SUFFICIENT CONDITIONS FOR MAXIMALLY
EDGE-CONNECTED AND SUPER-EDGE-CONNECTED
GRAPHS DEPENDING ON THE CLIQUE NUMBER

LUTZ VOLKMANN

Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let G be a connected graph with minimum degree δ and edge-connectivity λ. A graph is maximally edge-connected if $\lambda = \delta$, and it is super-edge-connected if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. The clique number $\omega(G)$ of a graph G is the maximum cardinality of a complete subgraph of G. In this paper, we show that a connected graph G with clique number $\omega(G) \leq r$ is maximally edge-connected or super-edge-connected if the number of edges is large enough. These are generalizations of corresponding results for triangle-free graphs by Volkmann and Hong in 2017.

Keywords: edge-connectivity, clique number, maximally edge-connected graphs, super-edge-connected graphs.

2010 Mathematics Subject Classification: 05C40.

1. Terminology and Introduction

Let G be a finite and simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. The order and size of G are defined by $n = n(G) = |V(G)|$ and $m = m(G) = |E(G)|$, respectively. If $N(v) = N_G(v)$ is the neighborhood of the vertex $v \in V(G)$, then we denote by $d(v) = d_G(v) = |N(v)|$ the degree of v and by $\delta = \delta(G)$ the minimum degree of the graph G. For a subset $X \subseteq V(G)$, let $G[X]$ to denote the subgraph of G induced by X. For two subsets X and Y of $V(G)$ let $[X,Y]$ be the set of edges with one endpoint in X and the other one in Y. The clique number $\omega(G)$ of a graph G is the maximum cardinality of a
complete subgraph of G. An *edge-cut* of a connected graph G is a set of edges whose removal disconnects G. The *edge connectivity* $\lambda = \lambda(G)$ of a connected graph G is defined as the minimum cardinality of an edge-cut over all edge-cuts of G. An edge-cut S is a *minimum edge-cut* or a λ-cut if $|S| = \lambda(G)$. The inequality $\lambda(G) \leq \delta(G)$ is immediate. We call a connected graph *maximally edge-connected*, if $\lambda(G) = \delta(G)$. In 1981, Bauer et al. [1] proposed the concept of super-edge connectedness. A graph is called *super-edge-connected* or super-λ if every minimum edge-cut is trivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree. Thus every super-edge-connected graph is also maximally edge-connected.

Sufficient conditions for graphs to be maximally edge-connected or super-edge-connected were given by several authors, see for example the survey paper by Hellwig and Volkmann [3]. The starting point was an article by Chartrand [2] in 1966. He observed that if δ is large enough, then the graph is maximally edge-connected. A similar condition for super-edge-connectivity was given by Kelmans [4] six years later. Over the years, these results have been strengthened many times and in many ways.

Recently, Volkmann and Hong [6] showed that a connected graph or a connected triangle-free graph is maximally edge-connected or super-λ if the number of edges is large enough. In particular, they received the following results.

Theorem 1. Let G be a connected triangle-free graph of order $n \geq 2$, size m, minimum degree δ and edge-connectivity λ. If

$$m > \left\lfloor \frac{n^2}{4} \right\rfloor - \delta(n - 1 - 2\delta) - 1,$$

then $\lambda = \delta$.

Theorem 2. Let G be a connected triangle-free graph of order n, size m, minimum degree $\delta \geq 3$ and edge-connectivity λ. If

$$m > \left\lfloor \frac{(n + 1)^2}{4} \right\rfloor - \delta(n + 1 - 2\delta),$$

then G is super-λ.

In this paper, we will generalize Theorems 1 and 2 to connected graphs with clique number $\omega(G) \leq r$ for $r \geq 2$. Examples will demonstrate that our results are sharp.
Sufficient Conditions for Maximally Edge-Connected Graphs ...

2. Maximally Edge-Connected Graphs

The main tool of our article is the famous theorem of Turán [5].

Theorem 3. Let \(r \geq 1 \) be an integer, and let \(G \) be a graph of order \(n \). If the clique number \(\omega(G) \leq r \), then

\[
|E(G)| \leq \left\lfloor \frac{r - 1}{2r} \cdot n^2 \right\rfloor.
\]

Theorem 4. Let \(r \geq 2 \) be an integer, and let \(G \) be a connected graph of order \(n \), size \(m \), minimum degree \(\delta \geq 1 \), edge-connectivity \(\lambda \) and clique number \(\omega(G) \leq r \).

