INVERSE PROBLEM ON THE STEINER WIENER INDEX

XUELIAHNG LI

Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China

e-mail: lxl@nankai.edu.cn

YAPING MAO

Department of Mathematics
Qinghai Normal University, Qinghai 810008, China

e-mail: maoyaping@ymail.com

AND

IVAN GUTMAN

Faculty of Science P.O. Box 60
34000 Kragujevac, Serbia, and
State University of Novi Pazar, Novi Pazar, Serbia

e-mail: gutman@kg.ac.rs

Abstract

The Wiener index $W(G)$ of a connected graph G, introduced by Wiener in 1947, is defined as $W(G) = \sum_{u,v \in V(G)} d_G(u,v)$, where $d_G(u,v)$ is the distance (the length a shortest path) between the vertices u and v in G. For $S \subseteq V(G)$, the Steiner distance $d(S)$ of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index $SW_k(G)$ of G is defined as $SW_k(G) = \sum_{|S|=k} d(S)$. We investigate the following problem: Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order $n \geq k$ such that $SW_k(G) = w$ (or $SW_k(T) = w$)? In this paper, we give some solutions to this problem.

Keywords: distance, Steiner distance, Wiener index, Steiner Wiener index.

2010 Mathematics Subject Classification: 05C05, 05C12, 05C35.

1Supported by NSFC No. 11371205.
1. Introduction

All graphs in this paper are assumed to be undirected, finite and simple. We refer to [3] for graph theoretical notation and terminology not specified here. A distance is one of basic concepts of graph theory [4]. If G is a connected graph and $u, v \in V(G)$, then the distance $d(u, v) = d_G(u, v)$ between u and v is the length of a shortest path connecting u and v. For more details on this subject, see [13].

The Wiener index $W(G)$ of a connected graph G is defined by

$$W(G) = \sum_{u, v \in V(G)} d_G(u, v).$$

Mathematicians have studied this graph invariant since the 1970s in [11]; for details see the surveys [10, 33], the recent papers [2, 7, 14, 17, 15, 20] and the references cited therein. Information on chemical applications of the Wiener index can be found in [27, 28].

The Steiner distance of a graph, introduced by Chartrand et al. in [6] in 1989, is a natural and nice generalization of the concept of the classical graph distance. For a graph $G = (V, E)$ and a set $S \subseteq V$ of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or simply, an S-tree) is a subgraph $T = (V', E')$ of G that is a tree with $S \subseteq V'$. Let G be a connected graph of order at least 2 and let S be a nonempty set of vertices of G. Then the Steiner distance $d(S)$ among the vertices of S (or simply the distance of S) is the minimum size of a connected subgraph whose vertex set contains S. Note that if H is a connected subgraph of G such that $S \subseteq V(H)$ and $|E(H)| = d(S)$, then H is a tree. Clearly, $d(S) = \min \{|E(T)| : S \subseteq V(T)\}$, where T is a subtree of G. Furthermore, if $S = \{u, v\}$, then $d(S) = d(u, v)$ is nothing new, but the classical distance between u and v. Clearly, if $|S| = k$, then $d(S) \geq k - 1$. For more details on Steiner distance, we refer to [1, 5, 6, 8, 13, 26].

In [23], we proposed a generalization of the Wiener index concept, using Steiner distance. Thus, the k-th Steiner Wiener index $SW_k(G)$ of a connected graph G is defined by

$$SW_k(G) = \sum_{S \subseteq V(G), |S| = k} d(S).$$

For $k = 2$, the Steiner Wiener index coincides with the ordinary Wiener index. It is usual to consider SW_k for $2 \leq k \leq n - 1$, but the above definition implies $SW_1(G) = 0$ and $SW_n(G) = n - 1$ for a connected graph G of order n. For more details on Steiner Wiener index, we refer to [23, 24, 25].

A chemical application of SW_k was recently reported in [16].
It should be noted that in the 1990s, Dankelmann et al. in [8, 9] studied the average Steiner distance, which is related to our Steiner Wiener index via \(SW_k(G)/\binom{n}{k} \).

