A NOTE ON STRONG AND CO-STRONG PERFECTNESS OF THE X-JOIN OF GRAPHS

ALINA SZELECKA

Institute of Mathematics, Technical University of Zielona Góra
Podgórna 50, 65–246 Zielona Góra, Poland
e-mail: A.Szelecka@im.pz.zgora.pl

AND

ANDRZEJ WŁOCH

Department of Mathematics, Technical University of Rzeszów
W. Pola 2, 35–359 Rzeszów, Poland
e-mail: awloch@ewa.prz.rzeszow.pl

Abstract

Strongly perfect graphs were introduced by C. Berge and P. Duchet in [1]. In [4], [3] the following was studied: the problem of strong perfectness for the Cartesian product, the tensor product, the symmetrical difference of n, $n \geq 2$, graphs and for the generalized Cartesian product of graphs. Co-strong perfectness was first studied by G. Ravindra and D. Basavayya [5]. In this paper we discuss strong perfectness and co-strong perfectness for the generalized composition (the lexicographic product) of graphs named as the X-join of graphs.

Keywords: strongly perfect graphs, co-strongly perfect graphs, the X-join of graphs.

1991 Mathematics Subject Classification: 05C75, 05C60.

1. Introduction

Let G be a finite undirected connected simple graph. By $V(G)$ and $E(G)$ we denote its vertex set and edge set, respectively. The notation $H = < V_0 >_G$, $V_0 \subseteq V(G)$ means that H is the subgraph of G induced by V_0. A subset $S \subseteq V(G)$ is said to be stable in G if no two distinct vertices of S are adjacent in G. A subset $Q \subseteq V(G)$ is a clique of G if $< Q >_G$ is a complete subgraph of G. If the stable set S meets every maximal (with respect to the set inclusion) clique Q, then we will call it a stable
transversal of G. A graph G is called strongly perfect ([1]) if its every induced subgraph (including G itself) has a stable transversal. We call G co-strongly perfect ([5]) if G and the complementary graph \overline{G} to G are strongly perfect. Let G_1, \ldots, G_n, $n \geq 2$, be graphs of the same order $m \geq 2$ with the vertex sets $V(G_i) = V = \{y_1, \ldots, y_m\}$ for $i = 1, \ldots, n$ and X be a graph such that $V(X) = \{x_1, \ldots, x_n\}$. The X-join ([2]) of the sequence of graphs G_1, \ldots, G_n and the graph X is the graph $X[G_1, \ldots, G_n]$ with the vertex set $V(X) \times V$ and the edge set $\{(x_j, y_r), (x_k, y_q) : j = k \text{ and } \} \in E(G_i)$ or $[x_j, x_k] \in E(X)\}$.

Observe that if $G_1 = G_2 = \ldots = G_n = Y$, then we obtain the composition (the lexicographic product) of graphs Y and X denoted by $X[Y]$.

Let $V_0 \subseteq V(X) \times V$. By the projection Pr_XV_0 of the subset V_0 on the graph X we mean the set $Pr_XV_0 = \{x \in V(X) : \text{there exists } y \in V(G_i), 1 \leq i \leq n, \text{ such that } (x, y) \in V_0\}$.

2. Results

Put $G = X[G_1, \ldots, G_n]$, for convenience. Let H be a connected induced subgraph of G such that it is not isomorphic to any induced subgraph H' of the graph X or G_i, for $i = 1, \ldots, n$.

Let $Pr_XV(H) = \{x_i, \ldots, x_{ip}\}$, $2 \leq p \leq n$.

We partition the set $V(H)$ on p disjoint sets $V_{ij}(H)$ such that $Pr_XV_{ij}(H) = \{x_{ij}\}$ for $j = 1, \ldots, p$. For an arbitrary subset $R \subseteq V(H)$, in a natural way we can write $R = \bigcup_{j=1}^{t} R \cap V_{ij}(H)$, where $1 \leq t \leq p$.

For G and H given above it follows immediately.

Lemma 1. If Q is a maximal clique of H, then Pr_XQ is a maximal clique of $< Pr_XV(H) >$.

Lemma 2. A subset $Q \subseteq V(H)$ is a maximal clique of H if and only if

1. $Q \cap V_{ij}(H)$ is a maximal clique of $< V_{ij}(H) >$ for $j = 1, \ldots, p$ or $Q \cap V_{ij}(H) = \emptyset$ and

2. Pr_XQ is a maximal clique of $< Pr_XV(H) >$.

Proof. 1. Assume that Q is a maximal clique of H. We can write $Q = \bigcup_{j=1}^{t} Q \cap V_{ij}(H)$ where $1 \leq t \leq p$ with $Q \cap V_{ij}(H) \neq \emptyset$ for each $j = 1, \ldots, t$. Moreover, each of the sets $Q \cap V_{ij}(H)$ must be a clique of $< V_{ij}(H) >$. Suppose there exists j, $1 \leq j \leq t$ such that $Q \cap V_{ij}(H)$, is not maximal. In consequence, there exists a vertex $(x_{ij}, y_r) \in V_{ij}(H) \backslash Q \cap V_{ij}(H), 1 \leq j \leq t$.
Note Strong and Co-Strong Perfectness... 153

(of course \((x_{ij}, y_r) \notin Q \)) which is adjacent to each vertex from \(Q \cap V_{ij}(H) \). Moreover, by the definition of \(G \) and from the fact that \(Q \cap V_{ij}(H) \subset Q \) it follows that \((x_{ij}, y_r) \) must be adjacent to each vertex from \(Q \setminus Q \cap V_{ij}(H) \). In consequence, \((x_{ij}, y_r) \) is adjacent to all vertices from \(Q \) and \((x_{ij}, y_r) \notin Q \), a contradiction with the assumption that \(Q \) is a maximal clique of \(H \). This shows that the condition in (1) holds.

