DOMINATION PARAMETERS OF A GRAPH
AND ITS COMPLEMENT

Wyatt J. Desormeaux¹, Teresa W. Haynes¹,²

and

Michael A. Henning¹

¹Department of Mathematics
Department of Pure and Applied Mathematics
University of Johannesburg
Auckland Park, 2006 South Africa

²Department of Mathematics and Statistics
East Tennessee State University
Johnson City, TN 37614-0002 USA

e-mail: wjdesormeaux@gmail.com
haynes@etsu.edu
mahenning@uj.ac.za

Abstract

A dominating set in a graph G is a set S of vertices such that every vertex in $V(G) \setminus S$ is adjacent to at least one vertex in S, and the domination number of G is the minimum cardinality of a dominating set of G. Placing constraints on a dominating set yields different domination parameters, including total, connected, restrained, and clique domination numbers. In this paper, we study relationships among domination parameters of a graph and its complement.

Keywords: domination, complement, total domination, connected domination, clique domination, restrained domination.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

The literature on the subject of domination parameters in graphs has been surveyed through 1997 and detailed in the two books [7, 8]. Our aim in this paper
is to study graph relationships involving domination parameters in a graph G and its complement \overline{G}. We will also study relationships between the domination number of a graph and its total, restrained, clique and connected domination numbers.

For notation and graph theory terminology not defined herein, we refer the reader to [7]. Let $G = (V, E)$ be a graph with vertex set $V = V(G)$ of order $n = |V|$ and edge set $E = E(G)$ of size $m = |E|$, and let v be a vertex in V. The open neighborhood of v is $N_G(v) = \{u \in V \mid uv \in E\}$, and the closed neighborhood of v is $N_G[v] = \{v\} \cup N_G(v)$. We denote the complement of a graph G by \overline{G}. For any vertex v, we call the subgraph of G induced by $N_G(v)$ the link of v and will denote it as $L(v)$. We will denote the subgraph of \overline{G} induced by $N_G(v)$ as $\overline{L}(v)$.

For a set $S \subseteq V$, its open neighborhood is the set $N_G(S) = \bigcup_{v \in S} N(v)$, and its closed neighborhood is the set $N_G[S] = N_G(S) \cup S$. The degree of a vertex v in G is $d_G(v) = |N_G(v)|$. If the graph G is clear from the context, we simply write $d(v)$, $N(v)$, $N[v]$, $N(S)$ and $N[S]$, respectively. A vertex is isolated in G if its degree in G is zero. A graph is isolate-free if it has no isolated vertex. For any set $S \subseteq V(G)$, we denote the subgraph induced by S as $G[S]$. The minimum and maximum degree among the vertices of G is denoted by $\delta(G)$ and $\Delta(G)$, respectively. For a subset $X \subseteq V$, the degree of a vertex v in X, denoted $d_X(v)$, is the number of vertices in X adjacent to v; that is, $d_X(v) = |N(v) \cap X|$. In particular, $d_G(v) = d_V(v)$.

For sets $A, B \subseteq V$, we let $G[A, B]$, or simply $[A, B]$ if the graph is clear from the context, denote the set of edges in G with one end in A and the other in B. A nontrivial graph is a graph with at least two vertices. We say that a graph is F-free if it does not contain F as an induced subgraph. In particular, if $F = K_{1,3}$, then we say that the graph is claw-free.

A dominating set in $G = (V, E)$ is a set S of vertices of G such that every vertex in $V \setminus S$ is adjacent to at least one vertex in S, that is, $N[S] = V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. A dominating set of G of cardinality $\gamma(G)$ is called a $\gamma(G)$-set. For subsets $X, Y \subseteq V$, the set X dominates the set Y in G if $Y \subseteq N[X]$. In particular, if X dominates V, then X is a dominating set of G. A vertex is called $\gamma(G)$-good if it is contained in some $\gamma(G)$-set, and $\gamma(G)$-bad, otherwise. In other words, a $\gamma(G)$-good vertex is contained in at least one $\gamma(G)$-set, while a $\gamma(G)$-bad vertex is not in any $\gamma(G)$-set. The minimum degree among the $\gamma(G)$-good (respectively, $\gamma(G)$-bad) vertices of G is denoted by $\delta_G(G)$ (respectively, $\delta_b(G)$).

A total dominating set, abbreviated TD-set, of G is a set S of vertices of G such that every vertex in $V(G)$ is adjacent to at least one vertex in S. The total domination number of G, denoted by $\gamma_t(G)$, is the minimum cardinality of a TD-set of G. A TD-set of G of cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$-set. Total domination is now well studied in graph theory. The literature on the subject of
total domination in graphs has been surveyed and detailed in the recent book [10]. A survey of total domination in graphs can also be found in [9].

