DEScribing NeighBorhoods of 5-vErtecEs in 3-pOLytoPES with MinimUrn Degree 5 aND wITHOUT VertEcEs of DegreeS from 7 to 111

Oleg V. Borodin, Anna O. Ivanova

and

Olesya N. Kazak

Institute of Mathematics Siberian Branch
Russian Academy of Sciences
Novosibirsk, 630090, Russia

e-mail: brdnoleg@math.nsc.ru
shmgnanna@mail.ru
agazandjelos@gmail.com

Abstract

In 1940, Lebesgue proved that every 3-polytope contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences:

\((6,6,7,7,7), (6,6,6,7,9), (6,6,6,6,11), (5,6,7,7,8), (5,6,6,7,12), (5,6,6,8,10), (5,5,6,6,17), (5,5,7,7,13), (5,5,7,8,10), (5,5,6,7,27), (5,5,6,6,\infty), (5,5,6,8,15), (5,5,6,9,11), (5,5,5,7,41), (5,5,5,8,23), (5,5,5,9,17), (5,5,5,10,14), (5,5,5,11,13)\).

In this paper we prove that every 3-polytope without vertices of degree from 7 to 11 contains a 5-vertex for which the set of degrees of its neighbors is majorized by one of the following sequences: \((5,5,6,6,\infty), (5,6,6,6,15), (6,6,6,6,6)\), where all parameters are tight.

Keywords: planar graph, structure properties, 3-polytope, neighborhood.

2010 Mathematics Subject Classification: 05C15.

1The work was funded by the Russian Science Foundation, grant 16–11–10054.
1. Introduction

By a 3-polytope we mean a finite 3-dimensional convex polytope. As proved by Steinitz [31], the 3-polytopes are in one to one correspondence with the 3-connected planar graphs.

The degree $d(v)$ of a vertex v ($r(f)$ of a face f) in a 3-polytope P is the number of edges incident with it. By Δ and δ we denote the maximum and minimum vertex degrees of P, respectively. A k-vertex (k-face) is a vertex (face) with degree k; a k^+-vertex has degree at least k, etc.

The weight of a face in P is the degree sum of its boundary vertices, and $w(P)$, or simply w, denotes the minimum weight of 5-faces in P.

In 1904, Wernicke [32] proved that every 3-polytope with $\delta = 5$ has a 5-vertex adjacent with a 6-vertex, which was strengthened by Franklin [15] in 1922, who proved that every 3-polytope with $\delta = 5$ has a 5-vertex adjacent with two 6-vertices. Recently, Borodin and Ivanova [11] proved that every such 3-polytope has also a vertex of degree at most 6 adjacent to a 5-vertex and another vertex of degree at most 6, which is tight.

We say that v is a vertex of type (k_1, k_2, \ldots) or simply a (k_1, k_2, \ldots)-vertex if the set of degrees of the vertices adjacent to v is majorized by the vector (k_1, k_2, \ldots). If the order of neighbors in the type is not important, then we put a line over the corresponding degrees. The following description of the neighborhoods of 5-vertices in a 3-polytope with $\delta = 5$ was given by Lebesgue [28, p. 36] in 1940, which includes the results of Wernicke [32] and Franklin [15].

Theorem 1 (Lebesgue [28]). Every triangulated 3-polytope with minimum degree 5 contains a 5-vertex of one of the following types:

\[
(6, 6, 7, 7, 7), \ (6, 6, 6, 7, 9), \ (6, 6, 6, 6, 11), \\
(5, 6, 7, 7, 8), \ (5, 6, 6, 7, 11), \ (5, 6, 6, 8, 8), \\
(5, 6, 6, 9, 7), \ (5, 7, 6, 6, 12), \ (5, 8, 6, 6, 10), \ (5, 6, 6, 6, 17), \\
(5, 5, 7, 7, 8), \ (5, 13, 5, 7, 7), \ (5, 10, 5, 7, 8), \\
(5, 8, 5, 7, 9), \ (5, 7, 5, 7, 10), \ (5, 7, 5, 8, 8), \\
(5, 5, 7, 6, 12), \ (5, 5, 8, 6, 10), \ (5, 6, 5, 7, 12), \\
(5, 6, 5, 8, 10), \ (5, 17, 5, 6, 7), \ (5, 11, 5, 6, 8), \\
(5, 11, 5, 6, 9), \ (5, 7, 5, 6, 13), \ (5, 8, 5, 6, 11), \ (5, 9, 5, 6, 10), \ (5, 6, 6, 5, \infty), \\
(5, 5, 7, 5, 41), \ (5, 5, 8, 5, 23), \ (5, 5, 9, 5, 17), \ (5, 5, 10, 5, 14), \ (5, 5, 11, 5, 13).
\]

