1.

Case 3. Either P_1 or P_2 is reducible. Without loss of generality, let P_1 be a reducible property and P_2 be an irreducible property.

(a) If $c(P_1) = 1$, then $P_1 = O^2$ and $P = O \circ O \circ P_2$ is a unique factorization of P into irreducible factors.

(b) If $c(P_1) = 2$, then there exists a property P' such that $P_1 = O \circ P'$ and $P_2 = O$. Thus, according to whether P' is a reducible or an irreducible property, either $P = O \circ O \circ O \circ O$ or $P = O \circ O \circ P'$ is a unique factorization of P into irreducible factors.

References

On the Factorization of Reducible Properties...

Received 10 May 1995