FAIR DOMINATION NUMBER IN CACTUS GRAPHS

MAJID HAJIAN

Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

AND

NADER JAFARI RAD

Department of Mathematics
Shahed University, Tehran, Iran

e-mail: n.jafarirad@gmail.com

Abstract

For $k \geq 1$, a k-fair dominating set (or just kFD-set) in a graph G is a dominating set S such that $|N(v) \cap S| = k$ for every vertex $v \in V \setminus S$. The k-fair domination number of G, denoted by $fd_k(G)$, is the minimum cardinality of a kFD-set. A fair dominating set, abbreviated FD-set, is a kFD-set for some integer $k \geq 1$. The fair domination number, denoted by $fd(G)$ of G that is not the empty graph, is the minimum cardinality of an FD-set in G. In this paper, aiming to provide a particular answer to a problem posed in [Y. Caro, A. Hansberg and M.A. Henning, Fair domination in graphs, Discrete Math. 312 (2012) 2905–2914], we present a new upper bound for the fair domination number of a cactus graph, and characterize all cactus graphs G achieving equality in the upper bound of $fd_1(G)$.

Keywords: fair domination, cactus graph, unicyclic graph.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

For notation and graph theory terminology not given here, we follow [10]. Specifically, let G be a graph with vertex set $V(G) = V$ of order $|V| = n$ and let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E(G)\}$ and
the closed neighborhood of v is \(N_G[v] = \bigcup_{v \in S} N_G(v) \). If the graph G is clear from
the context, we simply write \(N(v) \) rather than \(N_G(v) \). The degree of a vertex
v, is \(\deg(v) = |N(v)| \). A vertex of degree one is called a leaf and its neighbor
a support vertex. We denote the set of leaves and support vertices of a graph
G by \(L(G) \) and \(S(G) \), respectively. A strong support vertex is a support vertex
adjacent to at least two leaves, and a weak support vertex is a support vertex
adjacent to precisely one leaf. For a set \(S \subseteq V \), its open neighborhood is the set
\(N(S) = \bigcup_{v \in S} N(v) \), and its closed neighborhood is the set \(N[S] = N(S) \cup S \).
The corona graph \(cor(G) \) of a graph G is a graph obtained by adding a leaf to
every vertex of G. We denote by \(P_n \) a path on n vertices. The distance \(d(u, v) \)
between two vertices u and v in a graph G is the minimum number of edges of
a path from u to v. The diameter \(diam(G) \) of G, is \(\max_{u,v \in V(G)} d(u,v) \). A path
of length \(diam(G) \) is called a diameterical path. A cactus graph is a connected
graph in which any two cycles have at most one vertex in common. For a subset
\(S \) of vertices of G, we denote by \(G[S] \) the subgraph of G induced by \(S \).

A subset \(S \subseteq V \) is a dominating set of G if every vertex not in \(S \) is adjacent
to a vertex in \(S \). The domination number of G, denoted by \(\gamma(G) \), is the minimum
cardinality of a dominating set of G. A vertex \(v \) is said to be dominated by a set
\(S \) if \(N(v) \cap S = \emptyset \).

Caro et al. [1] studied the concept of fair domination in graphs. For \(k \geq 1 \), a
\(k \)-fair dominating set, abbreviated kFD-set, in G is a dominating set \(S \) such that
\(|N(v) \cap D| = k \) for every vertex \(v \in V \setminus D \). The \(k \)-fair domination number of G,
denoted by \(fd_k(G) \), is the minimum cardinality of a kFD-set. A kFD-set of G
of cardinality \(fd_k(G) \) is called a \(fd_k(G) \)-set. A fair dominating set, abbreviated
FD-set, in G is a kFD-set for some integer \(k \geq 1 \). The fair domination number,
denoted by \(fd(G) \), of a graph G that is not the empty graph is the minimum
cardinality of an FD-set in G. An FD-set of G of cardinality \(fd(G) \) is called a
\(fd(G) \)-set.

A perfect dominating set in a graph G is a dominating set \(S \) such that every
vertex in \(V(G) \setminus S \) is adjacent to exactly one vertex in \(S \). Hence a 1FD-set
is precisely a perfect dominating set. The concept of perfect domination was
introduced by Cockayne et al. in [4], and Fellows et al. [7] with a different
terminology which they called semiperfect domination. This concept was further
studied, see for example, [2, 3, 5, 6, 9].

Observation 1 (Caro et al. [1]). Every 1FD-set in a graph contains all its strong
support vertices.

The following is easily verified.

Observation 2. Let \(S \) be a 1FD-set in a graph G, \(v \) a support vertex of G and
\(v' \) a leaf adjacent to \(v \). If \(S \) contains a vertex \(u \in N_G(v) \setminus \{v'\} \), then \(v \in S \).
Among other results, Caro et al. [1] proved that $fd(G) \leq n - 2$ for any connected graph G of order $n \geq 3$ with no isolated vertex, and constructed an infinite family of connected graphs achieving equality in this bound. They showed that $fd(G) < 17n/19$ for any maximal outerplanar graph G of order n, and $fd(T) \leq n/2$ for any tree T of order $n \geq 2$. They then showed that equality for the bound $fd(T) \leq n/2$ holds if and only if T is the corona of a tree. Among open problems posed by Caro et al. [1], one asks to find $fd(G)$ for other families of graphs.

Problem 3 (Caro et al. [1]). Find $fd(G)$ for other families of graphs.

In this paper, aiming to study Problem 3, we present a new upper bound for the 1-fair domination number of cactus graphs and characterize all cactus graphs achieving equality for the upper bound. We show that if G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $fd_1(G) \leq (n - 1)/2 + k$. We also characterize all cactus graphs achieving equality for the upper bound.

2. Unicyclic Graphs

Fair domination in unicyclic graphs has been studied in [8]. A vertex v of a cactus graph G is a special vertex if $\deg_G(v) = 2$ and v belongs to a cycle of G. Let \mathcal{H}_1 be the class of all graphs G that can be obtained from the corona $\text{cor}(C)$ of a cycle C by removing precisely one leaf of $\text{cor}(C)$. Let \mathcal{G}_1 be the class of all graphs G that can be obtained from a sequence $G_1, G_2, \ldots, G_s = G$, where $G_1 \in \mathcal{H}_1$, and if $s \geq 2$, then G_{j+1} is obtained from G_j by one of the following Operations O_1 or O_2, for $j = 1, 2, \ldots, s - 1$.

Operation O_1. Let v be a vertex of G_j with $\deg(v) \geq 2$ such that v is not a special vertex of G_j. Then G_{j+1} is obtained from G_j by adding a path P_2 and joining v to a leaf of P_2.

Operation O_2. Let v be a leaf of G_j. Then G_{j+1} is obtained from G_j by adding two leaves to v.