Theorem 1, along with other ideas in Lebesgue [28], has many applications to plane graph coloring problems (first examples of such applications and a recent survey can be found in [7, 30]). Some parameters of Lebesgue’s Theorem were improved for narrow classes of plane graphs. For example, in 1963, Kotzig [27] proved that every plane triangulation with $\delta = 5$ satisfies $w \leq 18$ and conjectured
that \(w \leq 17 \). In 1989, Kotzig’s conjecture was confirmed by Borodin [3] in a more general form.

Theorem 2 (Borodin [3]). Every 3-polytope with \(\delta = 5 \) has a \((5,5,7)\)-face or a \((5,6,6)\)-face, where all parameters are tight.

By a minor \(k \)-star \(S_k^{(m)} \) we mean a star with \(k \) rays centered at a \(5^- \)-vertex. The Lebesgue’s description [28, p. 36] of the neighborhoods of 5-vertices in 3-polytopes with minimum degree 5, \(P_5 \), shows that there is a 5-vertex with three \(8^- \)-neighbors. Another corollary of Lebesgue’s description [28] is that \(\nu(S_2^{(m)}) \leq 24 \), which was improved in 1996 by Jendrol’ and Madaras [23] to the sharp bound \(\nu(S_2^{(m)}) \leq 23 \). Furthermore, Jendrol’ and Madaras [23] gave a precise description of minor 3-stars in \(P_5 \): there is a \((6,6,6)\)- or \((5,6,7)\)-star.

Also, Lebesgue [28] proved that \(\nu(S_4^{(m)}) \leq 31 \), which was strengthened by Borodin and Woodall [13] to the sharp bound \(\nu(S_4^{(m)}) \leq 30 \). Note that \(\nu(S_3^{(m)}) \leq 23 \) easily implies \(\nu(S_2^{(m)}) \leq 17 \) and immediately follows from \(\nu(S_4^{(m)}) \leq 30 \) (in both cases, it suffices to delete a vertex of maximum degree from a minor star of minimum weight). In [9], Borodin and Ivanova obtained a tight description of minor 4-stars in \(P_5 \).

As for minor 5-stars in \(P_5 \), it follows from Lebesgue [28, p. 36] that if there are no minor \((5,5,6,6)\)-stars, then \(\nu(S_5^{(m)}) \leq 68 \) and \(h(S_5^{(m)}) \leq 41 \). Borodin, Ivanova, and Jensen [10] showed that the presence of minor \((5,5,6,6)\)-stars can make \(\nu(S_5^{(m)}) \) arbitrarily large and otherwise lowered Lebesgue’s bounds to \(\nu(S_5^{(m)}) \leq 55 \) and \(h(S_5^{(m)}) \leq 28 \). On the other hand, a construction in [10] shows that \(\nu(S_5^{(m)}) \geq 48 \) and \(h(S_5^{(m)}) \geq 20 \). Recently, Borodin and Ivanova [12] proved that \(\nu(S_5^{(m)}) \leq 51 \) and \(h(S_5^{(m)}) \leq 23 \).

More results on the structure of edges and higher stars in various classes of 3-polytopes can be found in [1, 2, 4–6, 8, 9, 14, 16, 19–22, 24–26], with a detailed summary in [12].

In [28] Lebesgue did not give a proof of Theorem 1 and only gave its idea. In 2013, Ivanova and Nikiforov [17] gave a full proof of Theorem 1 and corrected the following imprecisions in its statement:

1. in the type \((5,11,5,6,8)\) there should be 15 instead of 11;
2. in the type \((5,17,5,6,7)\) there should be 27 instead of 17;
3. in the type \((6,6,6,6,11)\) the line is not needed;
4. instead of type \((5,6,7,7,8)\) there should be \((5,8,6,7,7)\) and \((5,7,6,8,7)\);
Corollary 4. Every one of the following types: (5, 6, 6, 9, 7) is redundant;
(6) instead of (5, 5, 7, 7, 8) it suffices to write (5, 5, 7, 7, 8).

