DOMINATION PARAMETERS OF A GRAPH
AND ITS COMPLEMENT

WYATT J. DESORMEAUX1, TERESA W. HAYNES1,2

AND

MICHAEL A. HENNING1

1Department of Mathematics
Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa

2Department of Mathematics and Statistics
East Tennessee State University
Johnson City, TN 37614-0002 USA

e-mail: wjdesormeaux@gmail.com
haynes@etsu.edu
mahenning@uj.ac.za

Abstract

A dominating set in a graph G is a set S of vertices such that every vertex in $V(G) \setminus S$ is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

Keywords: domination, complement, total domination, connected domination, clique domination, restrained domination.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

The literature on the subject of domination parameters in graphs has been surveyed through 1997 and detailed in the two books [7, 8]. Our aim in this paper
is to study graph relationships involving domination parameters in a graph \(G \) and its complement \(\overline{G} \). We will also study relationships between the domination number of a graph and its total, restrained, clique and connected domination numbers.

For notation and graph theory terminology not defined herein, we refer the reader to [7]. Let \(G = (V, E) \) be a graph with vertex set \(V = V(G) \) of order \(n = |V| \) and edge set \(E = E(G) \) of size \(m = |E| \), and let \(v \) be a vertex in \(V \). The open neighborhood of \(v \) is \(N_G(v) = \{ u \in V \mid uv \in E \} \), and the closed neighborhood of \(v \) is \(N_G[v] = \{ v \} \cup N_G(v) \). We denote the complement of a graph \(G \) by \(\overline{G} \). For any vertex \(v \), we call the subgraph of \(G \) induced by \(N_G(v) \) the link of \(v \) and will denote it as \(L(v) \). We will denote the subgraph of \(\overline{G} \) induced by \(N_G(v) \) as \(\overline{L}(v) \).

For a set \(S \subseteq V \), its open neighborhood is the set \(N_G(S) = \bigcup_{v \in S} N(v) \), and its closed neighborhood is the set \(N_G[S] = N_G(S) \cup S \). The degree of a vertex \(v \) in \(G \) is \(d_G(v) = |N_G(v)| \). If the graph \(G \) is clear from the context, we simply write \(d(v), N(v), N[v], N(S) \) and \(N[S] \) rather than \(d_G(v), N_G(v), N_G[v], N_G(S) \) and \(N_G[S] \), respectively. A vertex is isolated in \(G \) if its degree in \(G \) is zero. A graph is isolate-free if it has no isolated vertex. For any set \(S \subset V(G) \), we denote the subgraph induced by \(S \) as \(G[S] \). The minimum and maximum degree among the vertices of \(G \) is denoted by \(\delta(G) \) and \(\Delta(G) \), respectively. For a subset \(X \subseteq V \), the degree of a vertex \(v \) in \(X \), denoted \(d_X(v) \), is the number of vertices in \(X \) adjacent to \(v \); that is, \(d_X(v) = |N(v) \cap X| \). In particular, \(d_G(v) = d_v(v) \).

For sets \(A, B \subseteq V \), we let \(G[A, B] \), or simply \([A, B] \) if the graph is clear from the context, denote the set of edges in \(G \) with one end in \(A \) and the other in \(B \). A nontrivial graph is a graph with at least two vertices. We say that a graph is \(F \)-free if it does not contain \(F \) as an induced subgraph. In particular, if \(F = K_{1,3} \), then we say that the graph is claw-free.

A dominating set in \(G = (V, E) \) is a set \(S \) of vertices of \(G \) such that every vertex in \(V \setminus S \) is adjacent to at least one vertex in \(S \), that is, \(N[S] = V \). The domination number of \(G \), denoted by \(\gamma(G) \), is the minimum cardinality of a dominating set of \(G \). A dominating set of \(G \) of cardinality \(\gamma(G) \) is called a \(\gamma(G) \)-set. For subsets \(X, Y \subseteq V \), the set \(X \) dominates the set \(Y \) in \(G \) if \(Y \subseteq N[X] \). In particular, if \(X \) dominates \(V \), then \(X \) is a dominating set of \(G \). A vertex is called \(\gamma(G) \)-good if it is contained in some \(\gamma(G) \)-set, and \(\gamma(G) \)-bad, otherwise. In other words, a \(\gamma(G) \)-good vertex is contained in at least one \(\gamma(G) \)-set, while a \(\gamma(G) \)-bad vertex is not in any \(\gamma(G) \)-set. The minimum degree among the \(\gamma(G) \)-good (respectively, \(\gamma(G) \)-bad) vertices of \(G \) is denoted by \(\delta_{\gamma}(G) \) (respectively, \(\delta_{\gamma}(G) \)).