Lemma 4 [8]. If $G \in \mathcal{G}_1$, then every 1FD-set in G contains every vertex of G of degree at least two.

Theorem 5 [8]. If G is a unicyclic graph of order n, then $fd_1(G) \leq (n + 1)/2$, with equality if and only if $G = C_5$ or $G \in \mathcal{G}_1$.

3. Main Result

Our aim in this paper is to give an upper bound for the fair domination number of a cactus graph G in terms of the number of cycles of G, and then characterize
all cactus graphs achieving equality for the proposed bound. For this purpose we first introduce some families of graphs. Let \mathcal{H}_1 and \mathcal{G}_1 be the families of unicyclic graphs described in Section 2. For $i = 2, 3, \ldots, k$, we construct a family \mathcal{H}_i from \mathcal{G}_{i-1}, and a family \mathcal{G}_i from \mathcal{H}_i as follows.

- **Family \mathcal{H}_i.** Let \mathcal{H}_i be the family of all graphs H_i such that H_i can be obtained from a graph $H_1 \in \mathcal{H}_1$ and a graph $G \in \mathcal{G}_{i-1}$, by the following Procedure.

Procedure A. Let $w_0 \in V(H_1)$ be a support vertex of H_1, and $w \in V(G_{i-1})$ be a support vertex of G_{i-1}. We remove precisely one leaf adjacent to w_0 and precisely one leaf adjacent to w, and then identify the vertices w_0 and w.

- **Family \mathcal{G}_i.** Let \mathcal{G}_i be the family of all graphs G that can be obtained from a sequence $G_1, G_2, \ldots, G_s = G$, where $G_1 \in \mathcal{H}_i$, and if $s \geq 2$ then G_{j+1} is obtained from G_j by one of the Operations O_1 or O_2, described in Section 2, for $j = 1, 2, \ldots, s-1$.

Note that $\mathcal{H}_i \subseteq \mathcal{G}_i$, for $i = 1, 2, \ldots, k$. Figure 1 demonstrates the construction of the family \mathcal{G}_k.

We will prove the following.

Theorem 6. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $fd_1(G) \leq (n-1)/2 + k$, with equality if and only if $G = C_5$ or $G \in \mathcal{G}_k$.

Corollary 7. If G is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $fd(G) \leq (n-1)/2 + k$.

4. Preliminary Results and Observations

4.1. Notation

We call a vertex w in a cycle C of a cactus graph G a **special cut-vertex** if w belongs to a shortest path from C to a cycle $C' \neq C$. We call a cycle C in a cactus graph G, a **leaf-cycle** if C contains exactly one special cut-vertex. In the
Figure 2. C_i is a leaf-cycle for $i = 1, 2, 3$ and v_j is a special cut-vertex for $j = 1, 2, \ldots, 8$. Moreover, C_j is a leaf-cycle for $j = 1, 2, 3$.

Observation 8. Every cactus graph with at least two cycles contains at least two leaf-cycles.

4.2. Properties of the family \mathcal{G}_k

The following observation can be proved by a simple induction on k.

Observation 9. If $G \in \mathcal{G}_k$ is a cactus graph of order n, then the following conditions are satisfied.

1. No cycle of G contains a strong support vertex. Furthermore, any cycle of G contains precisely one special vertex.
2. n is odd.
3. $|L(G)| = (n + 1)/2 - k$.
4. If a vertex v of G belongs to at least two cycles of G, then v is not a support vertex, and v belongs to precisely two cycles of G.

Observation 10. Let $G \in \mathcal{G}_k$. Let G be obtained from a sequence $G_1, G_2, \ldots, G_s = G$ ($s \geq 2$) such that $G_1 \in \mathcal{H}_1$ and G_{j+1} is obtained from G_j by one of the Operations O_1 or O_2 or procedure A, for $j = 1, 2, \ldots, s - 1$. If v is a vertex of G belonging to two cycles of G then there is an integer $i \in \{2, 3, \ldots, s\}$ such that G_i is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in \mathcal{H}_1$, such that v belongs to a cycle of G_{i-1}.

Observation 11. Assume that $G \in \mathcal{G}_k$ and $v \in V(G)$ is a vertex of degree four belonging to two cycles. Let D_1 and D_2 be the components of $G - v$, G_1^* be the
graph obtained from $G[D_1 \cup \{v\}]$ by adding a leaf v^*_1 to v, and G^*_2 be the graph obtained from $G[D_2 \cup \{v\}]$ by adding a leaf v^*_2 to v. Then there exists an integer $k' < k$ such that $G^*_1 \in G_{k'}$ or $G^*_2 \in G_{k'}$.

Proof. Let $G \in G_k$. Thus G is obtained from a sequence $G_1, G_2, \ldots, G_s = G$ ($s \geq 2$) such that $G_1 \in H_1$ and G_{j+1} is obtained from G_j by one of the Operations O_1 or O_2 or Procedure A, for $j = 1, 2, \ldots, s - 1$. Note that $s \geq k$. We define the j-th Procedure-Operation or just PO_j as one of the Operation O_1, Operation O_2, or Procedure A that can be applied to obtain G_{j+1} from G_j. Thus G is obtained from G_1 by Procedure-Operations $PO_1, PO_2, \ldots, PO_{s-1}$.

Let v be a vertex of G of degree four belonging to two cycles of G, and D_1 and D_2 be the components of $G - v$. By Observation 10, there is an integer $i \in \{2, 3, \ldots, s\}$ such that G_i is obtained from G_{i-1} by applying Procedure A on the vertex v using a graph $H \in H_1$. Note that v is a support vertex of G_{i-1}. Let v^* be the leaf of v in G_{i-1} that is removed in Procedure A. Clearly, either $V(G_{i-1}) \cap D_1 \neq \emptyset$ or $V(G_{i-1}) \cap D_2 \neq \emptyset$. Without loss of generality, assume that $V(G_{i-1}) \cap D_1 \neq \emptyset$. Among $PO_1, PO_{i+1}, \ldots, PO_{s-1}$, let $PO_{r_1}, PO_{r_2}, \ldots, PO_{r_t}$, be the Procedure-Operations applied on a vertex of D_1, where $i \leq t \leq s - 1$. Let $G_{r_0} = G_{i-1}$ and $G_{r_{t+1}}$ be obtained from G_{r_l} by $PO_{r_{l+1}}$, for $l = 0, 1, 2, \ldots, t - 1$. Clearly by an induction on t, we can deduce that there is an integer $k^* < k$ such that $G_{r_t} \in G_{k^*}$. Note that $G_{r_t} = G^*_1$.

Lemma 12. If $G \in G_k$, then every 1FD-set in G contains every vertex of G of degree at least two.