Later on, Ivanova and Nikiforov [18, 29] improved the corrected version of Theorem 1 by replacing 41 and 23 in the types (5, 5, 7, 5, 41) and (5, 5, 8, 5, 23) to 31 and 22, respectively.

Theorem 3 (Ivanova, Nikiforov [17, 18, 29]). Every 3-polytope with minimum degree 5 contains a 5-vertex of one of the following types:

\[
(6, 6, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11), \\
(5, 8, 6, 7, 7), (5, 7, 6, 8, 7), (5, 6, 6, 7, 11), (5, 6, 6, 8, 8), \\
(5, 7, 6, 6, 12), (5, 8, 6, 6, 10), (5, 6, 6, 6, 17), \\
(5, 5, 7, 7, 8), (5, 5, 7, 8, 7), (5, 5, 8, 7, 10), (5, 5, 8, 7, 11), \\
(5, 7, 5, 7, 10), (5, 7, 5, 8, 8), (5, 7, 6, 6, 12), (5, 7, 6, 8, 10), \\
(5, 6, 5, 7, 12), (5, 6, 5, 8, 10), (5, 6, 7, 6, 7), (5, 5, 5, 6, 8), \\
(5, 11, 5, 6, 9), (5, 7, 5, 6, 13), (5, 8, 5, 6, 11), (5, 9, 5, 6, 10), \\
(5, 6, 6, 5, \infty), \\
(5, 5, 7, 5, 31), (5, 5, 8, 5, 22), (5, 5, 9, 5, 17), (5, 5, 10, 5, 14), (5, 5, 11, 5, 13).
\]

Theorem 1 subject to the corrections (1)–(6) implies the following fact.

Corollary 4. Every 3-polytope with minimum degree 5 contains a 5-vertex of one of the following types:

\[
(6, 6, 7, 7), (6, 6, 6, 7, 9), (6, 6, 6, 6, 11), \\
(5, 6, 7, 7, 8), (5, 6, 6, 7, 12), (5, 6, 6, 8, 10), (5, 6, 6, 6, 17), \\
(5, 5, 7, 7, 13), (5, 5, 7, 8, 10), (5, 5, 6, 7, 27), \\
(5, 5, 6, 6, \infty), (5, 5, 6, 8, 15), (5, 5, 6, 9, 11), \\
(5, 5, 5, 7, 41), (5, 5, 5, 8, 23), (5, 5, 5, 9, 17), (5, 5, 5, 10, 14), (5, 5, 5, 11, 13).
\]

We can see already from Theorem 1 that if vertices of degree from 7 to 11 are forbidden, then there is a 5-vertex of one of the following types: (5, 5, 6, 6, \infty), (5, 6, 6, 6, 17), (6, 6, 6, 6, 6).

The purpose of this note is to obtain a precise description of 5-stars in this subclass of \(P_5\).

Theorem 5. Every 3-polytope with minimum degree 5 and without vertices of degree from 7 to 11 contains a 5-vertex of one of the following types: (5, 5, 6, 6, \infty), (5, 6, 6, 6, 15), (6, 6, 6, 6, 6), where all parameters are tight.

2. Proving Theorem 5

All parameters in Theorem 5 are best possible. Indeed, the following construction confirming the tightness of the type (5, 5, 6, 6, \infty) appears in [10]. Take three
Describing Neighborhoods of 5-Vertices in 3-Polytopes ...

concentric n-cycles $C^i = v^i_1 \cdots v^i_n$, where n is not limited and $1 \leq i \leq 3$, and join C^2 with C^1 by edges $v^2_j v^1_j$ and $v^2_j v^1_{j+1}$, where $1 \leq j \leq n$ (addition modulo n). Then do the same with C^2 and C^3. Finally, join all vertices of C^1 with a new n-vertex, and do the same for C^3.

The tightness of $(6, 6, 6, 6, 6)$ is confirmed by putting a 5-vertex in each face of the dodecahedron.

To confirm the tightness of $(5, 6, 6, 6, 15)$, we take the dodecahedron and insert the fragment shown in Figure 1 into each face. As a result, we have a 3-polytope with only $(5, 6, 6, 6, 15)$-vertices.

![Figure 1. The insert in each face of the dodecahedron to produce a 3-polytope with 5-vertices only of type $(5, 6, 6, 6, 15)$.](image)

Now suppose a 3-polytope P' is a counterexample to Theorem 5. Let P be a counterexample on the same number of vertices with maximum possible number of edges.

