FAIR DOMINATION NUMBER IN CACTUS GRAPHS

Majid Hajian
Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

AND

Nader Jafari Rad
Department of Mathematics
Shahed University, Tehran, Iran
e-mail: n.jafarirad@gmail.com

Abstract

For $k \geq 1$, a k-fair dominating set (or just kFD-set) in a graph G is a dominating set S such that $|N(v) \cap S| = k$ for every vertex $v \in V \setminus S$. The k-fair domination number of G, denoted by $fd_k(G)$, is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer $k \geq 1$. The fair domination number, denoted by $fd(G)$, of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, aiming to provide a particular answer to a problem posed in [Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914], we present a new upper bound for the fair domination number of a cactus graph, and characterize all cactus graphs G achieving equality in the upper bound of $fd_1(G)$.

Keywords: fair domination, cactus graph, unicyclic graph.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology not given here, we follow [10]. Specifically, let G be a graph with vertex set $V(G) = V$ of order $|V| = n$ and let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E(G)\}$ and
the closed neighborhood of \(v \) is \(N_G(v) = \bigcup_{v \in S} N_G(v) \). If the graph \(G \) is clear from the context, we simply write \(N(v) \) rather than \(N_G(v) \). The degree of a vertex \(v \), is \(\text{deg}(v) = |N(v)| \). A vertex of degree one is called a leaf and its neighbor a support vertex. We denote the set of leaves and support vertices of a graph \(G \) by \(L(G) \) and \(S(G) \), respectively. A strong support vertex is a support vertex adjacent to at least two leaves, and a weak support vertex is a support vertex adjacent to precisely one leaf. For a set \(S \subseteq V \), its open neighborhood is the set \(N(S) = \bigcup_{v \in S} N(v) \), and its closed neighborhood is the set \(N[S] = N(S) \cup S \).

The corona graph \(cor(G) \) of a graph \(G \) is a graph obtained by adding a leaf to every vertex of \(G \). We denote by \(P_n \) a path on \(n \) vertices. The distance \(d(u,v) \) between two vertices \(u \) and \(v \) in a graph \(G \) is the minimum number of edges of a path from \(u \) to \(v \). The diameter \(\text{diam}(G) \) of \(G \) is \(\max_{u,v \in V(G)} d(u,v) \). A path of length \(\text{diam}(G) \) is called a diametrical path. A cactus graph is a connected graph in which any two cycles have at most one vertex in common. For a subset \(S \) of vertices of \(G \), we denote by \(G[S] \) the subgraph of \(G \) induced by \(S \).

A subset \(S \subseteq V \) is a dominating set of \(G \) if every vertex not in \(S \) is adjacent to a vertex in \(S \). The domination number of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality of a dominating set of \(G \). A vertex \(v \) is said to be dominated by a set \(S \) if \(N(v) \cap S \neq \emptyset \).

Caro et al. [1] studied the concept of fair domination in graphs. For \(k \geq 1 \), a \(k \)-fair dominating set, abbreviated \(k \text{FD-set} \), in \(G \) is a dominating set \(S \) such that \(|N(v) \cap D| = k \) for every vertex \(v \in V \setminus D \). The \(k \)-fair domination number of \(G \), denoted by \(fd_k(G) \), is the minimum cardinality of a \(k \text{FD-set} \). A \(k \text{FD-set} \) of \(G \) of cardinality \(fd_k(G) \) is called a \(fd_k(G) \)-set. A fair dominating set, abbreviated \(\text{FD-set} \), in \(G \) is a \(1 \text{FD-set} \) for some integer \(k \geq 1 \). The fair domination number, denoted by \(fd(G) \), of a graph \(G \) that is not the empty graph is the minimum cardinality of an \(\text{FD-set} \) in \(G \). An \(\text{FD-set} \) of \(G \) of cardinality \(fd(G) \) is called a \(fd(G) \)-set.

A perfect dominating set in a graph \(G \) is a dominating set \(S \) such that every vertex in \(V(G) \setminus S \) is adjacent to exactly one vertex in \(S \). Hence a \(1 \text{FD-set} \) is precisely a perfect dominating set. The concept of perfect domination was introduced by Cockayne et al. in [4], and Fellows et al. [7] with a different terminology which they called semiperfect domination. This concept was further studied, see for example, [2, 3, 5, 6, 9].

Observation 1 (Caro et al. [1]). Every \(1 \text{FD-set} \) in a graph contains all its strong support vertices.

The following is easily verified.

Observation 2. Let \(S \) be a \(1 \text{FD-set} \) in a graph \(G \), \(v \) a support vertex of \(G \) and \(v' \) a leaf adjacent to \(v \). If \(S \) contains a vertex \(u \in N_G(v) \setminus \{v'\} \), then \(v \in S \).
Among other results, Caro et al. [1] proved that $fd(G) \leq n - 2$ for any connected graph G of order $n \geq 3$ with no isolated vertex, and constructed an infinite family of connected graphs achieving equality in this bound. They showed that $fd(G) < 17n/19$ for any maximal outerplanar graph G of order n, and $fd(T) \leq n/2$ for any tree T of order $n \geq 2$. They then showed that equality for the bound $fd(T) \leq n/2$ holds if and only if T is the corona of a tree. Among open problems posed by Caro et al. [1], one asks to find $fd(G)$ for other families of graphs.

Problem 3 (Caro et al. [1]). Find $fd(G)$ for other families of graphs.

In this paper, aiming to study Problem 3, we present a new upper bound for the 1-fair domination number of cactus graphs and characterize all cactus graphs achieving equality for the upper bound. We show that if G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $fd_1(G) \leq (n-1)/2 + k$. We also characterize all cactus graphs achieving equality for the upper bound.

2. Unicyclic Graphs

Fair domination in unicyclic graphs has been studied in [8]. A vertex v of a cactus graph G is a *special vertex* if $\deg_G(v) = 2$ and v belongs to a cycle of G. Let \mathcal{H}_1 be the class of all graphs G that can be obtained from the corona $cor(C)$ of a cycle C by removing precisely one leaf of $cor(C)$. Let \mathcal{G}_1 be the class of all graphs G that can be obtained from a sequence $G_1, G_2, \ldots, G_s = G$, where $G_1 \in \mathcal{H}_1$, and if $s \geq 2$, then G_{j+1} is obtained from G_j by one of the following Operations O_1 or O_2, for $j = 1, 2, \ldots, s - 1$.

Operation O_1. Let v be a vertex of G_j with $\deg(v) \geq 2$ such that v is not a special vertex of G_j. Then G_{j+1} is obtained from G_j by adding a path P_2 and joining v to a leaf of P_2.