A total dominating set, abbreviated TD-set, of \(G \) is a set \(S \) of vertices of \(G \) such that every vertex in \(V(G) \) is adjacent to at least one vertex in \(S \). The total domination number of \(G \), denoted by \(\gamma_t(G) \), is the minimum cardinality of a TD-set of \(G \). A TD-set of \(G \) of cardinality \(\gamma_t(G) \) is called a \(\gamma_t(G) \)-set. Total domination is now well studied in graph theory. The literature on the subject of
total domination in graphs has been surveyed and detailed in the recent book [10]. A survey of total domination in graphs can also be found in [9].

Another way of looking at total domination is that a dominating set \(S \) is a TD-set if the induced subgraph \(G[S] \) has no isolated vertices. Placing the constraint that \(G[S] \) is connected (respectively, a complete graph) yields connected domination (respectively, clique domination). More formally, a dominating set \(S \) is a connected dominating set, abbreviated CD-set, of a graph \(G \) if the induced subgraph \(G[S] \) is connected. Every connected graph has a CD-set, since \(V \) is such a set. The connected domination number of \(G \), denoted by \(\gamma_c(G) \), is the minimum cardinality of a CD-set of \(G \), and a CD-set of \(G \) of cardinality \(\gamma_c(G) \) is called a \(\gamma_c(G) \)-set. Connected domination in graphs was first introduced by Sampathkumar et al. [14] and is now very well studied (see, for example, [4] and the recent papers [13, 15]). The study of connected domination has extensive application in the study of routing problems and virtual backbone based routing in wireless networks [6, 12, 17]. A subset \(S \subset V \) of vertices in a graph \(G = (V, E) \) is a dominating clique in \(G \) if \(S \) dominates \(V \) in \(G \) and \(G[S] \) is complete. If a graph \(G \) has a dominating clique, then the minimum cardinality among all dominating cliques of \(G \) is the clique domination number of \(G \), denoted by \(\gamma_{cl}(G) \).

A restrained dominating set of a graph \(G \) is a set \(S \) of vertices in \(G \) such that every vertex in \(V \setminus S \) is adjacent to a vertex in \(S \) and to some other vertex in \(V \setminus S \). Every connected graph has an RD-set, since \(V \) is such a set. The restrained domination number of \(G \), denoted by \(\gamma_r(G) \), is the minimum cardinality of an RD-set of \(G \), and an RD-set of \(G \) of cardinality \(\gamma_r(G) \) is called a \(\gamma_r(G) \)-set.

A proper vertex coloring of a graph \(G \) is an assignment of colors (elements of some set) to the vertices of \(G \), one color to each vertex, so that adjacent vertices are assigned distinct colors. If \(k \) colors are used, then the coloring is referred to as a \(k \)-coloring. In a given coloring of \(G \), a color class of the coloring is a set consisting of all those vertices assigned the same color. The vertex chromatic number \(\chi(G) \) of \(G \) is the minimum integer \(k \) such that \(G \) is \(k \)-colorable. A \(\chi(G) \)-coloring of \(G \) is a coloring of \(G \) with \(\chi(G) \) colors.

Given a graph \(G \), two edges are said to cross in the plane if in a drawing of the graph in the plane they intersect at a point that is not a vertex. The graph \(G \) is planar if it can be drawn in the plane with no edges crossing. The crossing number of \(G \), denoted \(cr(G) \), is the minimum number of crossing edges amongst all drawings of \(G \) in the plane. Note that if \(G \) is planar, then necessarily \(cr(G) = 0 \).

2. Bounds on the Domination Number

In this section, we determine bounds on the domination number. If the graph \(G \) is clear from the context, then we write \(\delta, \overline{\delta}, \Delta, \overline{\Delta}, \gamma \) and \(\overline{\gamma} \) rather than \(\delta(G) \), \(\overline{\delta}(G) \), \(\Delta(G) \), \(\overline{\Delta}(G) \), \(\gamma(G) \) and \(\overline{\gamma}(G) \).
\[\delta(\overline{G}), \Delta(G), \Delta(\overline{G}), \gamma(G) \text{ and } \gamma(\overline{G}), \text{ respectively.} \]

2.1. Dominating the complement of a graph

We begin with results bounding the domination number of the complement of a graph. If \(v \) is an arbitrary vertex in a graph \(G \), then the closed neighborhood, \(N_G[v] \), of \(v \) is a dominating set of \(\overline{G} \). In particular, choosing \(v \) to be a vertex of minimum degree in \(G \), we have that \(\gamma(\overline{G}) \leq \delta(G) + 1 \). Furthermore, a set formed by taking a vertex from each color class of an arbitrary \(\chi(G) \)-coloring of \(G \) is a dominating set of \(\overline{G} \), and so \(\gamma(\overline{G}) \leq \chi(G) \). We state these well known observations formally as follows.

Observation 1. Let \(G \) be a graph. Then the following hold.

(a) \(\gamma(\overline{G}) \leq \delta(G) + 1 \).
(b) \(\gamma(\overline{G}) \leq \chi(G) \).