If

\[
m > \left\lfloor \frac{r - 1}{2r} \left(n^2 + 2 \left\lfloor \frac{r\delta}{r - 1} \right\rfloor^2 - 2n \left\lfloor \frac{r\delta}{r - 1} \right\rfloor \right) \right\rfloor + \delta - 1,
\]

then \(\lambda = \delta \).

Proof. If \(\delta = 1 \), then \(\lambda = \delta \) in every case. Thus assume in the following that \(\delta \geq 2 \). Suppose to the contrary that \(\lambda \leq \delta - 1 \). Then there exist two disjoint sets \(X, Y \subset V(G) \) with \(X \cup Y = V(G) \) and \(|[X,Y]| = \lambda \). Assume, without loss of generality, that \(|X| \leq |Y| \).

We first show that \(X \) contains at least \(\delta + 1 \) vertices. Otherwise, suppose that \(X \) contains at most \(\delta \) vertices. Then we obtain

\[
\delta|X| \leq \sum_{x \in X} d_G(x) \leq |X|(|X| - 1) + \lambda \leq \delta(|X| - 1) + \delta - 1.
\]

Obviously, this is a contradiction and thus \(|X| \geq \delta + 1 \). Using Theorem 3, we conclude that

(1) \[
|E(G[X])| \leq \left\lfloor \frac{(r - 1)|X|^2}{2r} \right\rfloor.
\]

and

(2) \[
|E(G[Y])| \leq \left\lfloor \frac{(r - 1)|Y|^2}{2r} \right\rfloor.
\]

Next we show that \(|X| \geq \left\lfloor (r\delta)/(r - 1) \right\rfloor \). Suppose to the contrary that \(|X| \leq \left\lfloor (r\delta)/(r - 1) \right\rfloor - 1 \). Since \(2|E(G[X])| = \sum_{x \in X} d_G(x) - \lambda \), (1) implies that

\[
|X|\delta \leq \sum_{x \in X} d_G(x) \leq 2 \left\lfloor \frac{(r - 1)|X|^2}{2r} \right\rfloor + \lambda \leq \frac{(r - 1)|X|^2}{r} + \delta - 1
\]

\[
\leq |X|^\frac{r - 1}{r} \left(\left\lfloor \frac{r\delta}{r - 1} \right\rfloor - 1 \right) + \delta - 1 \leq |X|^\frac{r - 1}{r} \left(\frac{r\delta}{r - 1} - 1 \right) + \delta - 1
\]

\[
= |X|\delta - \frac{r - 1}{r} |X| + \delta - 1
\]
and thus $|X| \leq \frac{r(q-1)}{r}$. Using this argument once more, we arrive at

$$|X| \delta \leq \frac{(r-1)|X|^2}{r} + \delta - 1 \leq |X| \frac{r-1}{r} - \frac{r(\delta - 1)}{r-1} + \delta - 1$$

$$= |X|((\delta - 1) + \delta - 1)$$

and thus $|X| \leq \delta - 1$, which contradicts the fact that $|X| \geq \delta + 1$. Hence $|X| \geq \lceil (r\delta)/(r-1) \rceil$. Since $|X| + |Y| = n$ and $|X| \leq n/2$, the inequalities (1) and (2) lead to

$$m = |E(G[X])| + |E(G[Y])| + \lambda$$

$$\leq \left[\frac{(r-1)|X|^2}{2r} \right] + \left[\frac{(r-1)|Y|^2}{2r} \right] + \delta - 1$$

$$= \left[\frac{(r-1)|X|^2}{2r} \right] + \left[\frac{(r-1)(n-|X|)^2}{2r} \right] + \delta - 1$$

$$\leq \left[\frac{(r-1)}{2r} \left(|X|^2 + (n-|X|)^2 \right) \right] + \delta - 1$$

$$= \left[\frac{(r-1)}{2r} \left(n^2 + 2(|X|^2 - n|X|) \right) \right] + \delta - 1$$

$$\leq \left[\frac{(r-1)}{2r} \left(n^2 + 2 \left[\frac{r\delta}{r-1} \right]^2 - 2n \left[\frac{r\delta}{r-1} \right] \right) \right] + \delta - 1,$$

a contradiction to the hypothesis. Thus $\lambda = \delta$.