Another way of looking at total domination is that a dominating set S is a TD-set if the induced subgraph $G[S]$ has no isolated vertices. Placing the constraint that $G[S]$ is connected (respectively, a complete graph) yields connected domination (respectively, clique domination). More formally, a dominating set S is a connected dominating set, abbreviated CD-set, of a graph G if the induced subgraph $G[S]$ is connected. Every connected graph has a CD-set, since V is such a set. The connected domination number of G, denoted by $\gamma_c(G)$, is the minimum cardinality of a CD-set of G, and a CD-set of G of cardinality $\gamma_c(G)$ is called a $\gamma_c(G)$-set. Connected domination in graphs was first introduced by Sampathkumar et al. [14] and is now very well studied (see, for example, [4] and the recent papers [13, 15]). The study of connected domination has extensive application in the study of routing problems and virtual backbone based routing in wireless networks [6, 12, 17]. A subset $S \subset V$ of vertices in a graph $G = (V, E)$ is a dominating clique in G if S dominates V in G and $G[S]$ is complete. If a graph G has a dominating clique, then the minimum cardinality among all dominating cliques of G is the clique domination number of G, denoted by $\gamma_{cl}(G)$.

A restrained dominating set of a graph G is a set S of vertices in G such that every vertex in $V \setminus S$ is adjacent to a vertex in S and to some other vertex in $V \setminus S$. Every connected graph has an RD-set, since V is such a set. The restrained domination number of G, denoted by $\gamma_r(G)$, is the minimum cardinality of an RD-set of G, and an RD-set of G of cardinality $\gamma_r(G)$ is called a $\gamma_r(G)$-set.

A proper vertex coloring of a graph G is an assignment of colors (elements of some set) to the vertices of G, one color to each vertex, so that adjacent vertices are assigned distinct colors. If k colors are used, then the coloring is referred to as a k-coloring. In a given coloring of G, a color class of the coloring is a set consisting of all those vertices assigned the same color. The vertex chromatic number $\chi(G)$ of G is the minimum integer k such that G is k-colorable. A $\chi(G)$-coloring of G is a coloring of G with $\chi(G)$ colors.

Given a graph G, two edges are said to cross in the plane if in a drawing of the graph in the plane they intersect at a point that is not a vertex. The graph G is planar if it can be drawn in the plane with no edges crossing. The crossing number of G, denoted $cr(G)$, is the minimum number of crossing edges amongst all drawings of G in the plane. Note that if G is planar, then necessarily $cr(G) = 0$.

2. Bounds on the Domination Number

In this section, we determine bounds on the domination number. If the graph G is clear from the context, then we write $\delta, \overline{\delta}, \Delta, \overline{\Delta}, \gamma$ and $\overline{\gamma}$ rather than $\delta(G)$,
δ(Ḡ), ∆(Ḡ), ∆(Ḡ), γ(Ḡ) and γ(Ḡ), respectively.

2.1. Dominating the complement of a graph

We begin with results bounding the domination number of the complement of a graph. If \(v \) is an arbitrary vertex in a graph \(G \), then the closed neighborhood, \(N_G[v] \), of \(v \) is a dominating set of \(Ḡ \). In particular, choosing \(v \) to be a vertex of minimum degree in \(G \), we have that \(γ(Ḡ) \leq δ(G) + 1 \). Furthermore, a set formed by taking a vertex from each color class of an arbitrary \(χ(G) \)-coloring of \(G \) is a dominating set of \(Ḡ \), and so \(γ(Ḡ) \leq χ(G) \). We state these well known observations formally as follows.

Observation 1. Let \(G \) be a graph. Then the following hold.

(a) \(γ(Ḡ) \leq δ(G) + 1 \).
(b) \(γ(Ḡ) \leq χ(G) \).

By Observation 1, \(γ(Ḡ) \leq ∆(Ḡ) + 1 \). From Brook’s Coloring Theorem [2], \(χ(G) \leq ∆(Ḡ) + 1 \) with equality if and only if \(G \) is the complete graph or an odd cycle. Noting that the domination number of the complement of any odd cycle \(C_n \), where \(n \geq 5 \), is equal to 2, we observe that if \(G \) is a graph, then \(γ(Ḡ) \leq ∆(Ḡ) + 1 \) with equality if and only if \(G \) is a complete graph. Next we give an upper bound on \(γ(Ḡ) \) in terms of \(γ(G) \) and \(δ(G) \).

Theorem 2. If \(G \) is a graph with \(γ(G) \geq 2 \), then \(γ(Ḡ) \leq \left\lceil \frac{δ(G)}{γ(G)−1} \right\rceil + 1 \).