By Observation 1, \(\gamma(\overline{G}) \leq \Delta(G) + 1 \). From Brook’s Coloring Theorem [2], \(\chi(G) \leq \Delta(G) + 1 \) with equality if and only if \(G \) is the complete graph or an odd cycle. Noting that the domination number of the complement of any odd cycle \(C_n \), where \(n \geq 5 \), is equal to 2, we observe that if \(G \) is a graph, then \(\gamma(\overline{G}) \leq \Delta(G) + 1 \) with equality if and only if \(G \) is a complete graph. Next we give an upper bound on \(\gamma(\overline{G}) \) in terms of \(\gamma(G) \) and \(\delta(G) \).

Theorem 2. If \(G \) is a graph with \(\gamma(G) \geq 2 \), then \(\gamma(\overline{G}) \leq \left\lceil \frac{\delta(G)}{\gamma(G) - 1} \right\rceil + 1 \).

Proof. Let \(v \) be a vertex of \(G \) having degree \(\delta \). Let \(A = N_G(v) \), and so \(|A| = \delta \). Let \(k = \lceil \delta / (\gamma - 1) \rceil \) and partition the set \(A \) into \(k \) sets \(A_1, \ldots, A_k \) each of cardinality at most \(\gamma - 1 \). Thus, \(A = \bigcup_{i=1}^{k} A_i \), and \(1 \leq |A_i| \leq \gamma - 1 \) for each \(i \), \(1 \leq i \leq k \). In particular, we note that no set \(A_i \) dominates \(V \) in \(G \). For each set \(A_i \), \(1 \leq i \leq k \), select one vertex \(a_i \in V \setminus A_i \) that is not dominated by \(A_i \) in \(G \), and let \(A' = \bigcup_{i=1}^{k} \{a_i\} \). Then, \(|A'| \leq k \) and \(A' \) dominates \(A \) in \(\overline{G} \). Therefore, the set \(A' \cup \{v\} \) is a dominating set of \(\overline{G} \), and so \(\gamma \leq |A'| + 1 \leq k + 1 = 1 + \lceil \delta / (\gamma - 1) \rceil \).

As an immediate consequence of Theorem 2, we have the following corollaries.

Corollary 1. If \(G \) is a graph with \(\gamma(\overline{G}) > \gamma(G) \geq 2 \), then \(\delta(G) \geq \gamma(G) \).

The next result shows that if \(G \) is a graph satisfying \(\gamma(G) \geq \gamma(\overline{G}) - 1 \), then the bound of Observation 1(a) can be improved.

Corollary 2. If \(G \) is a graph satisfying \(\gamma(G) \geq \gamma(\overline{G}) - 1 \), then \(\gamma(\overline{G}) < 2 + \sqrt{\delta(G)} \).

Proof. Let \(G \) be a graph satisfying \(\gamma \geq \gamma - 1 \). If \(\gamma = 1 \), then \(\gamma \leq 2 \), and the result follows. Accordingly, we may assume that \(\gamma \geq 2 \). By Theorem 2, \(\gamma \leq \lceil \delta / (\gamma - 1) \rceil + 1 \). This simplifies to \((\gamma - 2)(\gamma - 1) < \delta \). By assumption, \(\gamma \geq \gamma - 1 \). Hence, \((\gamma - 2)(\gamma - 2) < \delta \), and the result follows.
From Corollary 2, we have the following Nordhaus-Gaddum type result for graphs G with $\gamma(G) = \gamma(G)$.

Corollary 3. If G is a graph with $\gamma(G) = \gamma(G)$, then $\gamma(G) + \gamma(G) < 4 + \sqrt{\delta(G)}$.

2.2. Graphs G with $\gamma(G) < \gamma(G)$

For a subset $S \subseteq V$ in a graph $G = (V, E)$, let $X_S(G)$ be the set of all vertices x in $V \setminus S$ such that x dominates S in G; that is, $X_S(G) = \{x \in V \setminus S \mid S \subseteq N(x)\}$. We observe that if $X_S(G) = \emptyset$, then S is a dominating set of G. We state this formally as follows.

Observation 3. If G is a graph and $S \subseteq V$ satisfies $|S| < \gamma(G)$, then $X_S(G) \neq \emptyset$.

The following result establishes properties about the set $X_S(G)$.

Theorem 4. Let G be a graph with $\gamma(G) = \gamma(G) + k$, where $k \geq 2$, and let S be a $\gamma(G)$-set. It follows that $|X_S| \geq k$. Moreover, any subset $X' \subseteq X_S$ of size $|X_S| - k + 2$ is a dominating set of G.

Proof. By the definition of X_S, the set S dominates $V \setminus (S \cup X_S)$ in G. This gives that $S \cup X_S$ is a dominating set of G, and so $\gamma(G) + |X_S| = |S| + |X_S| \geq \gamma(G) = \gamma(G) + k$ which implies $|X_S| \geq k$.