Remark 6. In P, each 4^+-face $f = v_1 \cdots v_{d(f)}$ with $d(v_1) = 5$ or $d(v_1) \geq 15$ satisfies $d(v_i) \geq 6$ whenever $3 \leq i \leq d(f) - 1$. Otherwise, we could put a diagonal v_1v_i, which contradicts the maximality of P.

Corollary 7. In P, each 4^+-face has at most two vertices with degree 5 and/or at least 15. Moreover, if there are precisely two such vertices, then they are adjacent to each other.
2.1. Discharging

The sets of vertices, edges, and faces of P are denoted by V, E, and F, respectively. Euler’s formula $|V| - |E| + |F| = 2$ for P implies

\[\sum_{v \in V} (d(v) - 6) + \sum_{f \in F} (2r(f) - 6) = -12. \]

(1)

We assign an initial charge $\mu(v) = d(v) - 6$ to every vertex v and $\mu(f) = 2d(f) - 6$ to every face f, so that only 5^--vertices have negative charge. Using the properties of P as a counterexample, we define a local redistribution of charges, preserving their sum, such that the new charge $\mu'(x)$ is non-negative whenever $x \in V \cup F$. This will contradict the fact that the sum of the new charges is, by (1), equal to -12. The technique of discharging is often used in solving structural and coloring problems on plane graphs.

Let $v_1, \ldots, v_{d(v)}$ denote the neighbors of a vertex v in a cyclic order round v, and let $f_1, \ldots, f_{d(v)}$ be the faces incident with v in the same order.

We use the following rules of discharging (see Figure 2).

R1. Every 4^+-face gives 1 to every incident 5-vertex.

R2. Every 12^+-vertex v gives a simplicial 5-vertex v_2 the following charge through a face $f = v_2vv_3$:

(a) $\frac{1}{4}$ if $d(v_3) = 5$,

\begin{center}
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{rules_of_discharging.png}
\caption{Rules of discharging.}
\end{figure}
\end{center}
(b) \(\frac{1}{2} \) if \(d(v_3) \geq 6 \),
with the following exception.

(c) If \(d(v) \geq 16 \), \(d(v_1) = 5 \), \(d(v_3) = d(x) = d(y) = 6 \), where \(v_2 \) is incident to face \(v_2xy \), then \(v \) gives \(\frac{2}{3} \) to \(v_2 \) through face \(v_2vv_3 \) and \(\frac{1}{2} \) through face \(v_1vv_2 \).

R3. Suppose a simplicial 5-vertex \(v \) is adjacent to a 16-vertex \(v_1 \), simplicial 5-vertices \(v_2 \) and \(v_3 \), and \(v_2 \) is surrounded by \(v_1, v, v_3, x, y \), where \(d(v_3) = d(x) = d(y) = 6 \), (consequently \(d(v_4) \geq 12 \)), while \(v_3 \) is surrounded by \(v_1, v, v_4, w, z \), where \(d(z) \geq 6 \). Then \(v \) gives \(\frac{1}{4} \) to \(v_1 \).

2.2. Proving \(\mu'(x) \geq 0 \) whenever \(x \in V \cup F \)

First consider a face \(f \) in \(P \). If \(d(f) = 3 \), then \(f \) does not participate in discharging, and so \(\mu'(v) = \mu(f) = 2 \times 3 - 6 = 0 \). Note that every \(4^+ \)-face is incident with at most two 5-vertices due to Corollary 7, which implies that \(\mu'(v) = 2d(f) - 6 - 2 \times 1 \geq 0 \) by R1.

Now let \(v \) be a vertex in \(P \).

Case 1. \(d(v) = 5 \). If \(v \) is incident with a \(4^+ \)-face, then \(\mu'(v) \geq 5 - 6 + 1 = 0 \) due to R1. In what follows we can assume that \(v \) is simplicial.

Subcase 1.1. \(v \) is incident only with \(6^+ \)-vertices. Then there is at least one \(v_i \) with \(d(v_i) \geq 12 \) due to the absence of \((6,6,6,6,6)\)-vertices in \(P \). Hence, \(\mu'(v) \geq -1 + 2 \times \frac{1}{2} = 0 \) by R2(b).