Theorem 1 is the special case $r = 2$ of Theorem 4. The next family of graphs shows that Theorem 4 is best possible in the sense that

$$m = \left[\frac{r-1}{2r} \left(n^2 + 2 \left[\frac{r\delta}{r-1} \right]^2 - 2n \left[\frac{r\delta}{r-1} \right] \right) \right] + \delta - 1,$$

does not guarantee $\lambda = \delta$.

Example 5. Let $r \geq 2$ and $q \geq 1$ be integers. Let H_1 and H_2 be two disjoint copies of the complete r-partite graph with q vertices in each partite set. Define H as the union of H_1 and H_2 by adding $\delta - 1 = q(r-1) - 1$ edges between H_1 and H_2 such that $\omega(H) \leq r$. Then H has order $n = 2qr$, minimum degree $\delta = q(r-1)$ such that

$$m(H) = q^2r(r-1) + q(r-1) - 1$$

$$= \left[\frac{r-1}{2r} \left(n^2 + 2 \left[\frac{r\delta}{r-1} \right]^2 - 2n \left[\frac{r\delta}{r-1} \right] \right) \right] + \delta - 1,$$

but obviously, $\lambda(H) = \delta(H) - 1$.
3. SUPER EDGE-CONNECTED GRAPHS

Theorem 6. Let \(r \geq 2 \) be an integer, and let \(G \) be a connected graph of order \(n \), size \(m \), minimum degree \(\delta \geq 2 \), edge-connectivity \(\lambda \) and \(\omega(G) \leq r \). If \(\delta \geq 3 \) or \(r \geq 3 \) and

\[
m > \left\lfloor \frac{r-1}{2r} \left(n^2 + 2 \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right)^2 - 2n \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right) \right) \right\rfloor + \delta,
\]

then \(G \) is super-\(\lambda \).

Proof. Suppose to the contrary that \(G \) is not super-\(\lambda \). Then there exist two disjoint sets \(X, Y \subset V(G) \) such that \(X \cup Y = V(G) \), \(|X|, |Y| \geq 2 \) and \(|[X, Y]| = \lambda \). Assume, without loss of generality, that \(2 \leq |X| \leq |Y| \).

We first show that \(X \) contains at most \(\delta - 1 \) vertices. Otherwise, suppose that \(X \) contains at most \(\delta - 1 \) vertices. Then we obtain

\[
\delta |X| \leq \sum_{x \in X} d_G(x) \leq |X|(|X| - 1) + \lambda \leq (\delta - 1)(|X| - 1) + \delta,
\]

which implies that \(|X| \leq 1 \), contradicting that \(|X| \geq 2 \). Thus \(|X| \geq \delta \).

Next we show that \(|X| \geq \left\lfloor (r\delta)/(r-1) \right\rfloor - 1 \). If \(\delta = 2 \) and \(r \geq 3 \), then

\[
|X| \geq \delta = 2 \geq \left\lfloor (2r)/(r-1) \right\rfloor - 1 = \left\lfloor (r\delta)/(r-1) \right\rfloor - 1.
\]

Let now \(\delta \geq 3 \). Suppose to the contrary that \(X \) contains at most \(\left\lfloor (r\delta)/(r-1) \right\rfloor - 2 \) vertices. Since \(2|E(G[X])| = \sum_{x \in X} d_G(x) - \lambda \), we conclude from (1) that

\[
|X| \delta \leq \sum_{x \in X} d_G(x) \leq 2 \left\lfloor \frac{(r-1)|X|^2}{2r} \right\rfloor + \lambda \leq \frac{(r-1)|X|^2}{r} + \delta
\]

\[
\leq |X| \frac{r-1}{r} \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 2 \right) + \delta \leq |X| \frac{r-1}{r} \left(\frac{r\delta}{r-1} - 2 \right) + \delta
\]

\[
= |X| \delta - \frac{2(r-1)}{r} |X| + \delta.
\]