Let u be an arbitrary vertex in $V \setminus S$, and let $U = N_G(u) \cap X_S$. Since S dominates $V \setminus (S \cup X_S)$ in G, and u dominates $X_S \setminus U$ in G, the set $S \cup U \cup \{u\}$ is a dominating set of G. Then, $\gamma(G) + k = \gamma(G) \leq \gamma(G) + |U| + 1$. Consequently, $k - 1 \leq |U| = |N_G(u) \cap (X_S \setminus X')| + |N_G(u) \cap X'| \leq k - 2 + |N_G(u) \cap X'|$ and so $|N_G(u) \cap X'| \neq \emptyset$. Hence, X' dominates $V \setminus S$ in G. Since every vertex of X' dominates S in G, the set X' is a dominating set of G. \[\square\]

Let G be a graph with $\gamma(G) \leq \gamma(G) - 2$. Further, let S be a $\gamma(G)$-set, and let $X = X_S(G)$. By definition of the set X, we note that the edges, $G[X, S]$, in G between X and S induce a complete bipartite graph $K_{|X|, |S|}$. By Theorem 4, $\gamma \leq |X|$. Thus, we have the following corollary of Theorem 4.

Corollary 4. If G is a graph with $\gamma(G) \leq \gamma(G) - 2$, then G contains $K_{\gamma, \gamma}$ as a subgraph.

We observe from Corollary 4 that if G is a graph that contains no 4-cycle (and thus does not contain $K_{r,r}$ for $r \geq 2$ as a subgraph), then $\gamma(G) = 1$ or $\gamma(G) \geq \gamma(G) - 1$. We establish next a property of claw-free graphs G with $\gamma(G) \leq \gamma(G) - 2$.

Theorem 5. Let G be a graph with $\gamma(G) \leq \gamma(G) - 2$, and let S be a $\gamma(G)$-set. If G is claw-free, then $\gamma(G) \leq 2$ or $S \cup X_S(G)$ is a clique in G.

Proof. Let $G = (V, E)$ be a claw-free graph with $\gamma \leq \gamma - 2$, and let S be a $\gamma(G)$-set. Following our earlier notation, let $X = X_S(G)$. By Theorem 4, the set X is a dominating set of G, and so $\gamma \leq |X|$. Suppose that $G[S \cup X]$ is not a clique. Then there are two vertices, say a and b, in $S \cup X$ that are not adjacent in G. Since every vertex in X is by definition adjacent in G to every vertex in S, we observe that both a and b are in S or both a and b are in X. Let c be an arbitrary vertex in $V \setminus \{a, b\}$.

We show that c is dominated by $\{a, b\}$. Suppose to the contrary that c is adjacent to neither a nor b. On the one hand, suppose that $\{a, b\} \subseteq S$. Then, $c \notin X$. However since X is a dominating set in G, there is a vertex $x \in X$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. On the other hand, suppose that $\{a, b\} \subseteq X$. Then, $c \notin S$. However since S is a dominating set in G, there is a vertex $x \in S$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. In both cases, we have that c is dominated by $\{a, b\}$, implying that $\{a, b\}$ is a dominating set in G, and therefore, that $\gamma \leq 2$.

Let G be a claw-free graph with $\gamma(G) \leq \gamma(G) - 2$, and let S be a $\gamma(G)$-set and let $X = X_S(G)$. If $\gamma(G) \geq 3$, then by Theorem 5, the set $S \cup X$ is a clique in G, and therefore, an independent set in \overline{G}. Hence, as an immediate consequence of Theorem 5, we have the following result, where $\alpha(G)$ and $\omega(G)$ denote the vertex independence number and the clique number, respectively, of G.

Corollary 5. If G is a claw-free graph with $\gamma(G) \leq \gamma(G) - 2$, then $\gamma(G) \leq 2$ or $\gamma(G) \leq \omega(G)/2 = \alpha(G)/2$.

2.3. Graphs G with a $\gamma(G)$-bad vertex

Recall that a vertex in a graph G is a $\gamma(G)$-bad vertex if it is contained in no $\gamma(G)$-set. We establish next an upper bound on the sum of the domination numbers of a graph G and its complement \overline{G} in terms of the degree of a $\gamma(G)$-bad vertex.

Theorem 6. If a graph G contains a vertex v that is a $\gamma(\overline{G})$-bad vertex, then $\gamma(G) + \gamma(\overline{G}) \leq d_G(v) + 3$.

Proof. Let $G = (V, E)$ be a graph that contains a $\gamma(\overline{G})$-bad vertex v. Let $A = N_G(v)$, and so $|A| = d_G(v)$. Since the set $A \cup \{v\}$ is a dominating set in \overline{G}, we have that $\gamma(\overline{G}) \leq |A| + 1$. However if $\gamma(\overline{G}) = |A| + 1$, then $A \cup \{v\}$ is a $\gamma(\overline{G})$-set, contradicting the fact that v is a $\gamma(\overline{G})$-bad vertex. Therefore, $\gamma(\overline{G}) < |A| + 1$, or, equivalently, $|A| \geq \gamma(\overline{G})$.