Operation O_2. Let v be a leaf of G_j. Then G_{j+1} is obtained from G_j by adding two leaves to v.

Lemma 4 [8]. If $G \in \mathcal{G}_1$, then every 1FD-set in G contains every vertex of G of degree at least two.

Theorem 5 [8]. If G is a unicyclic graph of order n, then $fd_1(G) \leq (n+1)/2$, with equality if and only if $G = C_5$ or $G \in \mathcal{G}_1$.

3. Main Result

Our aim in this paper is to give an upper bound for the fair domination number of a cactus graph G in terms of the number of cycles of G, and then characterize
all cactus graphs achieving equality for the proposed bound. For this purpose we first introduce some families of graphs. Let H_i and G_i be the families of unicyclic graphs described in Section 2. For $i = 2, 3, \ldots, k$, we construct a family H_i from G_{i-1}, and a family G_i from H_i as follows.

• Family H_i. Let H_i be the family of all graphs H_i such that H_i can be obtained from a graph $H_1 \in H_1$ and a graph $G \in G_{i-1}$, by the following Procedure.

Procedure A. Let $w_0 \in V(H_1)$ be a support vertex of H_1, and $w \in V(G_{i-1})$ be a support vertex of G_{i-1}. We remove precisely one leaf adjacent to w_0 and precisely one leaf adjacent to w, and then identify the vertices w_0 and w.

• Family G_i. Let G_i be the family of all graphs G that can be obtained from a sequence $G_1, G_2, \ldots, G_s = G$, where $G_1 \in H_i$, and if $s \geq 2$ then G_{j+1} is obtained from G_j by one of the Operations O_1 or O_2, described in Section 2, for $j = 1, 2, \ldots, s-1$.

Note that $H_i \subseteq G_i$, for $i = 1, 2, \ldots, k$. Figure 1 demonstrates the construction of the family G_k.

We will prove the following.

Theorem 6. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $fd_1(G) \leq (n-1)/2 + k$, with equality if and only if $G = C_5$ or $G \in G_k$.

Corollary 7. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $fd(G) \leq (n-1)/2 + k$.

4. Preliminary Results and Observations

4.1. Notation

We call a vertex w in a cycle C of a cactus graph G a *special cut-vertex* if w belongs to a shortest path from C to a cycle $C' \neq C$. We call a cycle C in a cactus graph G, a *leaf-cycle* if C contains exactly one special cut-vertex. In the
Figure 2. C_i is a leaf-cycle for $i = 1, 2, 3$ and v_j is a special cut-vertex for $j = 1, 2, \ldots, 8$.

cactus graph presented in Figure 2, v_i is a special cut-vertex, for $i = 1, 2, \ldots, 8$. Moreover, C_j is a leaf-cycle for $j = 1, 2, 3$.

Observation 8. Every cactus graph with at least two cycles contains at least two leaf-cycles.

4.2. Properties of the family \mathcal{G}_k

The following observation can be proved by a simple induction on k.

Observation 9. If $G \in \mathcal{G}_k$ is a cactus graph of order n, then the following conditions are satisfied.

1. No cycle of G contains a strong support vertex. Furthermore, any cycle of G contains precisely one special vertex.
2. n is odd.
3. $|L(G)| = (n + 1)/2 - k$.
4. If a vertex v of G belongs to at least two cycles of G, then v is not a support vertex, and v belongs to precisely two cycles of G.

Observation 10. Let $G \in \mathcal{G}_k$. Let G be obtained from a sequence $G_1, G_2, \ldots, G_s = G$ ($s \geq 2$) such that $G_1 \in \mathcal{H}_1$ and G_{j+1} is obtained from G_j by one of the Operations O_1 or O_2 or procedure A, for $j = 1, 2, \ldots, s - 1$. If v is a vertex of G belonging to two cycles of G then there is an integer $i \in \{2, 3, \ldots, s\}$ such that G_i is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in \mathcal{H}_1$, such that v belongs to a cycle of G_{i-1}.

Observation 11. Assume that $G \in \mathcal{G}_k$ and $v \in V(G)$ is a vertex of degree four belonging to two cycles. Let D_1 and D_2 be the components of $G - v$, G^*_1 be the
Let \(G \in \mathcal{G}_k \). Thus \(G \) is obtained from a sequence \(G_1, G_2, \ldots, G_s = G \) (\(s \geq 2 \)) such that \(G_1 \in \mathcal{H}_1 \) and \(G_{j+1} \) is obtained from \(G_j \) by one of the Operations \(O_1 \) or \(O_2 \) or procedure \(A \), for \(j = 1, 2, \ldots, s - 1 \). Note that \(s \geq k \). We define the \(j \)-th Procedure-Operation, or just \(PO_j \) as one of the Operation \(O_1 \), Operation \(O_2 \), or Procedure \(A \) that can be applied to obtain \(G_{j+1} \) from \(G_j \). Thus \(G \) is obtained from \(G_1 \) by Procedure-Operations \(PO_1, PO_2, \ldots, PO_{s-1} \).

Let \(v \) be a vertex of \(G \) of degree four belonging to two cycles of \(G \), and \(D_1 \) and \(D_2 \) be the components of \(G - v \). By Observation 10, there is an integer \(i \in \{2, 3, \ldots, s\} \) such that \(G_i \) is obtained from \(G_{i-1} \) by applying Procedure \(A \) on the vertex \(v \) using a graph \(H \in \mathcal{H}_1 \). Note that \(v \) is a support vertex of \(G_{i-1} \). Let \(v^* \) be the leaf of \(v \) in \(G_{i-1} \) that is removed in Procedure \(A \). Clearly, either \(V(G_{i-1}) \cap D_1 \neq \emptyset \) or \(V(G_{i-1}) \cap D_2 \neq \emptyset \). Without loss of generality, assume that \(V(G_{i-1}) \cap D_1 \neq \emptyset \). Among \(PO_1, PO_{i+1}, \ldots, PO_{s-1} \), let \(PO_{r_1}, PO_{r_2}, \ldots, PO_{r_l} \), be the Procedure-Operations applied on a vertex of \(D_1 \), where \(1 \leq t \leq s - 1 \). Let \(G_{r_0} = G_{i-1} \) and \(G_{r_{l+1}} \) be obtained from \(G_{r_l} \) by \(PO_{r_{l+1}} \), for \(l = 0, 1, 2, \ldots, t - 1 \). Clearly by an induction on \(t \), we can deduce that there is an integer \(k^* < k \) such that \(G_{r_t} \in \mathcal{G}_{k^*} \). Note that \(G_{r_t} = G_{i-1}^* \).

Lemma 12. If \(G \in \mathcal{G}_k \), then every 1FD-set in \(G \) contains every vertex of \(G \) of degree at least two.