Subcase 1.2. \(v \) is incident with precisely one 5-vertex. Since there is no \((5,6,6,6,15)\)-vertex in \(P \), we can assume that \(v \) has either at least two \(12^+ \)-neighbors, or precisely one \(16^+ \)-neighbor. So we have either \(\mu'(v) \geq -1 + 2 \times \frac{1}{2} + 2 \times \frac{1}{4} > 0 \) by R2(a),(b), or \(\mu'(v) = -1 + \frac{3}{4} = 0 \) by R2(e), respectively.

Subcase 1.3. \(v \) is incident with at least two 5-vertices. Note that now R2(e) is not applicable to \(v \). Also note that \(v \) cannot be incident with more than three 5-vertices due to the absence of \((5,5,6,6,\infty)\)-vertices in \(P \), which implies that \(v \) has at least two \(12^+ \)-neighbors. If \(v \) is incident with precisely three 5-vertices, then we have \(\mu'(v) \geq -1 + 4 \times \frac{1}{4} = 0 \) by R2(a),(b).

Suppose \(v \) is incident with precisely two 5-vertices. If \(v \) does not participate in R3, then \(\mu'(v) \geq -1 + 3 \times \frac{1}{4} + \frac{1}{2} > 0 \) by R2(a),(b). Note that if \(v \) participates in R3, then it gives \(\frac{1}{2} \) only to one 16-neighbor, hence \(\mu'(v) \geq -1 + 3 \times \frac{1}{4} + \frac{1}{2} - \frac{1}{4} = 0 \).

Case 2. \(d(v) = 6 \). Since \(v \) does not participate in discharging, we have \(\mu'(v) = \mu'(v) = 6 - 6 = 0 \).

Case 3. \(12 \leq d(v) \leq 15 \). Now R2(e) is not applicable to \(v \), so \(v \) sends at most \(\frac{1}{2} \) through each face by R2(a),(b), which implies that \(\mu'(v) \geq d(v) - 6 - d(v) \times \frac{1}{2} = \frac{d(v) - 12}{2} \geq 0 \).
Case 4. 16 ≤ d(v) ≤ 17. Note that v gives at most \(\frac{2}{3} \) through each 3-face and only to a simplicial 5-vertex. If v gives nothing through at least one incident face, then \(\mu'(v) ≥ 16 − 6 − 15 \times \frac{2}{3} = 0 \) by R1, R2. Further, we can assume that v is simplicial and each face takes away some positive charge from v, which implies that each face at v is incident with a 5-vertex, and all 5-vertices adjacent to v are simplicial. Thus, \(\mu'(v) ≥ d(v) − 6 − d(v) \times \frac{2}{3} = \frac{d(v)−18}{3} \), and we have the deficiency \(\frac{1}{2} \) for a 17-vertex and \(\frac{2}{3} \) for a 16-vertex with respect to donating \(\frac{2}{3} \) per face.

Suppose \(S_k = v_1, \ldots, v_k \) is a sequence of neighbors of v with \(d(v_1) ≥ 6, d(v_k) ≥ 6 \), while \(d(v_i) = 5 \) whenever \(2 ≤ i ≤ k−1 \) and \(k ≥ 3 \), and \(f_1, \ldots, f_{k−1} \) are the corresponding faces. (It is not excluded that \(S_k = S_{d(v)} \), which happens when v has precisely one 6\(^2\)-neighbor.) We say that the sequence of faces \(f_1, \ldots, f_{k−1} \) saves \(ε \) with respect to the level of \(\frac{2}{3} \) if these faces take away the total of \((k−1) \times \frac{2}{3} − ε \) from v.

Remark 8. Only \(v_2 \) and \(v_{k−1} \) in \(S_k \) can receive the charge \(\frac{2}{3} \) from v by R2(e), while each of the other 5-vertices \(v_i \) receives precisely \(\frac{1}{2} \) from v through each incident face. So, if \(k ≥ 5 \), then \(v_2 \) receives at most 1, and \(v_3 \) receives \(\frac{1}{2} \) from v through incident faces.

Remark 9. If v is completely surrounded by 5-vertices, then \(\mu'(v) ≥ \frac{d(v)−12}{3} > 0 \), and hence we can assume from now on that the neighborhood of v is partitioned into \(S_k \)s.