Condition (2) follows from Lemma 1.

II. Suppose that conditions (1) and (2) hold. We can write \(Q = \bigcup_{t=1}^{p} Q \cap V_{ij}(H), 1 \leq t \leq p \). Note that \(|Q| > 1 \), by the assumption about \(H \). Firstly, we shall show that \(Q \) is a clique of \(H \). Let \((x_{ij}, y_r), (x_{ik}, y_s) \) be two distinct vertices from \(Q \). If \(j = k \), then they belong to \(Q \cap V_{ij}(H) \) and are adjacent by (1). If \(j \neq k \), then \(x_{ij}, x_{ik} \in Pr_X Q \) and by (2) they are adjacent in \(X \). Thus, by the definition of \(G \) the vertices \((x_{ij}, y_r), (x_{ik}, y_s) \) are adjacent in \(G \). This proves that \(Q \) is a clique of \(H \).

Assume that \(Q \) is not maximal. This means that there exists \((x_{il}, y_r) \not\in Q \) but it is adjacent to each vertex from \(Q \). Moreover, by the definition of \(G \), the vertex \(x_{il} \) is adjacent to all vertices from \(Pr_X Q \). This implies that \(x_{il} \in Pr_X Q \) by (2). In consequence, it must be that \((x_{il}, y_r) \in V_{il}(H) \setminus Q \cap V_{il}(H) \) (evidently \((x_{il}, y_r) \notin Q \cap V_{il}(H) \)). Since \(Q \cap V_{il}(H) \subset Q \) and \((x_{il}, y_r) \) is adjacent to each vertex from \(Q \), then it is adjacent to each vertex from \(Q \cap V_{il}(H) \). Hence by (1) it must be that \((x_{il}, y_r) \in Q \cap V_{il}(H) \), a contradiction. Hence, \(Q \) is a maximal clique of \(H \) and this completes the proof of the lemma.

Using the same method as in the proof of Lemma 2 we prove.

Lemma 3. A subset \(S \subset V(H) \) is a maximal stable set of \(H \) if and only if

1. \(S \cap V_{ij}(H) \) is a maximal stable set of \(< V_{ij}(H) > \) for \(j = 1, \ldots, s \) or \(S \cap V_{ij}(H) = \emptyset \) and

2. \(Pr_X S \) is a maximal stable set of \(< Pr_X V(H) > \).

Lemma 4 follows directly from the definition of the graph \(X[G_1, \ldots, G_n] \).

Lemma 4. \(X[G_1, \ldots, G_n] = X[G_n, \ldots, G_1] \).

Theorem 1. \(X[G_1, \ldots, G_n] \) is strongly perfect if and only if the graphs \(X, G_1, \ldots, G_n \) are strongly perfect.

Proof. I. Let \(X[G_1, \ldots, G_n] \) be strongly perfect. Then \(X, G_1, \ldots, G_n \) are strongly perfect since they are isomorphic to some induced subgraphs of \(G \).
II. Suppose that the graphs X, G_1, \ldots, G_n are strongly perfect. We shall show that G is strongly perfect. Let H be a connected induced subgraph of G. We shall prove that H has a stable transversal.

If H is an induced subgraph of X or $G_i, 1 \leq i \leq n$, then H has a stable transversal, by the assumption that X, G_1, \ldots, G_n are strongly perfect.

Let H be not induced subgraph of $X, G_i, i = 1, \ldots, n$. Assume that H does not have a stable transversal, i.e., for every maximal stable set $S \subseteq V(H)$ there exists a maximal clique $Q \subseteq V(H)$ such that $S \cap Q = \emptyset$. Moreover, by the definition of G and Lemmas 2, 3 we have that for every maximal stable set $Pr_X S$ of $\langle Pr_X V(H) \rangle$ there exists a maximal clique $Pr_X Q$ of $\langle Pr_X V(H) \rangle$ such that $Pr_X S \cap Pr_X Q = \emptyset$. This is a contradiction, since $\langle Pr_X V(H) \rangle$ has a stable transversal.

This proves that $X[G_1, \ldots, G_n]$ is strongly perfect and the proof is complete.

For $G_1 = G_2 = \ldots = G_n = Y$ we obtain

Corollary 1. The composition $X[Y]$ of graphs X and Y is strongly perfect if and only if both X and Y are strongly perfect.

Using Lemma 4 and Theorem 1 we obtain

Corollary 2. $X[G_1, \ldots, G_n]$ is strongly perfect if and only if the graphs X, G_1, \ldots, G_n are strongly perfect.

In consequence, it follows immediately

Theorem 2. $X[G_1, \ldots, G_n]$ is co-strongly perfect if and only if the graphs X, G_1, \ldots, G_n are co-strongly perfect.

References

Received 26 April 1996
Revised 8 October 1996