Proof. Let $G \in G_k$, and S be a 1FD-set in G. We prove by an induction on k, namely first-induction, to show that S contains every vertex of G of degree at least two. For the base step, if $k = 1$ then $G \in H_1$, and the result follows by Lemma 4. Assume the result holds for all graphs $G' \in G_{k'}$ with $k' < k$. Now consider the graph $G \in G_k$, where $k > 1$. Clearly, G is obtained from a sequence $G_1, G_2, \ldots, G_l = G$, of cactus graphs such that $G_1 \in H_k$, and if $l \geq 2$, then G_{i+1} is obtained from G_i by one of the operations O_1 or O_2 for $i = 1, 2, \ldots, l - 1$.

We employ an induction on l, namely second-induction, to show that S contains every vertex of G of degree at least two.

For the base step of the second-induction, let $l = 1$. Thus $G \in H_k$. By the construction of graphs in the family H_k, there are graphs $H \in H_1$ and $G' \in G_{k-1}$ such that G is obtained from H and G' by Procedure A. Clearly, H is obtained from the corona $cor(C)$ of a cycle C, by removing precisely one leaf of $cor(C)$. Let $C = c_0c_1 \cdots c_rc_0$, where c_0 is the support vertex of H that its leaf is removed according to Procedure A. Since H has precisely one special vertex, let c_1 be the special vertex of H. Let $w \in V(G')$ be a support vertex of G' that its leaf, say w^*, is removed to obtain G according to Procedure A. First we show that $\{c_1, c_r\} \cap S \neq \emptyset$. Clearly $S \cap \{c_{l-1}, c_l, c_l+1\} \neq \emptyset$, since $deg_G(c_l) = 2$. Assume that
Since at least one of \(c_{t-1} \) or \(c_{t+1} \) is a support vertex, by Observation 2, \(\{c_{t-1}, c_{t+1}\} \cap S \neq \emptyset \). By applying Observation 2, we obtain that \(\{c_1, c_r\} \cap S \neq \emptyset \), since any vertex of \(\{c_1, \ldots, c_r\} \setminus \{c_t\} \) is a support vertex of \(G \). Thus assume that \(c_t \notin S \). Then \(\{c_{t-1}, c_{t+1}\} \cap S \neq \emptyset \), and so \(\{c_1, c_r\} \cap S \neq \emptyset \), since any vertex of \(\{c_1, \ldots, c_r\} \setminus \{c_t\} \) is a support vertex of \(G \). Hence, \(\{c_1, c_r\} \cap S \neq \emptyset \). If \(c_0 \notin S \), then \((S \cap V(G')) \cup \{w'\} \) is a 1FD-set for \(G' \), and thus by the first-inductive hypothesis, \(S \) contains \(w = c_0 \), a contradiction. Thus \(c_0 \in S \). By Observation 2, \(V(C) \subseteq S \), since any vertex of \(\{c_1, \ldots, c_r\} \setminus \{c_t\} \) is a support vertex of \(G \). Thus \(S \cap V(G') \) is a 1FD-set for \(G' \). By the first-inductive hypothesis, \((S \cap V(G')) \cup \{w\} \) contains every vertex of \(G' \) of degree at least two. Consequently, \(S \) contains every vertex of \(G \) of degree at least two. We conclude that the base step of the second-induction holds.

Assume that the result (for the second-induction) holds for \(2 \leq l' < l \). Now let \(G = G_l \). Clearly \(G \) is obtained from \(G_{l-1} \) by applying one of the Operations \(O_1 \) or \(O_2 \).

Assume that \(G \) is obtained from \(G_{l-1} \) by applying Operation \(O_2 \). Let \(x \) be a leaf of \(G_{l-1} \) and \(G \) be obtained from \(G_{l-1} \) by adding two leaves \(x_1 \) and \(x_2 \) to \(x \). By Observation 1, \(x \in S \). Thus \(S \) is a 1FD-set for \(G_{l-1} \). By the second-inductive hypothesis \(S \) contains all vertices of \(G_{l-1} \) of degree at least two. Consequently, \(S \) contains every vertex of \(G \) of degree at least two.

Next assume that \(G \) is obtained from \(G_{l-1} \) by applying Operation \(O_1 \). Let \(x_1x_2 \) be a path and \(x_1 \) is joined to \(y \in V(G_{l-1}) \), where \(\deg_{G_{l-1}}(y) \geq 2 \) and \(y \) is not a special vertex of \(G_{l-1} \). Observe that \(\{x_1, x_2\} \cap S \neq \emptyset \). If \(x_1 \notin S \), then \(x_2 \in S \) and \(y \notin S \). Then \(S \setminus \{x_2\} \) is a 1FD-set for \(G_{l-1} \) that does not contain \(y \), a contradiction by the second-inductive hypothesis. Thus assume that \(x_1 \in S \). Suppose that \(y \notin S \). Clearly \(N_{G_{l-1}}(y) \cap S = \emptyset \).

Assume that there exists a component \(G'_l \) of \(G_{l-1} - y \) such that \(|V(G'_l) \cap N_{G_{l-1}}(y)| = 1 \). Then clearly \(S' = (S \cap V(G_{l-1})) \cup V(G'_l) \) is a 1FD-set for \(G_{l-1} \), and by the second-inductive hypothesis \(S' \) contains every vertex of \(G_{l-1} \) of degree at least two. Thus \(y \in S' \), and so \(y \in S \), a contradiction. Next assume that every component of \(G_{l-1} - y \) has at least two vertices in \(N_{G_{l-1}}(y) \). Since \(y \) is a non-special vertex of \(G_{l-1} \), \(y \) belongs to at least two cycles of \(G_{l-1} \). By Observation 9(4), \(y \) belongs to exactly two cycles of \(G_{l-1} \). Thus \(\deg_{G_{l-1}}(y) = 2 \). By Observation 11, \(G_{l-1} - y \) has exactly two components \(D_1 \) and \(D_2 \). Let \(G^* \) be a graph obtained from \(D_1 \cup \{v\} \) or \(D_2 \cup \{v\} \), by adding a leaf \(v^* \) to \(y \). Then there exists \(k' \leq k \) such that \(G^* \in G_{k'} \). Evidently, \(S^* = (S \cap V(G^*)) \cup \{v^*\} \) is a 1FD-set for \(G^* \), and so by the first-inductive hypothesis, \(S^* \) contains every vertex of \(G^* \) of degree at least two (since \(G^* \in G_{k'} \)). Thus \(y \in S^* \), and so \(y \in S \), a contradiction. We conclude that \(y \in S \). Observe that \(S \cap V(G_{l-1}) \) is a 1FD-set for \(G_{l-1} \), and so by the second-inductive hypothesis, \(S \cap V(G_{l-1}) \) contains every vertex of \(G_{l-1} \) of degree at least two. Consequently \(S \) contains every vertex of \(G \).
of degree at least two.

As a consequence of Observation 9(3) and Lemma 12, we obtain the following.