(P1) If \(k = 3 \), then \(ε = \frac{1}{3} \). Indeed, here \(v_2 \) receives \(\frac{1}{2} \) through each of the faces \(v_1v_2 \) and \(v_2v_3 \) by R2(b), whence \(ε = 2 \times \frac{2}{3} − 2 \times \frac{1}{2} = \frac{1}{3} \).

(P2) If \(k = 4 \), then \(ε = 0 \). Now each of \(v_2 \) and \(v_3 \) receives at most 1 from v by Remark 8, so \(ε = 3 \times \frac{2}{3} − 2 = 0 \).

(P3) If \(k = 5 \), then \(ε = \frac{2}{3} \). Suppose \(w_1, \ldots, w_4 \) are the neighbors of \(v_1, \ldots, v_5 \) such that there are the faces \(v_1w_1v_{i+1} \), where \(1 ≤ i ≤ 4 \).

If \(v_2 \) receives 1 by R2(e), then \(d(w_1) = d(w_2) = 6 \). Hence, \(d(w_3) ≥ 12 \) due to the absence of a \((5, 5, 6, 6, \infty)\)-vertex in \(P \), which implies that \(v_4 \) is adjacent to two 12\(^\ast\)-vertices, whence it receives \(\frac{1}{2} \) from v through \(f_4 \) and \(\frac{1}{4} \) through \(f_3 \). Moreover, \(v_3 \) gives \(\frac{1}{1} \) to v by R3. Hence, \(ε = 4 \times \frac{2}{3} − 1 − \frac{1}{2} − \frac{3}{3} + \frac{1}{4} = \frac{2}{3} \).

If R2(e) is not applicable to v, then \(ε = 4 \times \frac{2}{3} − 4 \times \frac{1}{2} = \frac{2}{3} \).

(P4) If \(k = 6 \), then \(ε = \frac{1}{3} \). Here, each of \(v_2 \) and \(v_5 \) receives at most 1, while each of \(v_3 \) and \(v_4 \) receives \(\frac{1}{2} \) from v by Remark 8, so \(ε = 5 \times \frac{2}{3} − 2 \times 1 − 2 \times \frac{1}{2} = \frac{1}{3} \).

(P5) If \(k = 7 \), then \(ε = \frac{1}{2} \). Now we have \(ε = 6 \times \frac{2}{3} − 2 \times 1 − 3 \times \frac{1}{2} = \frac{1}{2} \) by Remark 8.
(P6) If \(k \geq 8 \), then \(\varepsilon \geq \frac{2}{3} \). Now we have \(\varepsilon = (k - 1) \times \frac{2}{3} - 2 \times 1 - (k - 4) \times \frac{1}{2} = \frac{k - 4}{6} \geq \frac{2}{3} \).

If \(d(v) = 17 \), then it suffices to assume that the neighborhood of \(v \) consists of pairs of 5-vertices separated from each other by 6-vertices by (P1)–(P6) (since otherwise we pay off the deficiency), which is impossible due to the fact that 17 is not divisible by 3.

Suppose that \(d(v) = 16 \) and \(\mu'(v) < 0 \). As follows from (P1)–(P6), the neighborhood of \(v \) can have at most one of the paths \(S_{t+2} \) of \(t \) vertices of degree 5, where \(t \in \{1, 4, 5\} \), while all other vertices are partitioned into pairs of 5-vertices separated from each other by 6-vertices. Indeed, if there are either two paths with \(t \in \{1, 4, 5\} \), or at least one path with \(t = 3 \) or \(t \geq 6 \), then we can pay off the deficiency \(\frac{2}{3} \), a contradiction. But none of these cases is possible due to the divisibility by 3. Namely, if \(t = 1 \) we have \(16 - 2 = 14 \) faces to be divided into triplets of faces with a sequence \(S_4 \) of neighbors of \(v \) as in (P2), or \(16 - 5 = 11 \) and \(16 - 6 = 10 \) faces for \(t = 4 \) and \(t = 5 \), respectively; a contradiction.

Case 6. \(d(v) \geq 18 \). Now \(\mu'(v) \geq d(v) - 6 - d(v) \times \frac{2}{3} = \frac{d(v) - 18}{3} \geq 0 \) by R2.

Thus we have proved \(\mu'(x) \geq 0 \) for every \(x \in V \cup F \), which contradicts (1) and completes the proof of Theorem 5.

References

O.V. Borodin, A.O. Ivanova and O.N. Kazak

Received 12 July 2016
Revised 13 January 2017
Accepted 13 January 2017