Proof. Let \(G \in \mathcal{G}_k \), and \(S \) be a 1FD-set in \(G \). We prove by an induction on \(k \), namely first-induction, to show that \(S \) contains every vertex of \(G \) of degree at least two. For the base step, if \(k = 1 \) then \(G \in \mathcal{G}_1 \), and the result follows by Lemma 4. Assume the result holds for all graphs \(G' \in \mathcal{G}_{k'} \) with \(k' < k \). Now consider the graph \(G \in \mathcal{G}_k \), where \(k > 1 \). Clearly, \(G \) is obtained from a sequence \(G_1, G_2, \ldots, G_l = G \), of cactus graphs such that \(G_1 \in \mathcal{H}_k \), and if \(l \geq 2 \), then \(G_{i-1} \) is obtained from \(G_i \) by one of the operations \(O_1 \) or \(O_2 \) for \(i = 1, 2, \ldots, l - 1 \).

We employ an induction on \(l \), namely second-induction, to show that \(S \) contains every vertex of \(G \) of degree at least two.

For the base step of the second-induction, let \(l = 1 \). Thus \(G \in \mathcal{H}_k \). By the construction of graphs in the family \(\mathcal{H}_k \), there are graphs \(H \in \mathcal{H}_1 \) and \(G' \in \mathcal{G}_{k-1} \) such that \(G \) is obtained from \(H \) and \(G' \) by Procedure \(A \). Clearly, \(H \) is obtained from the corona \(\text{cor}(C) \) of a cycle \(C \), by removing precisely one leaf of \(\text{cor}(C) \). Let \(C = c_0c_1 \cdots c_rc_0 \), where \(c_0 \) is the support vertex of \(H \) that its leaf is removed according to Procedure \(A \). Since \(H \) has precisely one special vertex, let \(c_t \) be the special vertex of \(H \). Let \(w \in V(G') \) be a support vertex of \(G' \) that its leaf, say \(w' \), is removed to obtain \(G \) according to Procedure \(A \). First we show that \(\{c_1, c_r\} \cap S \neq \emptyset \). Clearly \(S \cap \{c_{t-1}, c_t, c_{t+1}\} \neq \emptyset \), since \(\text{deg}_G(c_t) = 2 \). Assume that
c_t \in S$. Since at least one of c_{t-1} or c_{t+1} is a support vertex, by Observation 2,
\{c_{t-1}, c_{t+1}\} \cap S \neq \emptyset$. By applying Observation 2, we obtain that
\{c_1, c_r\} \cap S \neq \emptyset, since any vertex of \{c_1, \ldots, c_r\} \setminus \{c_t\} is a support vertex of G. Thus assume that
c_t \notin S$. Then \{c_{t-1}, c_{t+1}\} \cap S \neq \emptyset, and so \{c_1, c_r\} \cap S \neq \emptyset, since any vertex of
\{c_1, \ldots, c_r\} \setminus \{c_t\} is a support vertex of G. Hence, \{c_1, c_r\} \cap S \neq \emptyset. If $c_0 \notin S$, then
\(S \cap V(G')) \cup \{w'\}\) is a 1FD-set for G', and thus by the first-inductive hypothesis,
S contains $w = c_0$, a contradiction. Thus $c_0 \in S$. By Observation 2, $V(C) \subseteq S$,
since any vertex of \{c_1, \ldots, c_r\} \setminus \{c_t\} is a support vertex of G. Thus $S \cap V(G')$ is
a 1FD-set for G'. By the first-inductive hypothesis, \(S \cap V(G')\) contains
every vertex of G' of degree at least two. Consequently, S contains every vertex of G
of degree at least two. We conclude that the base step of the second-induction
holds.

Assume that the result (for the second-induction) holds for $2 \leq l' < l$. Now let
$G = G_l$. Clearly G is obtained from G_{l-1} by applying one of the Operations
O_1 or O_2.

Assume that G is obtained from G_{l-1} by applying Operation O_2. Let x be a
leaf of G_{l-1} and G be obtained from G_{l-1} by adding two leaves x_1 and x_2 to x.
By Observation 1, $x \in S$. Thus S is a 1FD-set for G_{l-1}. By the second-inductive hypothesis
S contains all vertices of G_{l-1} of degree at least two. Consequently, S contains every vertex of G_k of degree at least two.

Next assume that G is obtained from G_{l-1} by applying Operation O_1. Let
x_1x_2 be a path and x_1 is joined to $y \in V(G_{l-1})$, where $\deg_{G_{l-1}}(y) \geq 2$ and y
is not a special vertex of G_{l-1}. Observe that \{x_1, x_2\} \cap S \neq \emptyset. If $x_1 \notin S$, then
x_2 \in S and $y \notin S$. Then $S \setminus \{x_2\}$ is a 1FD-set for G_{l-1} that does not contain y,
a contradiction by the second-inductive hypothesis. Thus assume that $x_1 \in S$.
Suppose that $y \notin S$. Clearly $N_{G_{l-1}}(y) \cap S = \emptyset$.

Assume that there exists a component G'_l of $G_{l-1} - y$ such that $|V(G'_l) \cap
N_{G_{l-1}}(y)| = 1$. Then clearly $S' = (S \cap V(G_{l-1})) \cup V(G'_l)$ is a 1FD-set for
G_{l-1}, and by the second-inductive hypothesis S' contains every vertex of G_{l-1} of degree at least two. Thus $y \in S'$, and so $y \in S$, a contradiction. Next assume that
every component of $G_{l-1} - y$ has at least two vertices in $N_{G_{l-1}}(y)$. Since y
is a non-special vertex of G_{l-1}, y belongs to at least two cycles of G_{l-1}. By
Observation 9(4), y belongs to exactly two cycles of G_{l-1}. Thus $\deg_{G_{l-1}}(y) = 4$.
By Observation 11, $G_{l-1} - y$ has exactly two components D_1 and D_2. Let G^*
be a graph obtained from $D_1 \cup \{v\}$ or $D_2 \cup \{v\}$, by adding a leaf v^* to y. Then
there exists $k' \leq k$ such that $G^* \in G_{k'}$. Evidently, $S^* = (S \cap V(G^*)) \cup \{v^*\}$
is a 1FD-set for G^*, and so by the first-inductive hypothesis, S^* contains every vertex of G^* of degree at least two (since $G^* \in G_{k'}$). Thus $y \in S^*$, and so $y \in S$, a contradiction. We conclude that $y \in S$. Observe that $S \cap V(G_{l-1})$ is a 1FD-set
for G_{l-1}, and so by the second-inductive hypothesis, $S \cap V(G_{l-1})$ contains every
vertex of G_{l-1} of degree at least two. Consequently S contains every vertex of G.
of degree at least two.