Let $B = V \setminus N_G[v]$. If $B = \emptyset$, then v dominates V in the graph G, implying that v is isolated in \overline{G} and therefore belongs to every $\gamma(\overline{G})$-set, a contradiction. Hence, $B \neq \emptyset$. We show next that each vertex in B has at least $\gamma - 1$ neighbors in G that belong to the set A. Let $x \in B$, and let $A_x = A \cap N_G(x)$. Then in the graph \overline{G}, the vertex x dominates the set $A \setminus A_x$. Thus since the vertex v dominates the set B in \overline{G}, we have that the set $A_x \cup \{v, x\}$ is a dominating set in \overline{G}, implying that $\gamma(\overline{G}) \leq |A_x| + 2$. However if $\gamma(\overline{G}) = |A_x| + 2$, then $A_x \cup \{v, x\}$ is a $\gamma(\overline{G})$-set, contradicting the fact that v is a $\gamma(\overline{G})$-bad vertex. Therefore, $\gamma(\overline{G}) < |A_x| + 2$, or, equivalently, $\gamma(\overline{G}) \leq |A_x| + 1$. Thus in the graph \overline{G}, we have that $d_A(x) = |A_x| \geq \gamma(\overline{G}) - 1$. This is true for every vertex $x \in B$.

Recall that $|A| \geq \gamma(\overline{G})$. Let A' be an arbitrary subset of A of cardinality $\gamma(\overline{G}) - 2$, and let $A'' = A \setminus A'$. Thus, $|A'| = \gamma(\overline{G}) - 2$ and $|A''| = |A| - |A'| = d_G(v) - \gamma(\overline{G}) + 2$. Since $d_A(x) \geq \gamma(\overline{G}) - 1$ for every vertex $x \in B$, the set A'' dominates the set B in G. Thus, $A'' \cup \{v\}$ is a dominating set in G, implying that $\gamma(G) \leq |A''| + 1 = d_G(v) - \gamma(\overline{G}) + 3$.

As a consequence of Theorem 6, we have the following result.

Corollary 6. If G is an r-regular graph that contains a $\gamma(\overline{G})$-bad vertex, then $\gamma(G) + \gamma(\overline{G}) \leq r + 3$.

2.4. Domination and planarity

In this section, we study some relationships between planarity, the crossing number of G and the domination number of \overline{G}. Fundamental to our results in this section is the famous Four Color Theorem.

Theorem 7 [1]. If G is a planar graph, then $\chi(G) \leq 4$.

We first establish the following upper bound on the domination number of the complement of a graph. For this purpose, for a vertex v in a graph G, we denote by G_v the subgraph of G induced by the neighbors of v; that is, $G_v = G[N(v)]$. If \mathcal{C} is a minimum coloring of the vertices of G_v, and S is a set of vertices comprising of exactly one vertex from each color class of \mathcal{C}, then the set $S \cup \{v\}$ forms a dominating set of \overline{G}, implying that $\gamma(\overline{G}) \leq |\mathcal{C}| + 1 = \chi(G_v) + 1$. We state this formally as follows.

Observation 8. If v is an arbitrary vertex in a graph G, then $\gamma(\overline{G}) \leq \chi(G_v) + 1$.

As a consequence of Theorem 7 and Observation 8, we have the following results.

Corollary 7. If a graph G contains a vertex v with the property that G_v is a planar graph, then $\gamma(\overline{G}) \leq 5$.

Corollary 8. If a graph G satisfies $\gamma(G) > 2\text{cr}(G)$, then $\gamma(G) \leq 5$.

\textbf{Proof.} Let G^* be a drawing of G in the plane with exactly $\text{cr}(G)$ crossing edges, and let S be the set of vertices of G incident with at least one crossing edge of G^*. Clearly, $|S| \leq 2\text{cr}(G)$. Since, by assumption, $\gamma(G) > 2\text{cr}(G)$, it follows there exists some vertex v in G that is not dominated by S. This implies that G_v is a planar graph. Thus, by Corollary 7, $\gamma(G) \leq 5$.

3. Total, Connected, Restrained, and Clique Domination

In this section, we establish relationships involving the domination, total domination, restrained domination, connected domination and clique domination numbers of a graph. We begin with the following lemma.

Lemma 9. If there exists a $\gamma(G)$-set for a graph G that is not a dominating set in \overline{G}, then $\gamma_t(G) \leq \gamma_c(G) \leq \gamma(G) + 1$.

\textbf{Proof.} Let S be a $\gamma(G)$-set in a graph $G = (V, E)$ that is not a dominating set in \overline{G}. Then there exists a vertex $v \in V \setminus S$ that is not adjacent to any vertex of S in \overline{G}. Hence in G, the vertex v is adjacent to every vertex of S, implying that the graph $G[S \cup \{v\}]$ is connected. Since every superset of a dominating set is also a dominating set, the set $S \cup \{v\}$ is a CD-set, and so $\gamma_c(G) \leq |S \cup \{v\}| = \gamma(G) + 1$. Since the total domination of a graph is at most its connected domination number, the desired result follows from the observation that $\gamma_t(G) \leq \gamma_c(G)$.