Proof. Let \(v \) be a vertex of \(G \) having degree \(δ \). Let \(A = N_G(v) \), and so \(|A| = δ \). Let \(k = \lceil δ/(γ − 1) \rceil \) and partition the set \(A \) into \(k \) sets \(A_1, \ldots, A_k \) each of cardinality at most \(γ − 1 \). Thus, \(A = \bigcup_{i=1}^{k} A_i \) and \(1 \leq |A_i| \leq γ − 1 \) for each \(i \), \(1 \leq i \leq k \). In particular, we note that no set \(A_i \) dominates \(V \) in \(G \). For each set \(A_i \), \(1 \leq i \leq k \), select one vertex \(a_i \in V \setminus A_i \) that is not dominated by \(A_i \) in \(G \), and let \(A' = \bigcup_{i=1}^{k} \{a_i\} \). Then, \(|A'| \leq k \) and \(A' \) dominates \(A \) in \(Ḡ \). Therefore, the set \(A' \cup \{v\} \) is a dominating set of \(Ḡ \), and so \(γ \leq |A'| + 1 \leq k + 1 = 1 + \lceil δ/(γ − 1) \rceil \). ■

As an immediate consequence of Theorem 2, we have the following corollaries.

Corollary 1. If \(G \) is a graph with \(γ(Ḡ) > γ(G) \geq 2 \), then \(δ(G) \geq γ(G) \).

The next result shows that if \(G \) is a graph satisfying \(γ(G) \geq γ(Ḡ) − 1 \), then the bound of Observation 1(a) can be improved.

Corollary 2. If \(G \) is a graph satisfying \(γ(G) \geq γ(Ḡ) − 1 \), then \(γ(Ḡ) < 2 + √δ(G) \).

Proof. Let \(G \) be a graph satisfying \(γ \geq γ − 1 \). If \(γ = 1 \), then \(γ \leq 2 \), and the result follows. Accordingly, we may assume that \(γ \geq 2 \). By Theorem 2, \(γ \leq \lceil δ/(γ − 1) \rceil + 1 \). This simplifies to \((γ−2)(γ−1) < δ \). By assumption, \(γ \geq γ − 1 \). Hence, \((γ−2)(γ−2) < δ \), and the result follows. ■
From Corollary 2, we have the following Nordhaus-Gaddum type result for graphs G with $\gamma(G) = \gamma(\overline{G})$.

Corollary 3. If G is a graph with $\gamma(G) = \gamma(\overline{G})$, then $\gamma(G) + \gamma(\overline{G}) < 4 + \sqrt{\delta(G)} + \sqrt{\delta(\overline{G})}$.

2.2. Graphs G with $\gamma(G) < \gamma(\overline{G})$

For a subset $S \subseteq V$ in a graph $G = (V,E)$, let $X_S(G)$ be the set of all vertices x in $V \setminus S$ such that x dominates S in G; that is, $X_S(G) = \{x \in V \setminus S \mid S \subseteq N(x)\}$. We observe that if $X_S(G) = \emptyset$, then S is a dominating set of \overline{G}. We state this formally as follows.

Observation 3. If G is a graph and $S \subseteq V$ satisfies $|S| < \gamma(\overline{G})$, then $X_S(G) \neq \emptyset$.

The following result establishes properties about the set $X_S(G)$.

Theorem 4. Let G be a graph with $\gamma(\overline{G}) = \gamma(G) + k$, where $k \geq 2$, and let S be a $\gamma(G)$-set. It follows that $|X_S| \geq k$. Moreover, any subset $X' \subseteq X_S$ of size $|X_S| - k + 2$ is a dominating set of G.

Proof. By the definition of X_S, the set S dominates $V \setminus (S \cup X_S)$ in \overline{G}. This gives that $S \cup X_S$ is a dominating set of \overline{G}, and so $\gamma(G) \leq |X_S| \geq |X_S| = |S| + |X_S| \geq \gamma(\overline{G}) = \gamma(G) + k$ which implies $|X_S| \geq k$.

Let u be an arbitrary vertex in $V \setminus S$, and let $U = N_G(u) \cap X_S$. Since S dominates $V \setminus (S \cup X_S)$ in \overline{G}, and u dominates $X_S \setminus U$ in \overline{G}, the set $S \cup U \cup \{u\}$ is a dominating set of \overline{G}. Then, $\gamma(G) + k = \gamma(\overline{G}) \leq \gamma(G) + |U| + 1$. Consequently, $k - 1 \leq |U| = |N_G(u) \cap (X_S \setminus X'|) + |N_G(u) \cap X'| \leq k - 2 + |N_G(u) \cap X'|$ and so $N_G(u) \cap X' \neq \emptyset$. Hence, X' dominates $V \setminus S$ in G. Since every vertex of X' dominates S in G, the set X' is a dominating set of G.

Let G be a graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$. Further, let S be a $\gamma(G)$-set, and let $X = X_S(G)$. By definition of the set X, we note that the edges, $G[X,S]$, in G between X and S induce a complete bipartite graph $K_{|X|,|S|}$. By Theorem 4, $\gamma \leq |X|$. Thus, we have the following corollary of Theorem 4.