As a consequence of Observation 9(3) and Lemma 12, we obtain the following.

Corollary 13. If $G \in \mathcal{G}_k$ is a cactus graph of order n, then $V(G) \setminus L(G)$ is the unique $fd_1(G)$-set.

5. Proof of Theorem 6

We first establish the upper bound by proving the following.

Theorem 14. If G is a cactus graph of order n with $k \geq 1$ cycles, then $fd_1(G) \leq (n(G) - 1)/2 + k$.

Proof. The result follows by Theorem 5 if $k = 1$. Thus assume that $k \geq 2$. Suppose to the contrary that $fd_1(G) > (n(G) - 1)/2 + k$. Assume that G has the minimum order, and among all such graphs, we may assume that the size of G is minimum. Let C_1, C_2, \ldots, C_k be the k cycles of G. Let C_i be a leaf-cycle of G, where $i \in \{1, 2, \ldots, k\}$. Let $C_i = u_0u_1 \cdots u_ku_0$, where u_0 is a special cut-vertex of G. Assume that $deg_{G}(u_j) = 2$ for each $j = 1, 2, \ldots, l$. Let $G' = G - u_1u_2$. Then by the choice of G, $fd_1(G') \leq (n(G') - 1)/2 + k - 1 = (n(G) - 1)/2 + k - 1$. Let S' be a $fd_1(G')$-set. Now if $|S' \cap \{u_1, u_2\}| \in \{0, 2\}$, then S' is a 1FD-set for G, a contradiction. Thus $|S' \cap \{u_1, u_2\}| = 1$. Assume that $u_1 \in S'$. Then $u_3 \in S'$, and so $\{u_2\} \cup S'$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction. If $u_2 \in S'$, then $u_0 \in S'$, and $\{u_1\} \cup S'$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction. We deduce that $deg_{G}(u_i) \geq 3$ for some $i \in \{1, 2, \ldots, l\}$. Let v_d be a leaf of G such that $d(v_d, C_i - u_0)$ is as maximum as possible, and the shortest path from v_d to C_i does not contain u_0. Let $v_0v_1 \cdots v_{d-1}$ be the shortest path from v_d to C_i with $v_0 \in C_i$. Assume that $d \geq 2$. Assume that $deg_{G}(v_{d-1}) = 2$. Let $G' = G - \{v_d, v_{d-1}\}$. By the choice of G, $fd_1(G') \leq (n(G') - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_{d-2} \in S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set in G, and if $v_{d-2} \notin S'$, then $S' \cup \{v_d\}$ is a 1FD-set in G. Thus $fd_1(G) \leq (n - 1)/2 + k$, a contradiction. Thus assume that $deg_{G}(v_{d-1}) \geq 3$. Clearly any vertex of $N_G(v_{d-1}) \setminus \{v_{d-2}\}$ is a leaf. Let G' be obtained from G by removing all leaves adjacent to v_{d-1}. By the choice of G, $fd_1(G') \leq (n(G') - 1)/2 + k$, since G has the minimum order among all graphs H with 1-fair domination number more than $(n(H) - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_{d-1} \in S'$, then S' is a 1FD-set in G, a contradiction. Thus assume that $v_{d-1} \notin S'$. Then $S' \cup \{v_{d-1}\}$ is a 1FD-set in G of cardinality at most $(n(G') - 1)/2 + k + 1 \leq (n(G) - 1)/2 + k$, a contradiction.

We thus assume that $d = 1$. Assume that u_i is a vertex of C_i such that $deg_{G}(u_i) = 2$. Assume that $deg_{G}(u_{i+1}) = 2$. Let $G' = G - u_iu_{i+1}$. By the
If $n \geq f_d(G)$, we prove by induction on n. Let S' be a $f_d(G)$-set. If $|S' \cap \{u_1, u_{i+1}\}| \in \{0, 2\}$, then S' is a 1FD-set for G, a contradiction. Then $|S' \cap \{u_i, u_{i+1}\}| = 1$. Assume that $u_i \in S'$. Then $u_{i+1} \in S'$ and so $\{u_{i+1}\} \cup S'$ is a 1FD-set in G of cardinality at most $\frac{n(G) - 1}{2} + k$, a contradiction. Thus $\deg_G(u_{i+1}) \geq 3$, and similarly $\deg_G(u_{i-1}) \geq 3$. Since C_i is a leaf-cycle, it has precisely one special cut-vertex. Thus we may assume, without loss of generality, that u_{i+1} is a support vertex of G. Let $G' = G - u_{i-1}$. By the choice of G, $f_d(G') \leq (n(G') - 1)2 + k - 1$. Let S' be a $f_d(G')$-set. By Observation 1, $u_{i+1} \in S'$. If $u_{i-1} \notin S'$, then S' is a 1FD-set in G of cardinality at most $\frac{n(G) - 1}{2} + k - 1$, a contradiction. Thus $u_{i-1} \in S'$. Then $S' \cup \{u_i\}$ is a 1FD-set in G of cardinality at most $\frac{n(G) - 1}{2} + k$, a contradiction.

We conclude that $\deg_G(u_i) \geq 3$ for $i = 0, 1, \ldots, l$. Furthermore, u_i is a support vertex for $i = 1, 2, \ldots, l$. Assume that u_i is a strong support vertex for some $i \in \{1, 2, \ldots, l\}$. Let G' be obtained from G by removal of all vertices in $\bigcup_{i=1}^l (N[u_i]) \setminus \{u_0, u_1, u_l\}$. Clearly u_0 is a strong support vertex of G'. By the choice of G, $f_d(G') \leq (n(G') - 1)2 + k - 1 \leq (n(G) - 2l + 1 + 2 - 1)/2 + k - 1$, since u_i is a strong support vertex of G. By Observation 1, $u_0 \in S'$, and so $S' \cup \{u_1, \ldots, u_l\}$ is a 1FD-set in G' of cardinality at most $\frac{n(G) - (2l + 1)2 - 1}{2} + k - 1 + l = n(G)/2 - k - 1$, a contradiction. Thus u_i is a weak support vertex, for each $i = 1, 2, \ldots, l$. Let G' be obtained from G by removal of any vertex in $\bigcup_{i=1}^l (N[u_i]) \setminus \{u_0\}$. By the choice of G, $f_d(G') \leq (n(G') - 1)2 + k - 1$. Let S' be a $f_d(G')$-set. If $u_0 \notin S'$, then $S' \cup \{u_1, \ldots, u_l\}$ is a 1FD-set in G of cardinality at most $\frac{n(G) - 1}{2} + k$, where u_i is the leaf adjacent to u_i, for $i = 1, 2, \ldots, l$. This is a contradiction. Thus $u_0 \in S'$. Then $S' \cup \{u_1, \ldots, u_l\}$ is a 1FD-set in G of cardinality at most $\frac{n(G) - 1}{2} + k - 1$, a contradiction.

