GENERALIZED HAMMING GRAPHS:
SOME NEW RESULTS

AMARI BEDRANE

AND

BERRACHEDI ABDELHAFID

LIFORCE Laboratory
RO Department, USTHB, Algiers, Algeria

e-mail: bedrane.amari@gmail.com

Abstract

A projection of a vertex x of a graph G over a subset S of vertices is a vertex of S at minimal distance from x. The study of projections over quasi-intervals gives rise to a new characterization of quasi-median graphs.

Keywords: generalized median graphs, Hamming graphs, quasi-median graphs, quasi-Hilbertian graphs.

2010 Mathematics Subject Classification: 2010 MSC 05C75, 05C12.

1. Introduction

All graphs considered in this paper are finite, undirected, without loops or multiple edges. We denote by $d(u, v)$ the length of a shortest (u, v)-path in the graph G. The interval $I(u, v)$ is the set of vertices of G lying on shortest (u, v)-paths: $I(u, v) = \{x : d(u, x) + d(x, v) = d(u, v)\}$. The quasi-interval $I^*(u, v)$ is the set of vertices x such that any shortest (u, x)-path and shortest (x, v)-path have only x as common vertex. That is, $I^*(u, v) = \{x : I(u, x) \cap I(x, v) = \{x\}\}$. This notion was introduced by Nebeský [10]. The projection (introduced by Berrachedi [4]) of a vertex x of a graph G over a subset S of vertices, is a subset of vertices of S which are at minimal distance from x. It is denoted by $P(x, S)$. A graph G is Hilbertian if $|P(x, I(u, v))| = 1$, for all $u, v, x \in G$. A graph G is quasi-Hilbertian if, for all u, v and x in G, $|P(x, I^*(u, v))| = 1$. Quasi-median graphs have been introduced by Mulder [9] as a natural generalization of median graphs, in fact,
median graphs are just the bipartite quasi-median graphs. Many researchers are interested in studying this class of graphs. Among prominent examples of median graphs let us mention hypercubes, trees and grids. Berrachedi [4] proved that a graph G is median if and only if G is Hilbertian. From the fact that a quasi-interval is an enlarged interval and in median graphs a quasi-interval is also an interval, then another generalization of Hilbertian graphs is to consider graphs which are quasi-Hilbertian. In this paper, our aim is to show that the class of quasi-median graphs is the same as the class of quasi-Hilbertian graphs.

2. Preliminaries

In this section, we recall some classical definitions and notation following that of [7, 9]. Then we give a mini-review of some interesting results on median graphs, and results obtained analogously for quasi-median graphs. A connected subgraph H of a graph G is called convex if for any two vertices u and v from H all shortest (u, v)-paths are contained in H. The convex closure of a subgraph H of G is defined as the smallest convex subgraph of G which contains H. The Cartesian product $G \square H$ of two graphs G and H is the graph with vertex set $V(G) \times V(H)$ and $(a, x)(b, y) \in E(G \square H)$ whenever $ab \in E(G)$ and $x = y$, or $a = b$ and $xy \in E(H)$. A clique in G is a set of vertices $K \subseteq V(G)$ in which any two distinct vertices are adjacent. If K is a clique and $K = V(G)$, then G is the complete graph K_n, where n is the number of vertices of G. The graph $K_4 - e$ is the complete graph on four vertices minus an edge. $K_{n,m}$ is the complete bipartite graph, where n and m are the number of vertices of the first and the second part of the partition. For $u \in V(G)$, $N(u)$ is the set of vertices adjacent to the vertex u. A Cartesian product of complete graphs is called a Hamming graph, a Cartesian power of the K_2 is called a hypercube. A graph G satisfies the triangle property if for any vertices $u, x, y \in V(G)$, where $d(u, x) = d(u, y) = k$ such that $xy \in E(G)$, there exists a common neighbour v of x and y with $d(u, v) = k - 1$. A graph G satisfies the quadrangle property if for any $u, x, y, z \in V(G)$ such that $d(u, x) = d(u, y) = d(u, z) - 1$ and $d(x, y) = 2$, with z a common neighbour of x and y, there exists a common neighbour v of x and y such that $d(u, v) = d(u, x) - 1$. A graph which fulfils the quadrangle property and the triangle property is called a weakly modular graph.

2.1. Median graphs

A vertex x is a median of the triple of vertices u, v and w if

1. $d(u, x) + d(x, v) = d(u, v)$;
2. $d(v, x) + d(x, w) = d(v, w)$;
3. \(d(w, x) + d(x, u) = d(w, u) \).

A graph \(G \) is a median graph if any three vertices \(u, v \) and \(w \) in \(G \) have a unique median. Mulder gave the following characterization of median graphs using the procedure of convex expansions, see [9] for the necessary details.

Theorem 1 (Mulder [9]). A graph \(G \) is a median graph if and only if \(G \) can be obtained from \(K_1 \) by a sequence of convex expansions.

Theorem 2 (Mulder [8]). A graph \(G \) is a hypercube if and only if \(G \) is a regular median graph.