Corollary 13. If $G \in G_k$ is a cactus graph of order n, then $V(G) \setminus L(G)$ is the unique $fd_1(G)$-set.

5. **Proof of Theorem 6**

Theorem 14. If G is a cactus graph of order n with $k \geq 1$ cycles, then $fd_1(G) \leq \frac{(n(G)-1)}{2} + k$.

Proof. The result follows by Theorem 5 if $k = 1$. Thus assume that $k \geq 2$. Suppose to the contrary that $fd_1(G) > \frac{(n(G)-1)}{2} + k$. Assume that G has the minimum order, and among all such graphs, we may assume that the size of G is minimum. Let C_1, C_2, \ldots, C_k be the k cycles of G. Let C_i be a leaf-cycle of G, where $i \in \{1, 2, \ldots, k\}$. Let $C_i = u_0u_1 \cdots u_lu_0$, where u_0 is a special cut-vertex of G. Assume that $\deg_G(u_j) = 2$ for each $j = 1, 2, \ldots, l$. Let $G' = G - u_1u_2$. Then by the choice of G, $fd_1(G') \leq (n(G') - 1)/2 + k - 1 = (n(G) - 1)/2 + k - 1$. Let S' be a $fd_1(G')$-set. Now if $|S' \cap \{u_1, u_2\}| \in \{0, 2\}$, then S' is a $1FD$-set for G, a contradiction. Thus assume that $|S' \cap \{u_1, u_2\}| = 1$. Assume that $u_1 \in S'$. Then $u_3 \in S'$, and so $\{u_2\} \cup S'$ is a $1FD$-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction. If $u_2 \in S'$, then $u_0 \in S'$, and $\{u_1\} \cup S'$ is a $1FD$-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction. We deduce that $\deg_G(u_i) \geq 3$ for some $i \in \{1, 2, \ldots, l\}$. Let v_d be a leaf of G such that $d(v_d, C_i - u_0)$ is as maximum as possible, and the shortest path from v_d to C_i does not contain u_0. Let $v_0v_1 \cdots v_d$ be the shortest path from v_d to C_i with $v_0 \in C_i$. Assume that $d \geq 2$. Assume that $\deg_G(v_{d-1}) = 2$. Let $G' = G - \{v_d, v_{d-1}\}$. By the choice of G, $fd_1(G') \leq (n(G') - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_{d-2} \in S'$, then $S' \cup \{v_{d-1}\}$ is a $1FD$-set in G, and if $v_{d-2} \notin S'$, then $S' \cup \{v_d\}$ is a $1FD$-set in G. Thus $fd_1(G) \leq (n-1)/2 + k$, a contradiction. Thus assume that $\deg_G(v_{d-1}) \geq 3$. Clearly any vertex of $N_G(v_{d-1}) \setminus \{v_{d-2}\}$ is a leaf. Let G' be obtained from G by removing all leaves adjacent to v_{d-1}. By the choice of G, $fd_1(G') \leq (n(G') - 1)/2 + k$, since G has the minimum order among all graphs H with 1-fair domination number more than $(n(H) - 1)/2 + k$. Let S' be a $fd_1(G')$-set. If $v_{d-1} \in S'$, then S' is a $1FD$-set in G, a contradiction. Thus assume that $v_{d-1} \notin S'$. Then $v_{d-2} \in S'$. Then $S' \cup \{v_{d-1}\}$ is a $1FD$-set in G of cardinality at most $(n(G') - 1)/2 + k + 1 \leq (n(G) - 1)/2 + k$, a contradiction.

We thus assume that $d = 1$. Assume that u_i is a vertex of C_i such that $\deg_G(u_i) = 2$. Assume that $\deg_G(u_{i+1}) = 2$. Let $G' = G - u_iu_{i+1}$. By the
We prove by induction on $n \geq n$. Let S' be a $f(G')$-set. If $|S' \cap \{u_i, u_{i+1}\}| \in \{0, 2\}$, then S' is a 1FD-set for G, a contradiction. Then $|S' \cap \{u_i, u_{i+1}\}| = 1$. Assume that $u_i \in S'$. Then $u_{i+2} \in S'$ and so $\{u_{i+1}\} \cup S'$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction. Next assume that $u_{i+1} \in S'$. Then $u_{i-1} \in S'$ and so $\{u_i\} \cup S'$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction. Thus deg$_G(u_{i+1}) \geq 3$, and similarly deg$_G(u_{i-1}) \geq 3$. Since C_i is a leaf-cycle, it has precisely one special cut-vertex. Thus we may assume, without loss of generality, that u_{i+1} is a support vertex of G. Let $G' = G - u_{i-1}u_i$. By the choice of G, $f(G') \leq (n(G') - 1)/2 + k - 1$. Let S' be a $f(G')$-set. By Observation 1, $u_{i+1} \in S'$. If $u_{i-1} \notin S'$, then S' is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1$, a contradiction. Thus $u_{i-1} \in S'$. Then $S' \cup \{u_i\}$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k$, a contradiction.

We conclude that deg$_G(u_i) \geq 3$ for $i = 0, 1, \ldots, l$. Furthermore, u_i is a support vertex for $i = 1, 2, \ldots, l$. Assume that u_i is a strong support vertex for some $i \in \{1, 2, \ldots, l\}$. Let G' be obtained from G by removal of all vertices in $\bigcup_{i=1}^l (N[u_i]) \setminus \{u_0, u_1, u_l\}$. Clearly u_0 is a strong support vertex of G'. By the choice of G, $f(G') \leq (n(G') - 1)/2 + k - 1 \leq (n(G) - (2l + 1) + 2 - 1)/2 + k - 1$, since u_i is a strong support vertex of G. By Observation 1, $u_0 \in S'$, and so $S' \cup \{u_1, \ldots, u_l\}$ is a 1FD-set in G of cardinality at most $(n(G) - (2l + 1) + 2 - 1)/2 + k - 1 + l = n(G)/2 + k - 1$, a contradiction. Thus u_i is a weak support vertex, for each $i = 1, 2, \ldots, l$. Let G' be obtained from G by removal of any vertex in $\bigcup_{i=1}^l (N[u_i]) \setminus \{u_0\}$. By the choice of G, $f(G') \leq (n(G') - 1)/2 + k - 1$. Let S' be a $f(G')$-set. If $u_0 \notin S'$, then $S' \cup \{u_1, \ldots, u_l\}$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1$, where w_i is the leaf adjacent to u_i, for $i = 1, 2, \ldots, l$. This is a contradiction. Thus $u_0 \in S'$. Then $S' \cup \{u_1, \ldots, u_l\}$ is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1$, a contradiction.

If G is a cactus graph of order n with $k \geq 1$ cycles and $f_1(G) = (n-1)/2 + k$, then clearly $n \geq 3$ is odd, and since $f_1(C_3) \neq 2$, we have $n \geq 5$. It is obvious that $f_1(C_5) = 3 = (5 - 1)/2 + 1$.