If G is a cactus graph of order n with $k \geq 1$ cycles and $f_d(G) = (n - 1)/2 + k$, then clearly $n \geq 3$ is odd, and since $f_d(C_3) \neq 2$, we have $n \geq 5$. It is obvious that $f_d(C_3) = 3 = (5 - 1)/2 + 1$.

Theorem 15. If $G \neq C_5$ is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f_d(G) = (n - 1)/2 + k$ if and only if $G \in \mathcal{G}_k$.

Proof. We prove by an induction on k to show that any cactus graph G of order $n \geq 5$ with $k \geq 1$ cycles and $f_d(G) = (n - 1)/2 + k$ belongs to \mathcal{G}_k. The base step of the induction follows by Theorem 5. Assume the result holds for all cactus graphs G' with $k' < k$ cycles. Now let G be a cactus graph of order n with $k \geq 2$ cycles and $f_d(G) = (n - 1)/2 + k$. Clearly n is odd. Suppose to the contrary that $G \notin \mathcal{G}_k$. Assume that G has the minimum order, and among all such graphs, assume that the size of G is minimum. By Observation 8, G has at least two leaf-cycles. Let $C_1 = c_0c_1 \cdots c_rc_0$ and $C_2 = c'_0c'_1 \cdots c'_rc'_0$, be two leaf-cycles of
G, where c_0 and c'_0 are two special cut-vertices of G. Let G'_1 be the component of $G - c_0 c_1 - c_0 c_r$ containing c_1, and G''_r be the component of $G - c'_0 c'_1 - c'_0 c'_r$, containing c'_1.

Claim 1. $V(G'_1) \neq \{c_1, \ldots, c_r\}$, and $V(G''_r) \neq \{c'_1, \ldots, c'_r\}$.

Proof. Suppose that $V(G'_1) = \{c_1, \ldots, c_r\}$. Then $\deg_G(c_i) = 2$ for $i = 1, 2, \ldots, r$. Let $G^* = G-c_1 c_2$, and S^* be a $d_1(G^*)$-set. By Theorem 14, $d_1(G^*) \leq (n(G^*)-1)/2+k-1 = (n(G)-1)/2+k-1$. Assume that $r = 2$. Then c_0 is a strong support vertex of G^*, and by Observation 1, $c_0 \in S^*$. Thus $|S^* \cap \{c_1, c_2\}| = 0$, and so S^* is a 1FD-set in G of cardinality at most $(n(G)-1)/2+k-1 < (n(G)-1)/2+k$, a contradiction. Assume that $r = 3$. If $|S^* \cap \{c_1, c_2\}| \in \{0, 2\}$, then S^* is a 1FD-set in G of cardinality at most $(n(G)-1)/2+k-1 < (n(G)-1)/2+k$, a contradiction. Thus $|S^* \cap \{c_1, c_2\}| = 1$. If $c_1 \in S^*$, then $c_3 \in S^*$, and so $c_0 \in S^*$. Then $S^* \setminus \{c_1\}$ is a 1FD-set in G^*, a contradiction. Thus $c_1 \notin S^*$, and so $c_2 \in S^*$. Since c_1 is dominated by S^*, we obtain that $c_0 \in S^*$, and so $c_3 \in S^*$. Then $S^* \setminus \{c_2\}$ is a 1FD-set in G^*, a contradiction. Assume that $r = 4$. Suppose that $d_1(G^*) = (n(G^*)-1)/2+k-1$. Let $G''_r = G^* - \{c_2, c_3, c_4\}$. By Theorem 14, $d_1(G''_r) \leq (n(G'')-1)/2+k-3$, and thus $d_1(G''_r) \leq (n-1)/2+k-3$, since n is odd. Let S''_r be a $d_1(G''_r)$-set. If $c_0 \notin S''_r$, then $S''_r \cup \{c_3\}$ is a 1FD-set for G^* and if $c_0 \notin S''_r$, then $S''_r \cup \{c_3\}$ is a 1FD-set for G^*, thus $d_1(G''_r) \leq |S''_r| + 1 \leq (n-1)/2+k-2$, a contradiction. Thus $d_1(G''_r) < (n(G''_r)-1)/2+k-1 = (n(G)-1)/2+k-1$. If $|S''_r \cap \{c_1, c_2\}| \in \{0, 2\}$, then S''_r is a 1FD-set in G of cardinality at most $(n(G)-1)/2+k-1 < (n(G)-1)/2+k$, a contradiction. Thus $|S''_r \cap \{c_1, c_2\}| = 1$. Without loss of generality, assume that $c_1 \in S''_r$. Then $S''_r \cup \{c_3\}$ is a 1FD-set in G, and so $d_1(G) \leq |S''_r| + 1 < (n(G)-1)/2+k$, a contradiction. It remains to assume that $r \geq 5$. Suppose that $d_1(G^*) = (n(G^*)-1)/2+k-1$. Let $G''_2 = G^* - \{c_2, c_3, c_4\}$. By Theorem 14, $d_1(G''_2) \leq (n(G''_2)-1)/2+k-3$, and thus $d_1(G''_2) \leq (n-1)/2+k-3$, since n is odd. Let S''_2 be a $d_1(G''_2)$-set. If $c_5 \notin S''_2$, then $S''_2 \cup \{c_3\}$ is a 1FD-set for G''_2 and if $c_5 \notin S''_2$, then $S''_2 \cup \{c_3\}$ is a 1FD-set for G''_2. Thus $d_1(G''_2) \leq |S''_2| + 1 \leq (n-1)/2+k-2$, a contradiction. Thus $d_1(G''_2) < (n(G''_2)-1)/2+k-1 = (n(G)-1)/2+k-1$. If $|S''_2 \cap \{c_1, c_2\}| \in \{0, 2\}$, then S''_2 is a 1FD-set in G of cardinality at most $(n(G)-1)/2+k-1 < (n(G)-1)/2+k$, a contradiction. Thus $|S''_2 \cap \{c_1, c_2\}| = 1$. Without loss of generality, assume that $c_1 \in S''_2$. Then $S''_2 \cup \{c_2\}$ is a 1FD-set in G, and so $d_1(G) \leq |S''_2| + 1 < (n(G)-1)/2+k$, a contradiction. We conclude that $V(G'_1) \neq \{c_1, \ldots, c_r\}$. Similarly $V(G''_r) \neq \{c'_1, \ldots, c'_r\}$. □

Let $v_d \in V(G'_1) \setminus \{c_1, \ldots, c_r\}$ be a leaf of G'_1 at maximum distance from $\{c_1, \ldots, c_r\}$, and assume that $v_0 v_1 \cdots v_d$ is the shortest path from v_d to $\{c_1, \ldots, c_r\}$, where $v_0 \in \{c_1, \ldots, c_r\}$. Likewise, let $v'_d \in V(G''_r) \setminus \{c'_1, \ldots, c'_r\}$ be a leaf of G''_r at maximum distance from $\{c'_1, \ldots, c'_r\}$, and assume that $v'_0 v'_1 \cdots v'_d$ is the shortest
path from v'_d to $\{c'_1, \ldots, c'_r\}$, where $v'_0 \in \{c'_1, \ldots, c'_r\}$. Without loss of generality, assume that $d' \leq d$.