Corollary 4. If G is a graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, then G contains $K_{\gamma,\gamma}$ as a subgraph.

We observe from Corollary 4 that if G is a graph that contains no 4-cycle (and thus does not contain $K_{r,r}$ for $r \geq 2$ as a subgraph), then $\gamma(G) = 1$ or $\gamma(G) \geq \gamma(\overline{G}) - 1$. We establish next a property of claw-free graphs G with $\gamma(G) \leq \gamma(\overline{G}) - 2$.

Theorem 5. Let G be a graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, and let S be a $\gamma(G)$-set. If G is claw-free, then $\gamma(G) \leq 2$ or $S \cup X_S(G)$ is a clique in G.

Proof. Let $G = (V, E)$ be a claw-free graph with $\gamma \leq \gamma(G) - 2$, and let S be a $\gamma(G)$-set. Following our earlier notation, let $X = X_S(G)$. By Theorem 4, the set X is a dominating set of G, and so $\gamma \leq |X|$. Suppose that $G[S \cup X]$ is not a clique. Then there are two vertices, say a and b, in $S \cup X$ that are not adjacent in G. Since every vertex in X is by definition adjacent in G to every vertex in S, we observe that both a and b are in S or both a and b are in X. Let c be an arbitrary vertex in $V \setminus \{a, b\}$.

We show that c is dominated by $\{a, b\}$. Suppose to the contrary that c is adjacent to neither a nor b. On the one hand, suppose that $\{a, b\} \subseteq S$. Then, $c \notin X$. However since X is a dominating set in G, there is a vertex $x \in X$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. On the other hand, suppose that $\{a, b\} \subseteq X$. Then, $c \notin S$. However since S is a dominating set in G, there is a vertex $x \in S$ that is adjacent to c in G. But then the set $\{a, b, c, x\}$ induces a claw in G, a contradiction. In both cases, we have that c is dominated by $\{a, b\}$, implying that $\{a, b\}$ is a dominating set in G, and therefore, that $\gamma \leq 2$.

Let G be a claw-free graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, and let S be a $\gamma(G)$-set and let $X = X_S(G)$. If $\gamma(G) \geq 3$, then by Theorem 5, the set $S \cup X$ is a clique in G, and therefore, an independent set in \overline{G}. Hence, as an immediate consequence of Theorem 5, we have the following result, where $\alpha(G)$ and $\omega(G)$ denote the vertex independence number and the clique number, respectively, of G.

Corollary 5. If G is a claw-free graph with $\gamma(G) \leq \gamma(\overline{G}) - 2$, then $\gamma(G) \leq 2$ or $\gamma(G) \leq \omega(G)/2 = \alpha(\overline{G})/2$.

2.3. Graphs G with a $\gamma(G)$-bad vertex

Recall that a vertex in a graph G is a $\gamma(G)$-bad vertex if it is contained in no $\gamma(G)$-set. We establish next an upper bound on the sum of the domination numbers of a graph G and its complement \overline{G} in terms of the degree of a $\gamma(G)$-bad vertex.

Theorem 6. If a graph G contains a vertex v that is a $\gamma(\overline{G})$-bad vertex, then $\gamma(G) + \gamma(\overline{G}) \leq d_G(v) + 3$.

Proof. Let $G = (V, E)$ be a graph that contains a $\gamma(\overline{G})$-bad vertex v. Let $A = N_G(v)$, and so $|A| = d_G(v)$. Since the set $A \cup \{v\}$ is a dominating set in \overline{G}, we have that $\gamma(\overline{G}) \leq |A| + 1$. However if $\gamma(\overline{G}) = |A| + 1$, then $A \cup \{v\}$ is a $\gamma(\overline{G})$-set, contradicting the fact that v is a $\gamma(\overline{G})$-bad vertex. Therefore, $\gamma(\overline{G}) < |A| + 1$, or, equivalently, $|A| \geq \gamma(\overline{G})$.

Let \(B = V \setminus N_G[v] \). If \(B = \emptyset \), then \(v \) dominates \(V \) in the graph \(G \), implying that \(v \) is isolated in \(\overline{G} \) and therefore belongs to every \(\gamma(\overline{G}) \)-set, a contradiction. Hence, \(B \neq \emptyset \). We show next that each vertex in \(B \) has at least \(\tau - 1 \) neighbors in \(G \) that belong to the set \(A \). Let \(x \in B \), and let \(A_x = A \cap N_G(x) \). Then in the graph \(\overline{G} \), the vertex \(x \) dominates the set \(A \setminus A_x \). Thus since the vertex \(v \) dominates the set \(B \) in \(\overline{G} \), we have that the set \(A_x \cup \{v, x\} \) is a dominating set in \(\overline{G} \), implying that \(\gamma(\overline{G}) \leq |A_x| + 2 \). However if \(\gamma(\overline{G}) = |A_x| + 2 \), then \(A_x \cup \{v, x\} \) is a \(\gamma(\overline{G}) \)-set, contradicting the fact that \(v \) is a \(\gamma(\overline{G}) \)-bad vertex. Therefore, \(\gamma(\overline{G}) < |A_x| + 2 \), or, equivalently, \(\gamma(\overline{G}) \leq |A_x| + 1 \). Thus in the graph \(\overline{G} \), we have that \(d_A(x) = |A_x| \geq \gamma(\overline{G}) - 1 \). This is true for every vertex \(x \in B \).