The seemingly elementary question: “Which natural numbers are Wiener indices of graphs?” was much investigated in the past; see [12, 19, 21, 29, 31, 32]. We now consider the analogous question for Steiner Wiener indices.

Problem. Fixed a positive integer \(k \), for what kind of positive integer \(w \) does there exist a connected graph \(G \) (or a tree \(T \)) of order \(n \geq k \) such that \(SW_k(G) = w \) (or \(SW_k(T) = w \))?

For \(k = 2 \), the authors have nice results in [30, 32], completely solved a conjecture by Lepović and Gutman [22] for trees, which states that for all but 49 positive integers \(w \) one can find a tree with Wiener index \(w \). This is different from our problem for trees, since here we consider graphs or trees with order \(n \).

2. **The Cases** \(k = n \) **and** \(k = n - 1 \)

At first, let us consider the case \(k = n \).

If \(G \) is a connected graph or a tree of order \(n \), then for \(k = n \), \(SW_k(G) = n - 1 \). Thus the following result is immediate.

Proposition 2.1. For a positive integer \(w \), there exists a connected graph \(G \) or a tree \(T \) of order \(n \) such that \(SW_n(G) = w \) or \(SW_n(T) = w \) if and only if \(w = n - 1 \).

For the case \(k = n - 1 \), we need the following results in [23].

Lemma 2.2 [23]. Let \(T \) be a tree of order \(n \), possessing \(p \) pendant vertices. Then

\[
SW_{n-1}(T) = n(n-1) - p
\]

irrespective of any other structural detail of \(T \).

Lemma 2.3 [23]. Let \(K_n \) be the complete graph of order \(n \), and let \(k \) be an integer such that \(2 \leq k \leq n \). Then

\[
SW_k(K_n) = \binom{n}{k} (k - 1).
\]

Lemma 2.4 [23]. Let \(G \) be a connected graph of order \(n \), and let \(k \) be an integer such that \(2 \leq k \leq n \). Then

\[
\binom{n}{k} (k - 1) \leq SW_k(G) \leq (k - 1) \binom{n + 1}{k + 1}.
\]

Moreover, the lower bound is sharp.
From the previous results, we can derive the following proposition.

Proposition 2.5. For a positive integer \(w \), there exists a connected graph \(G \) of order \(n \) such that \(SW_{n-1}(G) = w \) if and only if \(n^2 - 2n \leq w \leq n^2 - n - 2 \).

Proof. By Lemma 2.4, if \(G \) is a connected graph of order \(n \), then

\[
n(n - 2) \leq SW_{n-1}(G) \leq (n + 1)(n - 2).
\]

Therefore, \(n^2 - 2n \leq w \leq n^2 - n - 2 \).

By Lemma 2.3, \(SW_{n-1}(K_n) = n^2 - 2n \).

Let \(T \) be a tree of order \(n \) with \(p \) pendant vertices with \(2 \leq p \leq n - 1 \). By Lemma 2.2, \(SW_{n-1}(T) = n^2 - n - p \), and thus for any integer \(w \) with \(n^2 - n - (n - 1) \leq w \leq n^2 - n - 2 \), there exists a tree \(T \) of order \(n \) such that \(SW_{n-1}(T) = w \). \(\blacksquare \)

From the proof of Proposition 2.5 the next result immediately follows.

Proposition 2.6. For a positive integer \(w \), there exists a tree \(T \) of order \(n \) such that \(SW_{n-1}(T) = w \) if and only if \(n^2 - 2n + 1 \leq w \leq n^2 - n - 2 \).

3. **The Case** \(k = n - 2 \)

Similarly to Lemma 2.2, we can derive the following result.