Claim 2. Every support vertex of G is adjacent to at most two leaves.

Proof. Suppose that there is a support vertex $v \in S(G)$ such that v is adjacent to at least three leaves v_1, v_2 and v_3. Let $G' = G - \{v_1\}$, and let S' be a $fd_1(G')$-set. By Observation 1, $v \in S'$, and thus we may assume that $S' \cap \{v_2, v_3\} = \emptyset$. By Theorem 14, $|S'| \leq (n(G') - 1)/2 + k = (n-2)/2 + k$. Clearly S' is a 1FD-set for G, a contradiction.

Claim 3. If $d \geq 2$, then $G \in \mathcal{G}_k$.

Proof. Let $d \geq 2$. By Claim 2, $2 \leq deg_G(v_{d-1}) \leq 3$. Assume first that $deg_G(v_{d-1}) = 3$. Let $x \neq v_d$ be a leaf adjacent to v_{d-1}. Let $G' = G - \{x, v_d\}$. By Theorem 14, $fd_1(G') \leq (n(G') - 1)/2 + k$. Suppose that $fd_1(G') < (n(G') - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_{d-1} \in S'$, then S' is a 1FD-set for G and if $v_{d-1} \notin S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set for G. Thus $fd_1(G') \leq fd_1(G') + 1 < (n-1)/2 + k$, a contradiction. Hence, $fd_1(G') = (n(G') - 1)/2 + k$. By the choice of G, $G' \in \mathcal{G}_k$. Therefore G is obtained from G' by Operation O_2. Consequently, $G \in \mathcal{G}_k$. Next assume that $deg_G(v_{d-1}) = 2$. We consider the following cases.

Case 1. $d \geq 3$. Suppose that $deg_G(v_{d-2}) = 2$. Let $G' = G - \{v_{d-2}, v_{d-1}, v_d\}$. By Theorem 14, $fd_1(G') \leq (n(G') - 1)/2 + k = n/2 + k - 2$, and thus $fd_1(G') \leq (n-1)/2 + k - 2$, since n is odd. Let S' be a $fd_1(G')$-set. If $v_{d-3} \notin S'$, then $S' \cup \{v_d\}$ is a 1FD-set for G and if $v_{d-3} \notin S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set for G. Thus $fd_1(G) \leq |S'| + 1 \leq (n-1)/2 + k - 1$, a contradiction. Thus $deg_G(v_{d-2}) \geq 3$. Let $G' = G - \{v_{d-1}, v_d\}$. By Theorem 14, $fd_1(G') \leq (n(G') - 1)/2 + k$. Suppose that $fd_1(G') < (n(G') - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_{d-2} \notin S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set for G and if $v_{d-2} \notin S'$, then $S' \cup \{v_d\}$ is a 1FD-set for G. Thus $fd_1(G) \leq |S'| + 1 \leq fd_1(G') + 1 < (n-1)/2 + k$, a contradiction. We deduce that $fd_1(G') = (n(G') - 1)/2 + k$. By the choice of G, $G' \in \mathcal{G}_k$. Since $d \geq 3$, v_{d-2} is not a special vertex of G'. Thus G is obtained from G' by Operation O_1, and so $G \in \mathcal{G}_k$.

Case 2. $d = 2$. As noted, $deg(v_1) = 2$. Clearly $deg(v_0) \geq 3$. Assume first that $deg(v_0) \geq 4$. Let $G' = G - \{v_2, v_1\}$. By Theorem 14, $fd_1(G') \leq (n(G') - 1)/2 + k$. Suppose that $fd_1(G') < (n(G') - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_0 \in S'$, then $S' \cup \{v_1\}$ is a 1FD-set for G, and if $v_0 \notin S'$, then $S' \cup \{v_2\}$ is a 1FD-set for G. Thus $fd_1(G) \leq |S'| + 1 < (n-1)/2 + k$, a contradiction. Thus, $fd_1(G') = (n(G') - 1)/2 + k$. By the choice of G, $G' \in \mathcal{G}_k$. Since $deg_G(v_0) \geq 3$, v_0 is not a special vertex of G'. Hence G is obtained from G' by Operation O_1. Consequently, $G \in \mathcal{G}_k$. Thus we assume that $deg(v_0) = 3$. Let $G' = G - \{v_2, v_1\}$. By Theorem 14, $fd_1(G') \leq (n(G') - 1)/2 + k$. Suppose
that \(fd_1(G') < (n(G') - 1)/2 + k \). Let \(S' \) be a \(fd_1(G') \)-set. If \(v_0 \in S' \), then
\(S' \cup \{v_1\} \) is a 1FD-set for \(G \), and if \(v_0 \notin S' \), then
\(S' \cup \{v_2\} \) is a 1FD-set for \(G \). Thus
\(fd_1(G) \leq |S'| + 1 \leq fd_1(G') + 1 < (n-1)/2 + k \), a contradiction. Thus we
obtain that
\(fd_1(G') = (n(G') - 1)/2 + k \). By the choice of \(G, G' \in \mathcal{G}_k \). Then
\(v_0 \) is a special vertex of \(G' \). From Observation 9(1), we obtain that
\(\deg_{G'}(c_i) \geq 3 \) for each \(i \in \{1, \ldots, r\} \).