Recall that \(|A| \geq \gamma(\overline{G}) \). Let \(A' \) be an arbitrary subset of \(A \) of cardinality \(\gamma(\overline{G}) - 2 \), and let \(A^* = A \setminus A' \). Thus, \(|A'| = \gamma(\overline{G}) - 2 \) and \(|A^*| = |A| - |A'| = d_G(v) - \gamma(\overline{G}) + 2 \). Since \(d_A(x) \geq \gamma(\overline{G}) - 1 \) for every vertex \(x \in B \), the set \(A^* \) dominates the set \(B \) in \(G \). Thus, \(A^* \cup \{v\} \) is a dominating set in \(G \), implying that \(\gamma(G) \leq |A^*| + 1 = d_G(v) - \gamma(\overline{G}) + 3 \).

As a consequence of Theorem 6, we have the following result.

Corollary 6. If \(G \) is an \(r \)-regular graph that contains a \(\gamma(\overline{G}) \)-bad vertex, then \(\gamma(G) + \gamma(\overline{G}) \leq r + 3 \).

2.4. Domination and planarity

In this section, we study some relationships between planarity, the crossing number of \(G \) and the domination number of \(\overline{G} \). Fundamental to our results in this section is the famous Four Color Theorem.

Theorem 7 [1]. If \(G \) is a planar graph, then \(\chi(G) \leq 4 \).

We first establish the following upper bound on the domination number of the complement of a graph. For this purpose, for a vertex \(v \) in a graph \(G \), we denote by \(G_v \) the subgraph of \(G \) induced by the neighbors of \(v \); that is, \(G_v = G[N(v)] \). If \(\mathcal{C} \) is a minimum coloring of the vertices of \(G_v \), and \(S \) is a set of vertices comprising of exactly one vertex from each color class of \(\mathcal{C} \), then the set \(S \cup \{v\} \) forms a dominating set of \(\overline{G} \), implying that \(\gamma(\overline{G}) \leq |\mathcal{C}| + 1 = \chi(G_v) + 1 \). We state this formally as follows.

Observation 8. If \(v \) is an arbitrary vertex in a graph \(G \), then \(\gamma(\overline{G}) \leq \chi(G_v) + 1 \).

As a consequence of Theorem 7 and Observation 8, we have the following results.

Corollary 7. If a graph \(G \) contains a vertex \(v \) with the property that \(G_v \) is a planar graph, then \(\gamma(\overline{G}) \leq 5 \).
Corollary 8. If a graph G satisfies $\gamma(G) > 2cr(G)$, then $\gamma(G) \leq (1 + \sqrt{4n - 1})/2$.

Proof. Let G^* be a drawing of G in the plane with exactly $cr(G)$ crossing edges, and let S be the set of vertices of G incident with at least one crossing edge of G^*. Clearly, $|S| \leq 2cr(G)$. Since, by assumption, $\gamma(G) > 2cr(G)$, it follows there exists some vertex v in G that is not dominated by S. This implies that G_v is a planar graph. Thus, by Corollary 7, $\gamma(G_v) \leq 5$.

3. Total, Connected, Restrained, and Clique Domination

In this section, we establish relationships involving the domination, total domination, restrained domination, connected domination and clique domination numbers of a graph. We begin with the following lemma.

Lemma 9. If there exists a $\gamma(G)$-set for a graph G that is not a dominating set in \overline{G}, then $\gamma_t(G) \leq \gamma_c(G) \leq \gamma(G) + 1$.

Proof. Let S be a $\gamma(G)$-set in a graph $G = (V, E)$ that is not a dominating set in \overline{G}. Then there exists a vertex $v \in V \setminus S$ that is not adjacent to any vertex of S in \overline{G}. Hence in G, the vertex v is adjacent to every vertex of S, implying that the graph $G[S \cup \{v\}]$ is connected. Since every superset of a dominating set is also a dominating set, the set $S \cup \{v\}$ is a CD-set, and so $\gamma_c(G) \leq |S \cup \{v\}| = \gamma(G) + 1$. Since the total domination of a graph is at most its connected domination number, the desired result follows from the observation that $\gamma_t(G) \leq \gamma_c(G)$.