and thus \(|X| \leq \frac{r\delta}{2(r-1)} \). Using this argument once more, we arrive at

\[
|X| \delta \leq \frac{(r-1)|X|^2}{r} + \delta \leq |X| \frac{r-1}{r} \cdot \frac{r\delta}{2(r-1)} + \delta = \frac{|X| \delta}{2} + \delta
\]

and thus \(|X| \leq 2 \), which contradicts the fact that \(3 \leq \delta \leq |X| \). Hence we have shown that \(|X| \geq \left\lfloor (r\delta)/(r-1) \right\rfloor - 1 \) when \(\delta \geq 3 \) or \(r \geq 3 \). Since \(|X| + |Y| = n \)
and $|X| \leq n/2$, the inequalities (1) and (2) lead to

$$m = |E(G[X])| + |E(G[Y])| + \lambda \leq \left\lfloor \frac{(r-1)|X|^2}{2r} \right\rfloor + \left\lfloor \frac{(r-1)|Y|^2}{2r} \right\rfloor + \delta$$

$$= \left\lfloor \frac{(r-1)|X|^2}{2r} \right\rfloor + \left\lfloor \frac{(r-1)(n-|X|)^2}{2r} \right\rfloor + \delta$$

$$\leq \left\lfloor \frac{(r-1)}{2r} (|X|^2 + (n-|X|)^2) \right\rfloor + \delta$$

$$= \left\lfloor \frac{(r-1)}{2r} (n^2 + 2(|X|^2 - n|X|)) \right\rfloor + \delta$$

$$\leq \left\lfloor \frac{(r-1)}{2r} \left(n^2 + 2 \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right)^2 - 2n \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right) \right) \right\rfloor + \delta,$$

a contradiction to the hypothesis. Thus G is super-λ. \hfill \qed

Theorem 2 is the special case $r = 2$ of Theorem 6. The next family of graphs shows that Theorem 6 is best possible in the sense that

$$m = \left\lfloor \frac{r-1}{2r} \left(n^2 + 2 \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right)^2 - 2n \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right) \right) \right\rfloor + \delta$$

does not guarantee that the graph is super-λ.

Example 7. Let $r \geq 2$ and $q \geq 3$ be integers. Let H_1 be the complete r-partite graph with $q-1$ vertices in one partite set and q vertices in $r-1$ partite sets, and let H_2 be the complete r-partite graph with q vertices in each partite set. Define H as the union of H_1 and H_2 by adding $\delta = q(r-1)$ edges between H_1 and H_2 such that $\omega(H) \leq r$ and $\delta(H) = \delta = q(r-1)$. Then H has order $n = 2qr - 1$, minimum degree $\delta = q(r-1)$ such that

$$m(H) = q^2 r^2 - q^2 r$$

$$= \left\lfloor \frac{r-1}{2r} \left(n^2 + 2 \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right)^2 - 2n \left(\left\lfloor \frac{r\delta}{r-1} \right\rfloor - 1 \right) \right) \right\rfloor + \delta$$

but obviously, H is not super-λ.

Our last example demonstrates that Theorem 6 is not valid for $\delta = 2$ and $r = 2$ in general.

Example 8. Let $q \geq 2$ be an integer, and let $K_{q,q}$ be the complete bipartite graph with the partite sets $X = \{x_1, x_2, \ldots, x_q\}$ and $Y = \{y_1, y_2, \ldots, y_q\}$, and let u and v be two further vertices. Define the graph H as the union of $K_{q,q}$, u and
v together with the edges uv, ux1 and vx2. Then H has order \(n(H) = 2q + 2 \), minimum degree \(\delta(H) = 2 \) and \(\omega(H) \leq 2 \). Furthermore,

\[
m(H) = q^2 + 3 > q^2 - q + 4
= \left\lfloor \frac{r - 1}{2r} \left(n^2 + 2 \left(\left\lfloor \frac{r \delta}{r - 1} \right\rfloor - 1 \right)^2 - 2n \left(\left\lfloor \frac{r \delta}{r - 1} \right\rfloor - 1 \right) \right) \right\rfloor + \delta
\]

but \(H \) is not super-\(\lambda \).

REFERENCES

Received 8 June 2017
Revised 19 October 2017
Accepted 23 October 2017