Theorem 15. If $G \neq C_5$ is a cactus graph of order $n \geq 5$ with $k \geq 1$ cycles, then $f_1(G) = (n-1)/2 + k$ if and only if $G \in \mathcal{G}_k$.

Proof. We prove by an induction on k to show that any cactus graph G of order $n \geq 5$ with $k \geq 1$ cycles and $f_1(G) = (n-1)/2 + k$ belongs to \mathcal{G}_k. The base step of the induction follows by Theorem 5. Assume the result holds for all cactus graphs G' with $k' < k$ cycles. Now let G be a cactus graph of order n with $k \geq 2$ cycles and $f_1(G) = (n-1)/2 + k$. Clearly n is odd. Suppose to the contrary that $G \notin \mathcal{G}_k$. Assume that G has the minimum order, and among all such graphs, assume that the size of G is minimum. By Observation 8, G has at least two leaf-cycles. Let $C_1 = c_0c_1 \cdots c_r c_0$ and $C_2 = c'_0 c'_1 \cdots c'_r c'_0$, be two leaf-cycles of
G, where c_0 and c'_0 are two special cut-vertices of G. Let G'_1 be the component of $G - c_0c_1c_0c_r$ containing c_1, and G''_r be the component of $G - c'_0c'_1c'_0c'_r$ containing c'_1.

Claim 1. $V(G'_1) \neq \{c_1, \ldots, c_r\}$, and $V(G''_r) \neq \{c'_1, \ldots, c'_r\}$.

Proof. Suppose that $V(G'_1) = \{c_1, \ldots, c_r\}$. Then $\deg_{G}(c_i) = 2$ for $i = 1, 2, \ldots, r$. Let $G^* = G - c_1c_2$, and S^* be a $fd_1(G^*)$-set. By Theorem 14, $fd_1(G^*) \leq (n(G^*) - 1)/2 + k - 1 = (n(G) - 1)/2 + k - 1$. Assume that $r = 2$. Then c_0 is a strong support vertex of G^*, and by Observation 1, $c_0 \in S^*$. Thus $|S^* \cap \{c_1, c_2\}| = 0$, and so S^* is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k$, a contradiction. Assume that $r = 3$. If $|S^* \cap \{c_1, c_2\}| \in \{0, 2\}$, then S^* is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k$, a contradiction. Thus $|S^* \cap \{c_1, c_2\}| = 1$. If $c_1 \in S^*$, then $c_3 \in S^*$, and so $c_0 \in S^*$. Then $S^* \setminus \{c_1\}$ is a 1FD-set in G^*, a contradiction. Thus $c_1 \notin S^*$, and so $c_2 \in S^*$. Since c_1 is dominated by S^*, we obtain that $c_0 \in S^*$, and so $c_3 \in S^*$. Then $S^* \setminus \{c_2\}$ is a 1FD-set in G^*, a contradiction. Assume that $r = 4$. Suppose that $fd_1(G^*) = (n(G^*) - 1)/2 + k - 1$. Let $G'_2 = G^* - \{c_2, c_3, c_4\}$. By Theorem 14, $fd_1(G'_2) \leq (n(G'_2) - 1)/2 + k - 1 = n/2 + k - 3$, and thus $fd_1(G'_2) \leq (n(G) - 1)/2 + k - 3$, since n is odd. Let S'_3 be a $fd_1(G'_2)$-set. If $c_0 \notin S'_3$, then $S'_3 \cup \{c_3\}$ is a 1FD-set for G^*. Thus $fd_1(G^*) \leq |S'_3| + 1 \leq (n - 1)/2 + k - 2$, a contradiction. Thus $fd_1(G^*) < (n(G^*) - 1)/2 + k - 1 = (n(G) - 1)/2 + k - 1$. If $|S^* \cap \{c_1, c_2\}| \in \{0, 2\}$, then S^* is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k$, a contradiction. Thus $|S^* \cap \{c_1, c_2\}| = 1$. Without loss of generality, assume that $c_1 \in S^*$. Then $S^* \cup \{c_2\}$ is a 1FD-set in G, and so $fd_1(G) \leq |S^*| + 1 < (n(G) - 1)/2 + k$, a contradiction. It remains to assume that $r \geq 5$. Suppose that $fd_1(G^*) = (n(G^*) - 1)/2 + k - 1$. Let $G^*_2 = G^* - \{c_2, c_3, c_4\}$. By Theorem 14, $fd_1(G^*_2) \leq (n(G^*_2) - 1)/2 + k - 1 = n/2 + k - 3$, and thus $fd_1(G^*_2) \leq (n(G) - 1)/2 + k - 3$, since n is odd. Let S'_3 be a $fd_1(G'_2)$-set. If $c_3 \notin S'_3$, then $S'_3 \cup \{c_3\}$ is a 1FD-set for G^* and if $c_3 \notin S'_3$, then $S'_3 \setminus \{c_3\}$ is a 1FD-set for G^*. Thus $fd_1(G^*) \leq |S'_3| + 1 \leq (n - 1)/2 + k - 2$, a contradiction. Thus $fd_1(G^*) < (n(G^*) - 1)/2 + k - 1 = (n(G) - 1)/2 + k - 1$. If $|S^* \cap \{c_1, c_2\}| \in \{0, 2\}$, then S^* is a 1FD-set in G of cardinality at most $(n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k$, a contradiction. Thus $|S^* \cap \{c_1, c_2\}| = 1$. Without loss of generality, assume that $c_1 \in S^*$. Then $S^* \cup \{c_2\}$ is a 1FD-set in G, and so $fd_1(G) \leq |S^*| + 1 < (n(G) - 1)/2 + k$, a contradiction. We conclude that $V(G'_1) \neq \{c_1, \ldots, c_r\}$. Similarly $V(G''_r) \neq \{c'_1, \ldots, c'_r\}$. □

Let $v_d \in V(G'_1) \setminus \{c_1, \ldots, c_r\}$ be a leaf of G'_1 at maximum distance from $\{c_1, \ldots, c_r\}$, and assume that $v_0v_1 \cdots v_d$ is the shortest path from v_d to $\{c_1, \ldots, c_r\}$, where $v_0 \in \{c_1, \ldots, c_r\}$. Likewise, let $v'_d \in V(G''_r) \setminus \{c'_1, \ldots, c'_r\}$ be a leaf of G''_r at maximum distance from $\{c'_1, \ldots, c'_r\}$, and assume that $v'_0v'_1 \cdots v'_d$ is the shortest
path from $v_{d'}$ to $\{c'_1, \ldots, c'_r\}$, where $v_{d'} \in \{c'_1, \ldots, c'_r\}$. Without loss of generality, assume that $d' \leq d$.