Suppose that \(N_G(c_j) \setminus V(C_1) \) contains no strong support vertex for each
\(j \in \{1, \ldots, r\} \). Observation 9(1) implies that \(c_j \) is not a strong support vertex of
\(G, \) since \(G' \in \mathcal{G}_k \). Assume that there is a vertex \(c_j \in \{ c_1, \ldots, c_r \} \) such that \(c_j \) has a
neighbor \(a \) which is a support vertex. By assumption, \(a \) is a weak support vertex.
If \(a' \) is the leaf adjacent to \(a \), then \(a' \) plays the role of \(v_d \). Since \(\deg(v_0) = 3 \), we
may assume that \(\deg(c_j) = 3 \). Thus by Observation 9(1), we may assume that
\(\deg_G(c_i) = 3 \) for each \(c_i \in \{ c_1, \ldots, c_r \} \). Let
\(F = \bigcup_{i=1}^{r}(N[c_i]) \setminus \{ c_0, \ldots, c_r \} \). Clearly
\(|F| = r \), since \(\deg_G(c_i) = 3 \) for each \(c_i \in \{ c_1, \ldots, c_r \} \). Let
\(F = \{ u_1, u_2, \ldots, u_r \}, \)
\(F' = \{ u_i \in F \mid \deg_G(u_i) = 1 \} \), and
\(F'' = F \setminus F' \). Then every vertex of \(F'' \) is a
weak support vertex. Since \(v_i \in F'' \), \(|F''| \geq 1 \). Now let
\(G' = G - v_0c_1 - c_0c_r, \) and \(G_1^* \) and \(G_2^* \) be the components of \(G^* \), where
\(c_1 \in V(G_2^*) \). By Theorem 14,
\(fd_1(G_2^*) \leq (n(G_2^*) - 1)/2 + k - 1 \). Clearly
\(n(G_2^*) = n - 2r - |F''| \). Let
\(S_2^* \) be a \(fd_1(G_2^*) \)-set. If \(c_0 \notin S_2^* \), then
\(S_2^* \cup F \) is a 1FD-set for \(G \), and so
\(fd_1(G) \leq (n(G) - 2r - |F''| - 1)/2 + k - 1 < (n-1)/2 + k \), a contradiction. Thus
\(c_0 \in S_2^* \). If \(|F''| = 1 \), then
\(S_2^* \cup C_1 \cup \{v_1\} \) is a 1FD-set for \(G \) and thus
\(fd_1(G) \leq fd_1(G_2^*) + r + 1 \leq (n-2)/2 + k \), a contradiction. Thus assume that
\(|F''| \geq 2 \). Let \(\{ u_t, u_{t'} \} \subseteq F'' \) (assume without loss of generality that
\(t < t' \)) such that \(\deg_G(u_t) = 1 \) for \(1 \leq i < t \) and
\(t' < i \leq r \). Let \(u_t' \) and \(u_{t'}' \) be the leaves of \(u_t \) and \(u_{t'} \), respectively. Clearly
\(S_2^* \cup \{ c_1, \ldots, c_{t-1} \} \cup \{ c_{t+1}, \ldots, c_r \} \cup \{ u_{t+1}, \ldots, u_{t-1} \} \cup \{ u_t', u_{t'}' \} \) is a 1FD-set for
\(G \) and thus
\(fd_1(G) \leq fd_1(G_2^*) + r < (n-1)/2 + k - 1 \), a contradiction.

Thus we may assume that \(N(c_j) \setminus C_1 \) contains at least one strong support
vertex for some \(c_j \in \{ c_1, \ldots, c_r \} \). Let \(u_j \) be a strong support vertex in
\(N(c_j) \setminus C_1 \). By Claim 2, there are precisely two leaves adjacent to \(u_j \). Let
\(u' \) and \(u'' \) be the leaves adjacent to \(u_j \), and \(G^* = G - \{ u', u'' \} \). By Theorem 14,
\(fd_1(G^*) \leq (n(G^*) - 1)/2 + k \). Assume that
\(fd_1(G^*) < (n(G^*) - 1)/2 + k \). Let \(S' \) be a
\(fd_1(G^*) \)-set. If \(u_j \in S' \), then \(S' \) is a 1FD-set for \(G \), and if \(u_j \notin S' \), then
\(S' \cup \{ u_j \} \) is a 1FD-set for \(G \). Thus
\(fd_1(G) \leq fd_1(G^*) + 1 < (n-1)/2 + k \), a contradiction.
We deduce that
\(fd_1(G^*) = (n(G^*) - 1)/2 + k \). By the choice of \(G, G^* \in \mathcal{G}_k \). Thus
\(G \) is obtained from \(G^* \) by Operation \(O_2 \). Consequently, \(G \in \mathcal{G}_k \). \(\square \)

By Claim 3, we assume that \(d = d' = 1 \).

Claim 4. \(C_i \) has precisely one special vertex, for \(i = 1, 2 \).

Proof. We first show that \(C_i \) has at least one special vertex, for \(i = 1, 2 \). Suppose
that \(C_1 \) has no special vertex. Thus \(\deg_{G}(c_i) \geq 3 \) for \(i = 1, \ldots, r \). Clearly, \(c_i \) is a
support vertex for \(i = 1, 2, \ldots, r \). Suppose that \(c_j \) is a strong support vertex for some \(j \in \{1, 2, \ldots, r\} \). Let \(G' \) be obtained from \(G \) by removal of all vertices in \(\bigcup_{i=1}^{r} (N[c_i]) \setminus \{c_0, c_1, c_r\} \). Clearly, \(c_0 \) is a strong support vertex of \(G' \). By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). Since \(c_j \) is a strong support vertex of \(G \), we have \(n(G') \leq n(G) - (2r+1) + 2. \) Thus, \(fd_1(G') \leq (n(G) - (2r+1) + 2 - 1)/2 + k - 1 \).

By Observation 1, \(c_0 \in S' \), and so \(S' \cup \{c_1, \ldots, c_r\} \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - (2r+1) + 2 - 1)/2 + k - 1 + r = n(G)/2 + k - 1 < (n(G) - 1)/2 + k \), a contradiction. Thus \(c_0 \) is a weak support vertex for each \(i = 1, 2, \ldots, r \). Let \(G' \) be obtained from \(G \) by removal of any vertex in \(\bigcup_{i=1}^{r} (N[c_i]) \setminus \{c_0\} \). By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). Let \(S' \) be a \(fd_1(G') \)-set. If \(c_0 \notin S' \), then \(S' \cup \{u_1, \ldots, u_r\} \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k \), a contradiction. Thus \(c_0 \in S' \). Then \(S' \cup \{c_1, \ldots, c_r\} \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k \), a contradiction.

Thus \(C_1 \) has at least one special vertex. Similarly, \(C_2 \) has at least one special vertex. Let \(c_t \) be a special vertex of \(C_1 \) and \(c'_t \) be a special vertex of \(C_2 \).