Lemma 3.1. Let \(T \) be a tree of order \(n \), possessing \(p \) pendant vertices. Let \(q \) be the number of vertices of degree 2 in \(T \) that are adjacent to a pendant vertex. Then

\[
(1) \quad SW_{n-2}(T) = \frac{1}{2} \left(n^3 - 2n^2 + n - 2np + 2p - 2q \right).
\]

Proof. For any \(S \subseteq V(T) \) and \(|S| = n - 2 \), let \(\bar{S} = \{u, v\} \). If \(d_T(u) = d_T(v) = 1 \), then \(d_T(S) = n - 3 \), and this case contributes to \(SW_{n-2} \) by

\[
\sum_{u,v \in S, d_T(u) = d_T(v) = 1} d_T(S) = \binom{p}{2} (n - 3).
\]

If \(d_T(u) \geq 2 \) and \(d_T(v) \geq 2 \), then \(d_T(S) = n - 1 \), and this case contributes to \(SW_{n-2} \) by

\[
\sum_{u,v \in S, d_T(u) \geq 2, d_T(v) \geq 2} d_T(S) = \binom{n - p}{2} (n - 1).
\]

Suppose that \(d_T(u) = 1 \) and \(d_T(v) \geq 2 \). If \(d_T(u) = 1, d_T(v) = 2 \) and \(uv \in E(G) \), then \(d_T(S) = n - 3 \). If \(d_T(u) = 1, d_T(v) \geq 3 \) and \(uv \in E(T) \), then
Inverse Problem on the Steiner Wiener Index 87
d\(T(S) = n - 2\). If \(d_T(u) = 1\), \(d_T(v) \geq 2\) and \(uv \notin E(T)\), then \(d_T(S) = n - 2\). Therefore, this case contributes to \(SW_{n-2}\) by

\[
\sum_{u,v \in S, d_T(u)=1, d_T(v)\geq2} d_T(S) = \sum_{u,v \in S, d_T(u)=1, d_T(v)=2} d_T(S) + \sum_{u,v \in S, d_T(u)=1, d_T(v)\geq3} d_T(S) + \sum_{u,v \in S, uv \notin E(T)} d_T(S)
\]

\[= q(n - 3) + (p - q)(n - 2) + p(n - p - 1)(n - 2).\]

From the above argument, we have

\[
SW_{n-2}(T) = \binom{p}{2}(n - 3) + \binom{n-p}{2}(n - 1) + q(n - 3) + (p - q)(n - 2) + p(n - p - 1)(n - 2)
\]

\[= \frac{1}{2} (n^3 - 2n^2 + n - 2np + 2p - 2q). \]

Li et al. obtained the following sharp lower and upper bounds of \(SW_k(T)\) for a tree \(T\).

Lemma 3.2 [23]. Let \(T\) be a tree of order \(n\), and let \(k\) be an integer such that \(2 \leq k \leq n\). Then

\[
\binom{n-1}{k-1}(n - 1) \leq SW_k(T) \leq (k - 1) \binom{n+1}{k+1}.
\]

Moreover, among all trees of order \(n\), the star \(S_n\) minimizes the Steiner Wiener \(k\)-index, whereas the path \(P_n\) maximizes the Steiner Wiener \(k\)-index.

For trees, we have the following result.

Theorem 3.3. For a positive integer \(w\), there exists a tree \(T\) of order \(n\) (\(n \geq 5\)), possessing \(p\) pendant vertices, such that \(SW_{n-2}(T) = w\) if and only if \(w = \frac{1}{2} (n^3 - 2n^2 + n - 2np + 2p - 2q)\), where \(q\) is the number of vertices of degree \(2\) in \(T\) that are adjacent to a pendant vertex, and one of the following holds:

1. \(2 \leq q \leq \left\lfloor \frac{n-1}{2} \right\rfloor\) and \(q \leq p \leq n - q - 1\);
2. \(q = 1\) and \(3 \leq p \leq n - 2\);
3. \(q = 0\) and \(4 \leq p \leq n - 1\).

Proof. Suppose that \(w = \frac{1}{2} (n^3 - 2n^2 + n - 2np + 2p - 2q)\), where \(0 \leq q \leq \left\lfloor \frac{n-1}{2} \right\rfloor\), \(q \leq p \leq n - q - 1\). Let \(K_{1,p-1}\) be a star of order \(p\), and let \(v\) be the center of \(K_{1,p-1}\). Then \(K_{1,p-1}^*\) is a graph obtained from \(K_{1,p-1}\) by picking up \(q - 1\) edges and then replacing each of them by a path of length \(2\). Note that \(K_{1,p-1}^*\) is a
subdivision of $K_{1,p-1}$. Let G be a graph obtained by $K_{1,p-1}^*$ and a path $P_{n-p-q+2}$ by identifying v and one endvertex of the path. Clearly, G is a tree of order n with p pendant vertices, and there are exactly q vertices of degree 2 in T such that each of them is adjacent to a pendant vertex. From Lemma 3.1, we have $SW_{n-2}(T) = \frac{1}{2}(n^3 - 2n^2 + n - 2np + 2p - 2q) = w$, as desired.