Claim 2. Every support vertex of G is adjacent to at most two leaves.

Proof. Suppose that there is a support vertex $v \in S(G)$ such that v is adjacent to at least three leaves v_1, v_2, and v_3. Let $G' = G - \{v_1\}$, and let S' be a $fd_1(G')$-set. By Observation 1, $v \in S'$, and thus we may assume that $S' \cap \{v_2, v_3\} = \emptyset$. By Theorem 14, $|S'| \leq \left(\frac{n(G') - 1}{2}\right)/2 + k = (n - 2)/2 + k$. Clearly S' is a 1FD-set for G, a contradiction.

Claim 3. If $d \geq 2$, then $G \in \mathcal{G}_k$.

Proof. Let $d \geq 2$. By Claim 2, $2 \leq \deg_G(v_{d-1}) \leq 3$. Assume first that $\deg_G(v_{d-1}) = 3$. Let $x \neq v_d$ be a leaf adjacent to v_{d-1}. Let $G' = G - \{x, v_d\}$. By Theorem 14, $\deg_{G'}(G) \leq \left(\frac{n(G') - 1}{2}\right)/2 + k$. Suppose that $\deg_{G'}(G') < \left(\frac{n(G') - 1}{2}\right)/2 + k$. Let S' be a $\deg_{G'}(G')$-set. If $v_{d-1} \in S'$, then S' is a 1FD-set for G and if $v_{d-1} \notin S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set for G. Thus $\deg_{G'}(G) \leq \deg_{G'}(G') + 1 < (n - 1)/2 + k$, a contradiction. Hence, $\deg_{G'}(G') = \left(\frac{n(G') - 1}{2}\right)/2 + k$. By the choice of G, $G' \in \mathcal{G}_k$. Therefore G is obtained from G' by Operation \mathcal{O}_2. Consequently, $G \in \mathcal{G}_k$. Next assume that $\deg_G(v_{d-1}) = 2$. We consider the following cases.

Case 1. $d \geq 3$. Suppose that $\deg_G(v_{d-2}) = 2$. Let $G' = G - \{v_{d-2}, v_{d-1}, v_d\}$. By Theorem 14, $\deg_{G'}(G') \leq \left(\frac{n(G') - 1}{2}\right)/2 + k = n/2 + k - 2$, and thus $\deg_{G'}(G') \leq (n - 1)/2 + k - 2$, since n is odd. Let S' be a $\deg_{G'}(G')$-set. If $v_{d-3} \in S'$, then $S' \cup \{v_d\}$ is a 1FD-set for G and if $v_{d-3} \notin S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set for G. Thus $\deg_{G'}(G) \leq |S'| + 1 \leq (n - 1)/2 + k - 1$, a contradiction. Hence $\deg_G(v_{d-2}) \geq 3$. Let $G' = G - \{v_{d-1}, v_d\}$. By Theorem 14, $\deg_{G'}(G') \leq \left(\frac{n(G') - 1}{2}\right)/2 + k$. Suppose that $\deg_{G'}(G') \leq \left(\frac{n(G') - 1}{2}\right)/2 + k$. Let S' be a $\deg_{G'}(G')$-set. If $v_{d-2} \in S'$, then $S' \cup \{v_{d-1}\}$ is a 1FD-set for G and if $v_{d-2} \notin S'$, then $S' \cup \{v_d\}$ is a 1FD-set for G. Thus $\deg_{G'}(G) \leq |S'| + 1 \leq \deg_{G'}(G') + 1 < (n - 1)/2 + k$, a contradiction. We deduce that $\deg_{G'}(G') = \left(\frac{n(G') - 1}{2}\right)/2 + k$. By the choice of G, $G' \in \mathcal{G}_k$. Since $d \geq 3$, v_{d-2} is not a special vertex of G'. Thus G is obtained from G' by Operation \mathcal{O}_1, and so $G \in \mathcal{G}_k$.

Case 2. $d = 2$. As noted, $\deg(v_1) = 2$. Clearly $\deg(v_0) \geq 3$. Assume first that $\deg(v_0) \geq 4$. Let $G' = G - \{v_2, v_1\}$. By Theorem 14, $\deg_{G'}(G') \leq \left(\frac{n(G') - 1}{2}\right)/2 + k$. Suppose that $\deg_{G'}(G') < \left(\frac{n(G') - 1}{2}\right)/2 + k$. Let S' be a $\deg_{G'}(G')$-set. If $v_0 \in S'$, then $S' \cup \{v_1\}$ is a 1FD-set for G, and if $v_0 \notin S'$, then $S' \cup \{v_2\}$ is a 1FD-set for G. Thus $\deg_{G'}(G) \leq |S'| + 1 < (n - 1)/2 + k$, a contradiction. Hence, $\deg_{G'}(v_0) = \left(\frac{n(G') - 1}{2}\right)/2 + k$. By the choice of G, $G' \in \mathcal{G}_k$. Since $\deg_{G'}(v_0) \geq 3$, v_0 is not a special vertex of G'. Hence G is obtained from G' by Operation \mathcal{O}_1. Consequently, $G \in \mathcal{G}_k$. Thus assume that $\deg(v_0) = 3$. Let $G' = G - \{v_2, v_1\}$. By Theorem 14, $\deg_{G'}(G') \leq \left(\frac{n(G') - 1}{2}\right)/2 + k$. Suppose
that $fd_1(G') < \frac{(n(G') - 1)}{2} + k$. Let S' be a $fd_1(G')$-set. If $v_0 \in S'$, then $S' \cup \{v_1\}$ is a 1FD-set for G, and if $v_0 \notin S'$, then $S' \cup \{v_2\}$ is a 1FD-set for G. Thus $fd_1(G) \leq |S'| + 1 \leq fd_1(G') + 1 < (n-1)/2 + k$, a contradiction. Thus we obtain that $fd_1(G') = \frac{(n(G') - 1)}{2} + k$. By the choice of G, $G' \in \mathcal{G}_k$. Then v_0 is a special vertex of G'. From Observation 9(1), we obtain that $deg_G(c_i) \geq 3$ for each $i \in \{1, \ldots, r\}$.