By the contrapositive of Lemma 9, we note that if a graph G satisfies $\gamma_t(G) \geq \gamma(G) + 2$, then every $\gamma(G)$-set is a dominating set in \overline{G}. Further as a consequence of Lemma 9 and the well-known result due to Jaeger and Payan [11] that if G is a graph of order n, then $\gamma(G) \gamma(\overline{G}) \leq n$, we have the following result.

Corollary 10. Let G be a graph of order n satisfying $\gamma(G) < \gamma(\overline{G})$. Then the following holds.

(a) $\gamma_t(G) \leq \gamma_c(G) \leq \gamma(G) + 1$.
(b) $\gamma_c(G) \leq (1 + \sqrt{4n + 1})/2$.

Proof. Part (a) is an immediate consequence of Lemma 9. To prove part (b), let G be a graph of order n satisfying $\gamma(G) < \gamma(\overline{G})$. By part (a) and our assumption that $\gamma(G) \leq \gamma(\overline{G}) - 1$, we have that $\gamma_c(G) \leq \gamma(G) + 1 \leq \gamma(\overline{G})$. Applying the result due to Jaeger and Payan, we therefore have that $(\gamma_c(G) - 1)\gamma_c(G) \leq \gamma(G)\gamma(\overline{G}) \leq n$. Solving for $\gamma_c(G)$, we have that $\gamma_c(G) \leq (1 + \sqrt{4n + 1})/2$.

In the following result, we consider the case when $\gamma(G) \leq \gamma(\overline{G}) + 1$.

Theorem 9. Let G be a graph satisfying $\gamma(G) \leq \gamma(G) + 1$. Then the following holds.

(a) If both G and \overline{G} are connected, then $\gamma_c(G) \leq \gamma(G) + 1$ or $\gamma_c(\overline{G}) \leq \gamma(\overline{G}) + 1$.
(b) If both G and \overline{G} are isolate-free, then $\gamma_t(G) \leq \gamma(G) + 1$ or $\gamma_t(\overline{G}) \leq \gamma(\overline{G}) + 1$.

Proof. Let $G = (V, E)$, and let S be a $\gamma(G)$-set in the graph. We first establish part (a). Suppose that both G and \overline{G} are connected. If $G[S]$ is connected, then S is a CD-set in G, implying that $\gamma_c(G) \leq |S| = \gamma(G)$. Hence we may assume that $G[S]$ is not connected, for otherwise part (a) is immediate. This implies that $\overline{G}[S]$ is connected. If the set S is not a dominating set in \overline{G}, then by Lemma 9, we have that $\gamma_c(\overline{G}) \leq \gamma(\overline{G}) + 1$. If the set S is a dominating set in \overline{G}, then S is a CD-set in \overline{G}, implying that $\gamma_c(\overline{G}) \leq |S| = \gamma(G) \leq \gamma(\overline{G}) + 1$. This proves part (a).

Next we prove part (b). Suppose that both G and \overline{G} are isolate-free. If $G[S]$ is isolate-free, then S is a TD-set in G, implying that $\gamma_t(G) \leq |S| = \gamma(G)$. Hence we may assume that $G[S]$ contains an isolated vertex, for otherwise part (b) is immediate. This implies that $\overline{G}[S]$ is connected. If the set S is not a dominating set in \overline{G}, then by Lemma 9 we have that $\gamma_t(G) \leq \gamma(G) + 1$. If the set S is a dominating set in \overline{G}, then S is a TD-set in \overline{G}, implying that $\gamma_t(\overline{G}) \leq |S| = \gamma(\overline{G}) \leq \gamma(G) + 1$. This proves part (b).

We establish next an upper bound on the total domination number of a graph in terms of its domination number and the domination number of its complement.

Theorem 10. Let G be an isolate-free graph, and let S be a $\gamma(G)$-set. If s is the number of isolated vertices in $G[S]$, then $\gamma_t(G) \leq \gamma(G) + \lceil s/(\gamma(\overline{G}) - 1) \rceil$.

Proof. Let $G = (V, E)$. Since G is isolate-free, we note that $\gamma(\overline{G}) \geq 2$. Let I be the set of isolated vertices in $G[S]$, and so $s = |I|$. Let $k = \lceil s/(\gamma - 1) \rceil$, and partition the set I into k sets I_1, \ldots, I_k each of cardinality at most $\gamma - 1$. Thus, $I = \bigcup_{i=1}^{k} I_i$ and $1 \leq |I_i| \leq \gamma - 1$ for each i, $1 \leq i \leq k$. In particular, we note that no set I_i dominates V in \overline{G}. For each set I_i, $1 \leq i \leq k$, select one vertex $w_i \in V \setminus I_i$ that is not dominated by I_i in \overline{G}, and let $W = \bigcup_{i=1}^{k} \{w_i\}$. Then, $|W| \leq k$. We note that in the graph G, the vertex w_i is adjacent to every vertex of I_i, and so $S \cup W$ is a TD-set in G. Hence, $\gamma_t(G) \leq |S \cup W| \leq |S| + |W| \leq \gamma(G) + k = \gamma(G) + \lceil s/(\gamma - 1) \rceil$.