A retraction \(f \) from a graph \(G \) to a subgraph \(H \) is a mapping \(f \) of the vertex set \(V(G) \) of \(G \) onto the vertex set \(V(H) \) of \(H \) such that for every edge \(uv \) in \(G \) the image \(f(u)f(v) \) is an edge in \(H \), and \(f(w) = w \) for all vertices \(w \) of \(H \). Using retraction, Bandelt [2] characterized hypercubes as median graphs.

Theorem 3 (Bandelt [2]). The retracts of hypercubes are precisely the median graphs.

Berrachedi in [4] introduced the class of Hilbertian graphs, using projections over intervals, he showed the following.

Theorem 4 (Berrachedi [4]). Let \(G \) be a graph. Then \(G \) is Hilbertian if and only if \(G \) is a median graph.

Other characterizations of median graphs using projections over intervals and convex sets are given by Berrachedi and Mollard in [5].

2.2. Quasi-median graphs

A triple of vertices \((x, y, z)\) is a quasi-median of \((u, v, w)\) if we have:

1. \(d(u, x) + d(x, y) + d(y, v) = d(u, v) \);
 \(d(v, y) + d(y, z) + d(z, w) = d(v, w) \);
 \(d(w, z) + d(z, x) + d(x, u) = d(w, u) \).
2. \(d(x, y) = d(y, z) = d(z, x) = k \).
3. \(k \) is minimal under the two above conditions.

Mulder [9] defines a quasi-median graph \(G \) as follows.

(i) Each ordered triple of vertices of \(G \) has a unique quasi-median;
(ii) \(G \) does not admit \(K_4 - e \) as induced subgraph;
(iii) Each induced \(C_6 \) in \(G \) has \(K_3 \Box K_3 \) or \(Q_3 \) as convex closure.

He characterized the quasi-median graphs with the quasi-median expansion procedure.
Theorem 5 (Mulder [9]). A graph G is quasi-median if and only if G can be obtained from K_1 by a sequence of quasi-median expansions.

Theorem 6 (Mulder [9]). A graph G is a Hamming graph if and only if G is a regular quasi-median graph.

Theorem 7 (Wilkeit [11]). The retracts of Hamming graphs are precisely the quasi-median graphs.

Chung et al. [6], characterized quasi-median graphs as weakly modular graphs without K_4-e or $K_2,3$ as induced subgraph.

Theorem 8 (Chung et al. [6]). A graph G is quasi-median if and only if G is weakly modular and does not contain K_4-e or $K_2,3$ as an induced subgraph.

More characterizations of quasi-median graphs can be found in [1, 3, 6, 9, 11].

3. Quasi-Hilbertian Graphs

In this section we shall prove that quasi-Hilbertian graphs are precisely quasi-median graphs. Chung et al. [6], established a relation between the quasi-median graphs and weakly modular graphs. We use their relation and some properties of quasi-Hilbertian graphs to prove that quasi-Hilbertian graphs are precisely quasi-median graphs.

Theorem 9 (the main result). A graph G is a quasi-median graph if and only if G is a quasi-Hilbertian graph.

This Theorem will be proved using a series of Lemmas that follow.

Lemma 10. A quasi-median graph is quasi-Hilbertian.

Proof. Let u,v,w be three vertices of a quasi-median graph G. We assume that $P(u,P(v,w))$ contains at least two vertices x and x'. We take the triple (x,v,w). As known in [9], there exists a unique vertex y in $I(x,v) \cap I(v,w) = I(v,y)$. Also, with the triple (x,y,w) we get $I(x,w) \cap I(y,w) = I(w,z)$. In the same way, starting by the triple (x',v,w), we find $I(x',v) \cap I(v,w) = I(v,y')$ and $I(x',w) \cap I(y',w) = I(w,z')$. Thus, (x,y,z) and (x',y',z') are two quasi-median of (u,v,w) in G, which is a contradiction.

Lemma 11. A quasi-Hilbertian graph is $K_{2,3}$-free.

Proof. Let u,v,w,x and y be five vertices that induce a $K_{2,3}$ in the quasi-Hilbertian graph G. Let v,w and u be the vertices of degree 2. Consider the quasi-interval $I'(v,w)$. Since $I(v,u) \cap I(u,w) \supseteq \{u,x,y\}$, $u \notin I'(v,w)$. The vertices v,w,x and y are in $I'(v,w)$. As $d(u,x) = d(u,y) = 1$, $P(u,I'(v,w)) \supseteq \{x,y\}$. This contradicts the fact that G is a quasi-Hilbertian graph.
Lemma 12. A quasi-Hilbertian graph is $K_4 - e$-free.

Proof. Let u, v, w and z be four vertices that induce a $K_4 - e$ in the quasi-Hilbertian graph G. Let u and w be the vertices of degree 2. Consider the quasi-interval $I^*(v, w)$. The vertices v, w and z are in $I^*(v, w)$, but $u \notin I^*(v, w)$. As $d(u, v) = d(u, z) = 1$, $P(u, I^*(v, w)) \supseteq \{v, z\}$. This contradicts the fact that G is a quasi-Hilbertian graph.

Lemma 13. In a quasi-Hilbertian graph G, for all $vw \in E(G)$ and for all $x \in I^*(v, w) \setminus \{v, w\}$, we have $d(v, x) = d(w, x) = 1$.