Suppose that $N_G(c_j) \setminus V(C_1)$ contains no strong support vertex for each $j \in \{1, \ldots, r\}$. Observation 9(1) implies that c_j is not a strong support vertex of G, since $G' \in \mathcal{G}_k$. Assume that there is a vertex $c_j \in \{c_1, \ldots, c_r\}$ such that c_j has a neighbor a which is a support vertex. By assumption, a is a weak support vertex. If a' is the leaf adjacent to a, then a' plays the role of v_d. Since $deg(v_0) = 3$, we may assume that $deg(c_j) = 3$. Thus by Observation 9(1), we may assume that $deg_G(c_i) = 3$ for each $c_i \in \{c_1, \ldots, c_r\}$. Let $F = \bigcup_{i=1}^{r} (N[c_i]) \setminus \{c_0, \ldots, c_r\}$. Clearly $|F| = r$, since $deg_G(c_i) = 3$ for each $c_i \in \{c_1, \ldots, c_r\}$. Let $F = \{u_1, u_2, \ldots, u_r\}$, $F' = \{u_i \in F | \deg_G(u_i) = 1\}$, and $F'' = F \setminus F'$. Then every vertex of F'' is a weak support vertex. Since $v_1 \in F''$, $|F''| \geq 1$. Now let $G^* = G - c_0c_1 - c_0c_r$, and G'^*_1 and G'^*_2 be the components of G^*, where $c_1 \in V(G'^*_1)$. By Theorem 14, $fd_1(G'^*_2) \leq \frac{(n(G'^*_2) - 1)}{2} + k - 1$. Clearly $n(G'^*_2) = n(G) - 2r - |F''|$. Let S'^*_2 be a $fd_1(G'^*_2)$-set. If $c_0 \notin S'^*_2$, then $S'^*_2 \cup F$ is a 1FD-set for G, and so $fd_1(G) \leq \frac{(n(G) - 2r - |F''| - 1)}{2} + k - 1 < (n-1)/2 + k$, a contradiction. Thus $c_0 \notin S'^*_2$. If $|F''| = 1$, then $S'^*_2 \cup C_1 \cup \{v_1\}$ is a 1FD-set for G and thus $fd_1(G) \leq fd_1(G'^*_2) + r + 1 \leq \frac{(n-2)}{2} + k$, a contradiction. Thus assume that $|F''| \geq 2$. Let $\{u_t, u_t'\} \subseteq F''$ (assume without loss of generality that $t < t'$) such that $deg_G(u_i) = 1$ for $1 \leq i < t$ and $t' < i < r$. Let u_t' and u_t'' be the leaves of u_t and u_t', respectively. Clearly $S'^*_2 \cup \{c_1, \ldots, c_t-1\} \cup \{c_{t+1}, \ldots, c_r\} \cup \{u_{t+1}, \ldots, u_{t-1}\} \cup \{u_t', u_t''\}$ is a 1FD-set for G and thus $fd_1(G) \leq fd_1(G'^*_2) + r < (n-1)/2 + k - 1$, a contradiction.

Thus we may assume that $N(c_j) \setminus C_1$ contains at least one strong support vertex for some $c_j \in \{c_1, \ldots, c_r\}$. Let u_j be a strong support vertex in $N(c_j) \setminus C_1$. By Claim 2, there are precisely two leaves adjacent to u_j. Let u' and u'' be the leaves adjacent to u_j, and $G^* = G - \{u', u''\}$. By Theorem 14, $fd_1(G^*) \leq \frac{(n(G^*) - 1)}{2} + k$. Assume that $fd_1(G^*) < \frac{(n(G^*) - 1)}{2} + k$. Let S' be a $fd_1(G^*)$-set. If $u_j \in S'$, then S' is a 1FD-set for G, and if $u_j \notin S'$, then $S' \cup \{u_j\}$ is a 1FD-set for G. Thus $fd_1(G) \leq fd_1(G^*) + 1 < (n-1)/2 + k$, a contradiction. We deduce that $fd_1(G^*) = \frac{(n(G^*) - 1)}{2} + k$. By the choice of G, $G^* \in \mathcal{G}_k$. Thus G is obtained from G^* by Operation O_2. Consequently, $G \in \mathcal{G}_k$.

By Claim 3, we assume that $d = d' = 1$.

Claim 4. C_i has precisely one special vertex, for $i = 1, 2$.

Proof. We first show that C_i has at least one special vertex, for $i = 1, 2$. Suppose that C_1 has no special vertex. Thus $deg_G(c_i) \geq 3$ for $i = 1, \ldots, r$. Clearly, c_i is a
support vertex for \(i = 1, 2, \ldots, r \). Suppose that \(c_j \) is a strong support vertex for some \(j \in \{1, 2, \ldots, r\} \). Let \(G' \) be obtained from \(G \) by removal of all vertices in \(\bigcup_{i=1}^{r} (N[c_i]) \setminus \{c_0, c_1, \ldots, c_r\} \). Clearly, \(c_0 \) is a strong support vertex of \(G' \). By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). Since \(c_j \) is a strong support vertex of \(G \), we have \(n(G') \leq n(G) - (2r + 1) + 2 \). Thus, \(fd_1(G') \leq (n(G) - (2r + 1) + 2 - 1)/2 + k - 1 \).

By Observation 1, \(c_0 \in S' \), and so \(S' \cup \{c_1, \ldots, c_r\} \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - (2r + 1) + 2 - 1)/2 + k - 1 + r = (n(G) - k - 1) < (n(G) - 1)/2 + k \), a contradiction. Thus \(c_i \) is a weak support vertex for each \(i = 1, 2, \ldots, r \). Let \(G' \) be obtained from \(G \) by removal of any vertex in \(\bigcup_{i=1}^{r} (N[c_i]) \setminus \{c_0\} \). By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). Let \(S' \) be a \(fd_1(G') \)-set. If \(c_0 \notin S' \), then \(S' \cup \{u_1, \ldots, u_r\} \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k \), where \(u_i \) is the leaf adjacent to \(c_i \) for \(i = 1, 2, \ldots, r \). This is a contradiction. Thus \(c_0 \in S' \). Then \(S' \cup \{c_1, \ldots, c_r\} \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 < (n(G) - 1)/2 + k \), a contradiction.

Thus \(C_1 \) has at least one special vertex. Similarly, \(C_2 \) has at least one special vertex. Let \(c_1 \) be a special vertex of \(C_1 \) and \(c'_h \) be a special vertex of \(C_2 \).