As an immediate consequence of Theorem 10, we have the following upper bound on the total domination number of a graph.

Corollary 11. If G is an isolate-free graph, then $\gamma_t(G) \leq \gamma(G) + \left\lceil \frac{\gamma(G)}{\gamma(\overline{G}) - 1} \right\rceil$.

Theorem 11. If G is a graph with $\gamma_t(G) \geq \gamma(G) + 2$, then $\gamma_t(\overline{G}) \leq 1 + \left\lceil \frac{\delta(G)}{\gamma(\overline{G})} \right\rceil$.
Proof. Let $G = (V, E)$ be a graph with $\gamma_t(G) \geq \gamma(G) + 2$, and let v be a vertex of G having degree $\delta(G)$. Let $A = N_G(v)$, and so $|A| = \delta(G)$. Let $k = \lceil \delta(G)/\gamma_t(G) \rceil$ and partition the set A into k sets A_1, \ldots, A_k each of cardinality at most $\gamma_t(G)$. Thus, $A = \bigcup_{i=1}^k A_i$ and $1 \leq |A_i| \leq \gamma_t(G)$ for each i, $1 \leq i \leq k$. If the set A_i dominates $V \setminus N_G[v]$ in G for some i, $1 \leq i \leq k$, then the set $A_i \cup \{v\}$ is a TD-set in G, implying that $\gamma_t(G) \leq |A_i| + 1 \leq \gamma_t(G) + 1$, a contradiction. Therefore, no set A_i dominates $V \setminus N_G[v]$ in G. For each set A_i, $1 \leq i \leq k$, select one vertex $a_i \in V \setminus N_G[v]$ that is not dominated by A_i in G, and let $A' = \bigcup_{i=1}^k \{a_i\}$. Then, $|A'| \leq k$ and A' dominates A in \overline{G}. Therefore, the set $A' \cup \{v\}$ is a TD-set in \overline{G}, and so $\gamma_t(\overline{G}) \leq |A'| + 1 \leq k + 1 = 1 + \lceil \delta(G)/\gamma_t(G) \rceil$. □

Next we consider the restrained domination number. We first prove a general lemma.

Lemma 12. If a graph G has a $\gamma(G)$-set S such that the induced subgraph $G[V \setminus S]$ has an isolated vertex, then $\gamma_t(G) \leq 3$.

Proof. Let S be a $\gamma(G)$-set such that $G[V \setminus S]$ has an isolated vertex, say w. If $G[S]$ has an isolated vertex v, then $\{v, w\}$ is dominating set of \overline{G}, and so $\gamma_t(\overline{G}) \leq 2$. If $G[S]$ contains no isolated vertices, then by the minimality of S, for each $v \in S$, there exists a vertex, say $v' \in V \setminus S$, such that $N(v') \cap S = \{v\}$. In this case, the set $\{v, w, v'\}$ is a dominating set of \overline{G}, implying that $\gamma_t(\overline{G}) \leq 3$. □

As an immediate consequence of Lemma 12, we have the following result.

Corollary 13. If a graph G has $\gamma_t(G) \geq 4$, then every $\gamma_t(G)$-set is a $\gamma_t(G)$-set. In particular, $\gamma_t(G) = \gamma_t(G)$.

We close this section with two results about the clique domination number of a graph.

Theorem 12. If G is a graph with $\gamma_t(G) \geq \gamma_t(G) + 2$, then $\gamma_t(\overline{G}) \leq \gamma(G)$. Moreover, if G is claw-free, then $\gamma_t(\overline{G}) \leq 3$.

Proof. Let G be a graph with $\gamma_t(G) \geq \gamma_t(G) + 2$, and let S be a $\gamma(G)$-set. Further, let $I(S)$ be the set of isolated vertices in $G[S]$. If $I(S) = \emptyset$, then S is a TD-set of G, implying that $\gamma_t(G) \leq |S| = \gamma_t(G)$, a contradiction. Hence, $I(S) \neq \emptyset$. We show that $I(S)$ dominates \overline{G}. Suppose to the contrary that there exists a vertex v that is not adjacent to any vertex of $I(S)$ in \overline{G}. Then in the graph G, the vertex v is adjacent to every vertex of $I(S)$, implying that $S \cup \{v\}$ is a TD-set for G, and so $\gamma_t(G) \leq |S| + 1 = \gamma_t(G) + 1$, a contradiction. Hence, the set $I(S)$ dominates \overline{G}. Since $I(S)$ is an independent set in G, it forms a clique in \overline{G}. Therefore, $I(S)$ is a dominating clique in \overline{G}, implying that $\gamma_t(\overline{G}) \leq |I(S)| \leq \gamma_t(G)$.