By the contrapositive of Lemma 9, we note that if a graph G satisfies $\gamma_t(G) \geq \gamma(G) + 2$, then every $\gamma(G)$-set is a dominating set in \overline{G}. Further as a consequence of Lemma 9 and the well-known result due to Jaeger and Payan [11] that if G is a graph of order n, then $\gamma(G) \gamma(\overline{G}) \leq n$, we have the following result.

Corollary 10. Let G be a graph of order n satisfying $\gamma(G) < \gamma(\overline{G})$. Then the following holds.

(a) $\gamma_t(G) \leq \gamma_c(G) \leq \gamma(G) + 1$.
(b) $\gamma_c(G) \leq (1 + \sqrt{4n + 1})/2$.

\textbf{Proof.} Part (a) is an immediate consequence of Lemma 9. To prove part (b), let G be a graph of order n satisfying $\gamma(G) < \gamma(\overline{G})$. By part (a) and our assumption that $\gamma(G) \leq \gamma(\overline{G}) - 1$, we have that $\gamma_c(G) \leq \gamma(G) + 1 \leq \gamma(\overline{G})$. Applying the result due to Jaeger and Payan, we therefore have that $(\gamma_c(G) - 1)\gamma_c(G) \leq \gamma(G)\gamma(\overline{G}) \leq n$. Solving for $\gamma_c(G)$, we have that $\gamma_c(G) \leq (1 + \sqrt{4n + 1})/2$.

In the following result, we consider the case when $\gamma(G) \leq \gamma(\overline{G}) + 1$.

Theorem 9. Let G be a graph satisfying $\gamma(G) \leq \gamma(\overline{G}) + 1$. Then the following holds.

(a) If both G and \overline{G} are connected, then $\gamma_c(G) \leq \gamma(G) + 1$ or $\gamma_c(\overline{G}) \leq \gamma(\overline{G}) + 1$.

(b) If both G and \overline{G} are isolate-free, then $\gamma_t(G) \leq \gamma(G) + 1$ or $\gamma_t(\overline{G}) \leq \gamma(\overline{G}) + 1$.

Proof. Let $G = (V, E)$, and let S be a $\gamma(G)$-set in the graph. We first establish part (a). Suppose that both G and \overline{G} are connected. If $G[S]$ is connected, then S is a CD-set in G, implying that $\gamma_c(G) \leq |S| = \gamma(G)$. Hence we may assume that $G[S]$ is not connected, for otherwise part (a) is immediate. This implies that $\overline{G}[S]$ is connected. If the set S is not a dominating set in \overline{G}, then by Lemma 9, we have that $\gamma_c(\overline{G}) \leq \gamma(\overline{G}) + 1$. If the set S is a dominating set in \overline{G}, then S is a CD-set in \overline{G}, implying that $\gamma_c(\overline{G}) \leq |S| = \gamma(G) \leq \gamma(\overline{G}) + 1$. This proves part (a).

Next we prove part (b). Suppose that both G and \overline{G} are isolate-free. If $G[S]$ is isolate-free, then S is a TD-set in G, implying that $\gamma_t(G) \leq |S| = \gamma(G)$. Hence we may assume that $G[S]$ contains an isolated vertex, for otherwise part (b) is immediate. This implies that $\overline{G}[S]$ is connected. If the set S is not a dominating set in \overline{G}, then by Lemma 9 we have that $\gamma_t(G) \leq \gamma(G) + 1$. If the set S is a dominating set in \overline{G}, then S is a TD-set in \overline{G}, implying that $\gamma_t(\overline{G}) \leq |S| = \gamma(G) \leq \gamma(\overline{G}) + 1$. This proves part (b).

We establish next an upper bound on the total domination number of a graph in terms of its domination number and the domination number of its complement.

Theorem 10. Let G be an isolate-free graph, and let S be a $\gamma(G)$-set. If s is the number of isolated vertices in $G[S]$, then $\gamma_t(G) \leq \gamma(G) + \lceil s/(\gamma(\overline{G}) - 1) \rceil$.

Proof. Let $G = (V, E)$. Since G is isolate-free, we note that $\gamma(\overline{G}) \geq 2$. Let I be the set of isolated vertices in $G[S]$, and so $s = |I|$. Let $k = \lceil s/(\gamma - 1) \rceil$, and partition the set I into k sets I_1, \ldots, I_k each of cardinality at most $\gamma - 1$. Thus, $I = \bigcup_{i=1}^{k} I_i$ and $1 \leq |I_i| \leq \gamma - 1$ for each i, $1 \leq i \leq k$. In particular, we note that no set I_i dominates V in \overline{G}. For each set I_i, $1 \leq i \leq k$, select one vertex $w_i \in V \setminus I_i$ that is not dominated by I_i in \overline{G}, and let $W = \bigcup_{i=1}^{k} \{w_i\}$. Then, $|W| \leq k$. We note that in the graph G, the vertex w_i is adjacent to every vertex of I_i, and so $S \cup W$ is a TD-set in G. Hence, $\gamma_t(G) \leq |S \cup W| \leq |S| + |W| \leq \gamma(G) + k = \gamma(G) + \lceil s/(\gamma - 1) \rceil$.