We show that \(c_1 \) is the unique special vertex of \(C_1 \). Suppose to the contrary that \(C_1 \) has at least two special vertices. Assume that \(\deg_G(c'_{h+1}) \geq 2 \). Let \(G' = G - c'_{h+1}, \) and \(S' \) be a \(fd_1(G') \)-set. By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). If \(fd_1(G') = (n(G') - 1)/2 + k - 1 \), then by the inductive hypothesis, \(G' \in \mathcal{G}_{k-1} \). This is a contradiction by Observation 9(1), since \(C_1 \) has at least two special vertices. Thus \(fd_1(G') < (n(G') - 1)/2 + k - 1 \). If \(|S' \cap \{c'_h, c'_{h+1}\}| \in \{0, 2\} \), then \(S' \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 \), a contradiction. Thus \(|S' \setminus \{c'_h, c'_{h+1}\}| = 1 \). Without loss of generality, assume that \(c'_h \in S' \). Then \(\{c'_{h+1}\} \cup S' \) is a 1FD-set in \(G \), and so \(fd_1(G) < (n(G) - 1)/2 + k \), a contradiction. We thus assume that \(\deg_G(c'_{h+1}) \geq 3 \). Likewise, we may assume that \(\deg_G(c'_{h-1}) \geq 3 \). Since \(C_2 \) is a leaf-cycle, \(c'_h \) is its unique special cut-vertex. Thus we may assume, without loss of generality, that \(c'_{h-1} \neq c'_h \). Clearly, \(c'_{h+1} \) is a support vertex of \(G \). Let \(G' = G - c'_{h-1}, \) and \(S' \) be a \(fd_1(G') \)-set. Clearly \(c'_{h+1} \) is a strong support vertex of \(G' \). By Theorem 14, \(fd_1(G') \leq (n(G') - 1)/2 + k - 1 \). If \(fd_1(G') = (n(G') - 1)/2 + k - 1 \), then by the inductive hypothesis \(G' \in \mathcal{G}_{k-1} \). This is a contradiction by Observation 9(1), since \(C_1 \) has at least two special vertices. Thus \(fd_1(G') < (n(G') - 1)/2 + k - 1 \). By Observation 1, \(c'_{h+1} \in S' \). If \(c'_{h-1} \notin S' \), then \(S' \) is a 1FD-set in \(G \) of cardinality at most \((n(G) - 1)/2 + k - 1 \), a contradiction. Thus \(c'_{h-1} \in S' \). Now, \(S' \setminus \{c'_h\} \) is a 1FD-set in \(G \), and thus \(fd_1(G) \leq |S'| + 1 < (n(G) - 1)/2 + k \), a contradiction. Thus \(c_1 \) is the unique special vertex of \(C_1 \). Similarly, \(c'_h \) is the unique special vertex of \(C_2 \).

Let \(c_1 \) be the unique special vertex of \(C_1 \), and \(c'_h \) be the unique special vertex of \(C_2 \), and note that Claim 4 guarantees the existence of \(c_1 \) and \(c'_h \).

Claim 5. No vertex of \(C_i \) is a strong support vertex, for \(i = 1, 2 \).
\textbf{Proof.} Suppose that \(c_j \in C_1 \) is a strong support vertex. Since \(C_2 \) is a leaf-cycle, \(c_0^{'} \) is its unique special cut-vertex. Thus, we may assume, without loss of generality, that \(c_{h+1}^{'} \) is a support vertex of \(G \). Let \(G' = G - c_{h+1}^{'} c_{h-1}^{'} \), and \(S' \) be a \(fd(G') \)-set. Clearly \(c_{h+1}^{'} \) is a strong support vertex of \(G' \). By Theorem 14, \(fd(G') \leq (n(G') - 1)/2 + k - 1 \). If \(fd(G') = (n(G') - 1)/2 + k - 1 \), then by the inductive hypothesis \(G' \in \mathcal{G}_{k-1} \). This is a contradiction by Observation 9(1), since \(C_1 \) has a strong support vertex. Thus \(fd(G') < (n(G') - 1)/2 + k - 1 \). By Observation 1, \(c_{h+1}^{'} \in S' \). If \(c_{h+1}^{'} \notin S' \), then \(S' \) is a \(1FD \)-set in \(G \) at most \(n(G) - 1 \)/2 + k - 1, a contradiction. Thus \(c_{h-1}^{'} \in S' \). Then \(S' \cup \{ c_h^{'} \} \) is a \(1FD \)-set in \(G \), and so \(fd(G) \leq |S'| + 1 < (n(G) - 1)/2 + k \), a contradiction.

We deduce that \(C_1 \) has no strong support vertex. Similarly, \(C_2 \) has no strong support vertex.

\[\square \]

We deduce that \(c_i \) is a weak support vertex for each \(i \in \{1, 2, \ldots, r\} \setminus \{t\} \), and similarly \(c_i^{'} \) is a weak support vertex for each \(i \in \{1, 2, \ldots, r\} \setminus \{h\} \). For each \(i \in \{1, 2, \ldots, r\} \setminus \{t, h\} \), let \(u_i \) be the leaf adjacent to \(c_i \).

Let \(G_2^{'} \) be the component of \(G - c_0 c_1 - c_0 c_r \) that contains \(c_0 \), and \(G^* \) be a graph obtained from \(G'_2 \) by adding a leaf \(v^* \) to \(c_0 \). Clearly \(n(G^*) = n(G) - 2r + 2 \). By Theorem 14, \(fd(G^*) \leq (n(G^*) - 1)/2 + k - 1 \). Suppose that \(fd(G^*) < (n(G^*) - 1)/2 + k - 1 \). Let \(S' \) be a \(fd(G^*) \)-set. If \(c_0 \in S' \), then \(S' \cup \{c_1, c_2, \ldots, c_r\} \) is a \(1FD \)-set in \(G \), so we obtain that \(fd(G) < (n(G) - 1)/2 + k \), a contradiction. Thus \(c_0 \notin S' \). Then \(v^* \in S^* \). If \(t > 1 \), then \(S^* \cup \{c_1, \ldots, c_{t-1}\} \cup \{u_{t+1}, \ldots, u_r\} \setminus \{v^*\} \) is a \(1FD \)-set in \(G \) of cardinality at most \((n(G^*) - 1)/2 + k - 1 + r - 1 = (n(G) - 2r + 2 - 1)/2 + k - 1 + r - 1 = (n(G) - 1)/2 + k - 2 \), a contradiction. Thus assume that \(t = 1 \). Then \(S^* \cup \{c_2, \ldots, c_r\} \setminus \{v^*\} \), is a \(1FD \)-set in \(G \) of cardinality at most \((n(G^*) - 1)/2 + k - 2 \), a contradiction. Thus \(fd(G^*) = (n(G^*) - 1)/2 + k - 1 \). By the inductive hypothesis, \(G^* \in \mathcal{G}_{k-1} \). Let \(H^* \) be the graph obtained from \(G'[\{c_0, c_1, \ldots, c_r, u_1, \ldots, u_{t-1}, u_{t+1}, \ldots, u_r\}] \) by adding a leaf to \(c_0 \). Clearly \(H^* \in \mathcal{H}_1 \). Thus \(G \) is obtained from \(G^* \in \mathcal{G}_{k-1} \) and \(H^* \in \mathcal{H}_1 \) by Procedure A. Consequently, \(G \in \mathcal{H}_k \subseteq \mathcal{G}_k \).

For the converse, by Corollary 13, \(V(G) \setminus L(G) \) is the unique \(fd(G) \)-set. Now Observation 9 implies that \(fd(G) = (n-1)/2 + k \).

\[\blacksquare \]

Acknowledgments

We would like to thank both referees for their careful review and useful comments.

References

doi:10.1016/j.disc.2012.05.006

Received 4 May 2017
Revised 5 September 2017
Accepted 19 September 2017