Proof. By contrary. Let vw be an edge in a quasi-Hilbertian graph G and $x \in I^*(v, w) \setminus \{v, w\}$. Let us consider the two possible cases.

Case 1. $d(v, x) \neq d(w, x)$. We assume without loss of generality that $d(v, x) < d(w, x)$, then $d(v, x) + 1 \leq d(w, x)$, which implies that $I(v, x) \subset I(w, x)$. Thus $I(v, x) \cap I(w, x) = I(v, x)$, this is a contradiction with $x \in I^*(v, w) \setminus \{v, w\}$.

Case 2. $d(v, x) = d(w, x) > 1$. We suppose that $d(v, x)$ is minimal. Let x_1 be a vertex in $I(v, x) \cap N(v)$. As $I(x_1, v) \cap I(v, x) = \{v, x_1\}$, $v \notin I^*(x_1, x)$. $I(x, w) \cap I(w, x_1) \neq \{w\}$, otherwise $P(v, I^*(x, x_1)) \supseteq \{w, x_1\}$. Necessarily, there exists $x_2 \in I(x, w) \cap I(w, x_1) \setminus \{w\}$ and $d(x_1, x_2) = 1$. If $v \in N(x_2)$ and $w \notin N(x_1)$, then $K_4 - e$ will be an induced subgraph. The same result holds if $v \notin N(x_2)$ and $w \in N(x_1)$. If $v \in N(x_2)$ and $w \in N(x_1)$, then $P(v, I^*(x, x_1)) \supseteq \{x_1, x_2\}$ and $P(w, I^*(x, x_1)) \supseteq \{x_1, x_2\}$. Thus $d(v, x_2) = d(w, x_1) = 2$. From the minimality of $d(v, x)$, we have $d(x, x_1) = d(x, x_2) = 1$, so that $P(x_1, I^*(v, w)) \supseteq \{v, x\}$. Contradiction with the fact that G is a quasi-Hilbertian graph. Consequently, we have $d(v, x) = d(w, x) = 1$, for all $x \in I^*(v, w) \setminus \{v, w\}$ with $vw \in E(G)$.

Lemma 14. For every two adjacent vertices v and w of a quasi-Hilbertian graph G, the quasi-interval $I^*(v, w)$ induces a complete subgraph.

Proof. Let $I^*(v, w)$ be the quasi-interval such that $d(v, w) = 1$, and $x, y \in I^*(v, w)$ such that $x \neq y$. From Lemma 13, we have

\[
\begin{align*}
\begin{cases}
d(v, x) = d(w, x) = d(v, w) = 1, \\
d(v, y) = d(w, y) = d(v, w) = 1.
\end{cases}
\end{align*}
\]

If $x = v$ or $x = w$, then $d(x, y) = 1$. The same result hold if $y = v$ or $y = w$. Else, if $d(x, y) \neq 1$, then the vertices v, w, x and y induce a forbidden $K_4 - e$.

Lemma 15. A quasi-Hilbertian graph satisfies the triangle property.
Proof. Consider three vertices u, v and w of a quasi-Hilbertian graph such that $d(u, v) = d(u, w) = k$ and $d(w, v) = 1$. If $k = 1$, we have the triangle property. Suppose that $k \geq 2$. Since $I^*(w, v)$ induce a complete subgraph, u is not in $I^*(w, v)$. So, there exists x in $I(w, u) \cap I(u, v) \setminus \{u\}$ such that $x \in I^*(w, v)$. Hence, $d(x, v) = d(w, x) = 1$ and $d(u, x) = k - 1$.

Lemma 16. A quasi-Hilbertian graph satisfies the quadrangle property.

Proof. Let u, v, w and z be four vertices in a quasi-Hilbertian graph such that $d(u, v) = d(u, z) = d(u, w) - 1 = k$, $d(z, v) = 2$, and $w \in I(v, z)$.

Consider the quasi-interval $I^*(u, z)$. If $k = 1$, we have the quadrangle property. Suppose that $k \geq 2$. $I(u, v) \cap I(v, z) \neq \{v\}$, otherwise $P(w, I^*(u, z)) \supseteq \{z, v\}$. Necessarily, there exists $x \in I(z, v) \cap I(v, u) \setminus \{v\}$, then $d(z, x) = d(v, x) = 1$ and $d(u, x) = k - 1$.

Proof of Theorem 9. From Lemma 10, a quasi-median graph is quasi-Hilbertian. As a quasi-Hilbertian graph is weakly modular (Lemmas 15 and 16), and does not contain $K_{2,3}$ or $K_4 - e$ as an induced subgraph, it is a quasi-median graph (Theorem 8).

Theorems 9 and 6 give a new characterization of Hamming graphs.

Theorem 17. A graph G is a Hamming graph if and only if

\[
\begin{align*}
&G \text{ is regular}, \\
&\text{for all } u, v, w \in G \text{ we have } |P(w, I^*(u, v))| = 1.
\end{align*}
\]

References

Received 13 June 2016
Revised 16 January 2017
Accepted 16 January 2017