Now, suppose that G is claw-free. If $|I(S)| \leq 3$, then the result follows. Hence, we may assume that $|I(S)| \geq 4$ and there exists a subset $\{a, b, c\} \subseteq I(S)$
that is not a dominating set in G. Then there exists a vertex v that is not adjacent to a, b, or c in G. But then in the graph G, we have that $\{a, b, c, v\}$ induces a claw, a contradiction. Therefore, every subset of $I(S)$ of cardinality 3 is a dominating set in G, implying that $\gamma_d(G) \leq 3$.

4. Bounds on the Domination Number of a Graph in Terms of the Adjacency Matrix of its Complement

We begin this section by stating two well-known theorems. The first result counts the number of walks of length k for an arbitrary positive integer k in a graph (see [3]; see also Theorem 1.17 in [5]). The second result is a consequence of a result due to Vizing [16] and provides an upper bound for the domination number of a graph in terms of its order and size.

Theorem 13 [3]. Let G be a graph of order n with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and with adjacency matrix A. For each positive integer k, the number of different walks of length k from the vertex v_i to the vertex v_j is the (i,j)-entry in the matrix A^k.

Theorem 14 [16]. If G is graph of order n and size m, then $\gamma(G) \leq n + 1 - \sqrt{1 + 2m}$.

Let G be a graph of order n with $V(G) = \{v_1, v_2, \ldots, v_n\}$ and with adjacency matrix A, and let $a_{ij}^{(k)}$ denote the (i,j)-entry in A^k. Recall that if v is a vertex in G, then the subgraph of G induced by $N_G(v)$ is called the link of v and is denoted by $L(v)$, while the subgraph of \overline{G} induced by $N_G(v)$ is denoted $\overline{L}(v)$.

Theorem 13 implies that the (i, i)-entry of A^2, $1 \leq i \leq n$, is the degree $d_G(v_i)$ of v_i, and the (i, i)-entry of A^3, $1 \leq i \leq n$, is equal to twice the number of edges in $L(v_i)$. Suppose that $a_{ii}^{(3)} < a_{ii}^{(2)}$ for some i, $1 \leq i \leq n$. Since $a_{ii}^{(2)} = d_G(v_i)$ and $\frac{1}{2} a_{ii}^{(3)}$ is the number of edges in $L(v_i)$, this implies that $L(v_i)$ contains an isolated vertex, v say. Thus the set $\{v, v_i\}$ is a dominating set in the graph G, implying that $\gamma(\overline{G}) \leq 2$. We state this formally as follows.

Observation 15. Let G be an isolate-free graph of order n with adjacency matrix A. If the (i, i)-entry of A^3 is less than the (i, i)-entry of A^2 for some i, $1 \leq i \leq n$, then $\gamma(\overline{G}) \leq 2$.

Using Observation 15, we obtain the following bound on the domination number of the complement of a graph.

Theorem 16. Let G be a graph of order n with adjacency matrix A, and let $a_{ij}^{(k)}$ denote the (i,j)-entry in A^k. For every i, $1 \leq i \leq n$, we have that

$$\gamma(\overline{G}) \leq a_{ii}^{(2)} + 2 - \sqrt{1 + a_{ii}^{(2)}(a_{ii}^{(2)} - 1) - a_{ii}^{(3)}}.$$
Proof. Let \(i \) be an arbitrary integer with \(1 \leq i \leq n \). Since \(a^{(2)}_{ii} = d_G(v_i) \) and \(\frac{1}{2}a^{(3)}_{ii} \) is the number of edges in \(L(v_i) \), this implies that \(\overline{L}(v_i) \) has order \(a^{(2)}_{ii} \) and size
\[
\left(\frac{a^{(2)}_{ii}}{2} \right) - \frac{1}{2}a^{(3)}_{ii} = \frac{1}{2} \left(a^{(2)}_{ii} (a^{(2)}_{ii} - 1) - a^{(3)}_{ii} \right).
\]
Thus, by Theorem 14, we have that
\[
\gamma(\overline{L}(v_i)) \leq a^{(2)}_{ii} + 1 - \sqrt{1 + a^{(2)}_{ii} (a^{(2)}_{ii} - 1) - a^{(3)}_{ii}}.
\]
The desired bound now follows from the observation that every \(\gamma(\overline{L}(v_i)) \)-set can be extended to a dominating set in \(G \) by adding to it the vertex \(v_i \), and so
\[
\gamma(G) \leq \gamma(\overline{L}(v_i)) + 1.
\]

References

doi:10.1017/S030500410002168X

doi:10.1137/S0895480199353780

doi:10.1109/ICC.1997.605303

doi:10.1016/j.disc.2007.12.044

Received 2 June 2016
Revised 2 November 2016
Accepted 2 November 2016