We show that \(c_t \) is the unique special vertex of \(C_1 \). Suppose to the contrary that \(C_1 \) has at least two special vertices. Assume that \(\deg_G(c_{h+1}') \geq 2 \). Let \(G' = G - c_t c_{h+1}' \), and \(S' \) be a \(fd_1(G') \)-set. By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). If \(fd_1(G') = (n(G') - 1)/2 + k - 1 \), then by the inductive hypothesis, \(G' \in G_{k-1} \). This is a contradiction by Observation 9(1), since \(C_1 \) has at least two special vertices. Thus \(fd_1(G') < (n(G') - 1)/2 + k - 1 \). If \(|S' \cap \{c_h, c_{h+1}''\}| \notin \{0, 2\} \), then \(S' \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 \), a contradiction. Thus \(|S' \cap \{c_h, c_{h+1}''\}| = 1 \). Without loss of generality, assume that \(c_{h+1}' \in S' \). Then \(\{c_{h+1}', c_h\} \cup S' \) is a 1FD-set in \(G \), and so \(fd_1(G') < (n(G) - 1)/2 + k - 1 \), a contradiction. We thus assume that \(\deg_G(c_{h+1}') \geq 3 \). Likewise, we may assume that \(\deg_G(c_{h-1}') \geq 3 \). Since \(C_2 \) is a leaf-cycle, \(c_0' \) is its unique special cut-vertex. Thus we may assume, without loss of generality, that \(c_{h+1}' \neq c_{h-1}' \). Clearly, \(c_{h+1}' \) is a support vertex of \(G \). Let \(G' = G - c_t c_{h+1}' \), and \(S' \) be a \(fd_1(G') \)-set. Clearly \(c_{h+1}' \) is a strong support vertex of \(G' \). By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). If \(fd_1(G') = (n(G') - 1)/2 + k - 1 \), then by the inductive hypothesis \(G' \in G_{k-1} \). This is a contradiction by Observation 9(1), since \(C_1 \) has at least two special vertices. Thus \(fd_1(G') < (n(G') - 1)/2 + k - 1 \). By Observation 1, \(c_{h+1}' \in S' \). If \(c_{h-1}' \notin S' \), then \(S' \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 \), a contradiction. Thus \(c_{h-1}' \in S' \). Now, \(S' \cup \{c_h\} \) is a 1FD-set in \(G \), and thus \(fd_1(G) \leq |S'| + 1 < (n(G) - 1)/2 + k \), a contradiction. Thus \(c_t \) is the unique special vertex of \(C_1 \). Similarly, \(c_h' \) is the unique special vertex of \(C_2 \).

□

Let \(c_t \) be the unique special vertex of \(C_1 \), and \(c_h' \) be the unique special vertex of \(C_2 \), and note that Claim 4 guarantees the existence of \(c_t \) and \(c_h' \).

Claim 5. No vertex of \(C_i \) is a strong support vertex, for \(i = 1, 2 \).
Proof. Suppose that $c_j \in C_1$ is a strong support vertex. Since C_2 is a leaf-cycle, c_0' is its unique special cut-vertex. Thus, we may assume, without loss of generality, that c_{h+1}' is a support vertex of G. Let $G' = G - c_{h+1}'$, and S' be a $fd_1(G')$-set. Clearly c_{h+1}' is a strong support vertex of G'. By Theorem 14, $fd_1(G') \leq (n(G') - 1)/2 + k - 1$. If $fd_1(G') = (n(G') - 1)/2 + k - 1$, then by the inductive hypothesis $G' \in \mathcal{G}_{k-1}$. This is a contradiction by Observation 9(1), since C_1 has a strong support vertex. Thus $fd_1(G') < (n(G') - 1)/2 + k - 1$. By Observation 1, $c_{h+1}' \in S'$. If $c_{h-1}' \notin S'$, then S' is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1$, a contradiction. Thus $c_{h-1}' \in S'$. Then $S' \cup \{c_{h}'\}$ is a 1FD-set in G, and so $fd_1(G) \leq |S'| + 1 < (n(G) - 1)/2 + k$, a contradiction. We deduce that C_1 has no strong support vertex. Similarly, C_2 has no strong support vertex.

We deduce that c_i is a weak support vertex for each $i \in \{1, 2, \ldots, r\} \setminus \{t\}$, and similarly c_i' is a weak support vertex for each $i \in \{1, 2, \ldots, r'\} \setminus \{h\}$. For each $i \in \{1, 2, \ldots, r\} \setminus \{t\}$, let u_i be the leaf adjacent to c_i.

Let G_2' be the component of $G - c_0c_1 - c_0c_{r'}$ that contains c_0, and G^* be a graph obtained from G_2' by adding a leaf v^* to c_0. Clearly $n(G^*) = n(G) - 2r + 2$. By Theorem 14, $fd_1(G^*) < (n(G^*) - 1)/2 + k - 1$. Suppose that $fd_1(G^*) < (n(G^*) - 1)/2 + k - 1$. Let S^* be a $fd_1(G^*)$-set. If $c_0 \in S^*$, then $S^* \cup \{c_1, c_2, \ldots, c_r\}$ is a 1FD-set in G, so we obtain that $fd_1(G) < (n - 1)/2 + k$, a contradiction. Thus $c_0 \notin S^*$. Then $v^* \in S^*$. If $t > 1$, then $S^* \cup \{c_1, \ldots, c_{t-1}\} \cup \{u_{t+1}, \ldots, u_r\} \setminus \{v^*\}$ is a 1FD-set in G of cardinality at most $(n(G^*) - 1)/2 + k - 1 + 1 + k - 1 = (n(G) - 1)/2 + k - 2$, a contradiction. Thus assume that $t = 1$. Then $S^* \cup \{c_2, \ldots, c_r\} \setminus \{v^*\}$ is a 1FD-set in G of cardinality at most $(n(G^*) - 1)/2 + k - 2$, a contradiction. Thus $fd_1(G^*) = (n(G^*) - 1)/2 + k - 1$. By the inductive hypothesis, $G^* \in \mathcal{G}_{k-1}$. Let H^* be the graph obtained from $G'[\{c_0, c_1, \ldots, c_r, u_1, \ldots, u_{t-1}, u_{t+1}, \ldots, u_r\}]$ by adding a leaf to c_0. Clearly $H^* \in \mathcal{H}_1$. Thus G is obtained from $G^* \in \mathcal{G}_{k-1}$ and $H^* \in \mathcal{H}_1$ by Procedure A. Consequently, $G \in \mathcal{H}_k \subseteq \mathcal{G}_k$.

For the converse, by Corollary 13, $V(G) \setminus L(G)$ is the unique $fd_1(G)$-set. Now Observation 9 implies that $fd_1(G) = (n - 1)/2 + k$.

Acknowledgments

We would like to thank both referees for their careful review and useful comments.

References

doi:10.1016/j.disc.2012.05.006

Received 4 May 2017
Revised 5 September 2017
Accepted 19 September 2017