As an immediate consequence of Theorem 10, we have the following upper bound on the total domination number of a graph.

Corollary 11. If G is an isolate-free graph, then $\gamma_t(G) \leq \gamma(G) + \left\lceil \frac{\gamma(G)}{\gamma(\overline{G}) - 1} \right\rceil$.

Theorem 11. If G is a graph with $\gamma_t(G) \geq \gamma(G) + 2$, then $\gamma_t(\overline{G}) \leq 1 + \left\lceil \frac{\delta(G)}{\gamma(G)} \right\rceil$.
Proof. Let $G = (V, E)$ be a graph with $\gamma_t(G) \geq \gamma(G)+2$, and let v be a vertex of G having degree $\delta(G)$. Let $A = N_G(v)$, and so $|A| = \delta(G)$. Let $k = \lceil \delta(G)/\gamma(G) \rceil$ and partition the set A into k sets A_1, \ldots, A_k each of cardinality at most $\gamma(G)$. Thus, $A = \bigcup_{i=1}^{k} A_i$ and $1 \leq |A_i| \leq \gamma(G)$ for each i, $1 \leq i \leq k$. If the set A_i dominates $V \setminus N_G[v]$ in G for some i, $1 \leq i \leq k$, then the set $A_i \cup \{v\}$ is a TD-set in G, implying that $\gamma_t(G) \leq |A_i| + 1 \leq \gamma(G) + 1$, a contradiction. Therefore, no set A_i dominates $V \setminus N_G[v]$ in G. For each set A_i, $1 \leq i \leq k$, select one vertex $a_i \in V \setminus N_G[v]$ that is not dominated by A_i in G, and let $A' = \bigcup_{i=1}^{k} \{a_i\}$. Then, $|A'| \leq k$ and A' dominates A in \overline{G}. Therefore, the set $A' \cup \{v\}$ is a TD-set in \overline{G}, and so $\gamma_t(\overline{G}) \leq |A'| + 1 \leq k + 1 = 1 + \lceil \delta(G)/\gamma(G) \rceil$.

Next we consider the restrained domination number. We first prove a general lemma.

Lemma 12. If a graph G has a $\gamma(G)$-set S such that the induced subgraph $G[V \setminus S]$ has an isolated vertex, then $\gamma(\overline{G}) \leq 3$.

Proof. Let S be a $\gamma(G)$-set such that $G[V \setminus S]$ has an isolated vertex, say w. If $G[S]$ has an isolated vertex v, then $\{v, w\}$ is dominating set of \overline{G}, and so $\gamma(\overline{G}) \leq 2$. If $G[S]$ contains no isolated vertices, then by the minimality of S, for each $v \in S$, there exists a vertex, say $v' \in V \setminus S$, such that $N(v') \cap S = \{v\}$. In this case, the set $\{v, w, v'\}$ is a dominating set of \overline{G}, implying that $\gamma(\overline{G}) \leq 3$.

As an immediate consequence of Lemma 12, we have the following result.

Corollary 13. If a graph G has $\gamma(\overline{G}) \geq 4$, then every $\gamma(G)$-set is a $\gamma_r(G)$-set. In particular, $\gamma(G) = \gamma_r(G)$.

We close this section with two results about the clique domination number of a graph.

Theorem 12. If G is a graph with $\gamma_t(G) \geq \gamma(G) + 2$, then $\gamma(\overline{G}) \leq \gamma(G)$. Moreover, if G is claw-free, then $\gamma(\overline{G}) \leq 3$.

Proof. Let G be a graph with $\gamma_t(G) \geq \gamma(G) + 2$, and let S be a $\gamma(G)$-set. Further, let $I(S)$ be the set of isolated vertices in $G[S]$. If $I(S) = \emptyset$, then S is a TD-set of G, implying that $\gamma_t(G) \leq |S| = \gamma(G)$, a contradiction. Hence, $I(S) \neq \emptyset$. We show that $I(S)$ dominates \overline{G}. Suppose to the contrary that there exists a vertex v that is not adjacent to any vertex of $I(S)$ in \overline{G}. Then in the graph G, the vertex v is adjacent to every vertex of $I(S)$, implying that $S \cup \{v\}$ is a TD-set for G, and so $\gamma_t(G) \leq |S| + 1 = \gamma(G) + 1$, a contradiction. Hence, the set $I(S)$ dominates \overline{G}. Since $I(S)$ is an independent set in G, it forms a clique in \overline{G}. Therefore, $I(S)$ is a dominating clique in \overline{G}, implying that $\gamma(\overline{G}) \leq |I(S)| \leq \gamma(G)$.

Now, suppose that G is claw free. If $|I(S)| \leq 3$, then the result follows. Hence, we may assume that $|I(S)| \geq 4$ and there exists a subset $\{a, b, c\} \subseteq I(S)$
that is not a dominating set in \(\overline{G} \). Then there exists a vertex \(v \) that is not adjacent to \(a, b, \) or \(c \) in \(\overline{G} \). But then in the graph \(G \), we have that \(\{a, b, c, v\} \) induces a claw, a contradiction. Therefore, every subset of \(I(S) \) of cardinality 3 is a dominating set in \(\overline{G} \), implying that \(\gamma_{cl}(\overline{G}) \leq 3 \). \(\blacksquare \)

4. Bounds on the Domination Number of a Graph in Terms of the Adjacency Matrix of its Complement

We begin this section by stating two well-known theorems. The first result counts the number of walks of length \(k \) for an arbitrary positive integer \(k \) in a graph (see [3]; see also Theorem 1.17 in [5]). The second result is a consequence of a result due to Vizing [16] and provides an upper bound for the domination number of a graph in terms of its order and size.

Theorem 13 [3]. Let \(G \) be a graph of order \(n \) with \(V(G) = \{v_1, v_2, \ldots, v_n\} \) and with adjacency matrix \(A \). For each positive integer \(k \), the number of different walks of length \(k \) from the vertex \(v_i \) to the vertex \(v_j \) is the \((i, j)-entry in the matrix \(A^k \).\)

Theorem 14 [16]. If \(G \) is a graph of order \(n \) and size \(m \), then \(\gamma(G) \leq n + 1 - \sqrt{1 + 2m} \).

Let \(G \) be a graph of order \(n \) with \(V(G) = \{v_1, v_2, \ldots, v_n\} \) and with adjacency matrix \(A \), and let \(a_{ij}^{(k)} \) denote the \((i, j)\)-entry in \(A^k \). Recall that if \(v \) is a vertex in \(G \), then the subgraph of \(G \) induced by \(N_G(v) \) is called the link of \(v \) and is denoted by \(\mathcal{L}(v) \), while the subgraph of \(\overline{G} \) induced by \(N_{\overline{G}}(v) \) is denoted \(\overline{\mathcal{L}}(v) \). Theorem 13 implies that the \((i, i)\)-entry of \(A^2 \), \(1 \leq i \leq n \), is the degree \(d_G(v_i) \) of \(v_i \), and the \((i, i)\)-entry of \(A^3 \), \(1 \leq i \leq n \), is equal to twice the number of edges in \(\mathcal{L}(v_i) \). Suppose that \(a_{ii}^{(3)} < a_{ii}^{(2)} \) for some \(i, 1 \leq i \leq n \). Since \(a_{ii}^{(2)} = d_G(v_i) \) and \(\frac{1}{2}a_{ii}^{(3)} \) is the number of edges in \(\mathcal{L}(v_i) \), this implies that \(\mathcal{L}(v_i) \) contains an isolated vertex, \(v \) say. Thus the set \(\{v, v_i\} \) is a dominating set in the graph \(G \), implying that \(\gamma(G) \leq 2 \). We state this formally as follows.

Observation 15. Let \(G \) be an isolate-free graph of order \(n \) with adjacency matrix \(A \). If the \((i, i)\)-entry of \(A^3 \) is less than the \((i, i)\)-entry of \(A^2 \) for some \(i, 1 \leq i \leq n \), then \(\gamma(G) \leq 2 \).

Using Observation 15, we obtain the following bound on the domination number of the complement of a graph.

Theorem 16. Let \(G \) be a graph of order \(n \) with adjacency matrix \(A \), and let \(a_{ij}^{(k)} \) denote the \((i, j)\)-entry in \(A^k \). For every \(i, 1 \leq i \leq n \), we have that

\[
\gamma(\overline{G}) \leq a_{ii}^{(2)} + 2 - \sqrt{1 + a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)}}.
\]
Proof. Let \(i \) be an arbitrary integer with \(1 \leq i \leq n \). Since \(a_{ii}^{(2)} = d_G(v_i) \) and \(\frac{1}{2}a_{ii}^{(3)} \) is the number of edges in \(L(v_i) \), this implies that \(\overline{L}(v_i) \) has order \(a_{ii}^{(2)} \) and size

\[
\left(\frac{a_{ii}^{(2)}}{2} \right) - \frac{1}{2}a_{ii}^{(3)} = \frac{1}{2} \left(a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)} \right).
\]

Thus, by Theorem 14, we have that

\[
\gamma(\overline{L}(v_i)) \leq a_{ii}^{(2)} + 1 - \sqrt{1 + a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)}}.
\]

The desired bound now follows from the observation that every \(\gamma(\overline{L}(v_i)) \)-set can be extended to a dominating set in \(\overline{G} \) by adding to it the vertex \(v_i \), and so \(\gamma(\overline{G}) \leq \gamma(\overline{L}(v_i)) + 1. \)

References

Received 2 June 2016
Revised 2 November 2016
Accepted 2 November 2016