Conversely, for any tree T of order n ($n \geq 5$) with p pendant vertices, from Lemma 3.1, $SW_{n-2}(T) = \frac{1}{2}(n^3 - 2n^2 + n - 2np + 2p - 2q)$. We now show that p,q satisfy one of (1), (2), (3). Clearly, $p \geq 2$, $0 \leq q \leq \left\lfloor \frac{n-1}{2} \right\rfloor$ and $q \leq p$.

Claim 1. $p + q \leq n - 1$.

Proof. Assume, to the contrary, that $p + q = n$. Then T is a path of order n. Since $n \geq 5$, it follows that there exists a vertex of degree 2 having no adjacent pendant vertex, which contradicts to $p + q = n$. \hfill \Box

If $q \geq 2$, then it follows from Claim 1 and $q \leq p$ that $q \leq p \leq n - q - 1$. If $q = 1$, then it follows from Claim 1 that $2 \leq p \leq n - 2$. Furthermore, if $p = 2$, then T is a path of order n. Since $n \geq 5$, it follows that $q = 2$, a contradiction. If $q = 0$, then it follows from Claim 1 that $2 \leq p \leq n - 1$. Furthermore, if $p = 2$, then T is a path of order n. Since $n \geq 5$, it follows that $q = 2$, a contradiction. If $p = 3$, then T is a tree of order n. Since $n \geq 5$, it follows that $q \geq 1$, a contradiction. \hfill \Box

4. The Case for General k

For trees, we have the following result.

Theorem 4.1. Let T be a graph obtained from a path P_t and a star S_{n-t+1} by identifying a pendant vertex of P_t and the center v of S_{n-t+1}, where $1 \leq t \leq n-1$ and $k \leq n$. Then

$$SW_k(T) = t \binom{n-1}{k} - \binom{t}{k+1} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1)\binom{n}{k}.$$

Proof. For any $S \subseteq V(T)$ and $|S| = k$, if $S \subseteq V(S_{n-t+1}) - v$, then $d_G(S) = k$. There are $\binom{n-t}{k}$ such subsets, contributing to SW_k by $k\binom{n-t}{k}$. If $S \subset V(P_t)$, then it contributes to SW_k by $(k-1)\binom{t+1}{k+1}$ from Lemma 3.2. Suppose that $S \cap V(P_t) \neq \emptyset$ and $S \cap (V(S_{n-t+1}) - v) \neq \emptyset$. Let $|S \cap V(S_{n-t+1}) - v| = i, |S \cap V(P_t)| = k-i$ and $P_t = u_1u_2\cdots u_t$, where $v = u_1$. Without loss of generality, let $S \cap V(P_t) = \{u_{j_1}, u_{j_2}, \ldots, u_{j_{k-i}}\}$, where $1 \leq j_1 < j_2 < \cdots < j_{k-i} \leq t$. Then $k-i \leq j_{k-i} \leq t$. Let $j_{k-i} = j$. Then $d_G(S) = i + j - 1$, and $k-i \leq j \leq t$. Once the vertex u_j is chosen, we have $\binom{j-2}{k-i-1}$ ways to choose $u_{j_1}, u_{j_2}, \ldots, u_{j_{k-i-1}}$. In
this case, we contribute to SW_k by

$$X = \sum_{i=1}^{k-1} \left(\begin{array}{c} n-t \\ i \end{array} \right) \left[\sum_{j=k-i}^{t} \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right) (j+i-1) \right].$$

Since

$$\left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right) (j+i-1) = \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right) j + \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right) (i-1)$$

$$= (k-i) \left(\begin{array}{c} j \\ k-i \end{array} \right) + (i-1) \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right),$$

it follows that

$$\sum_{j=k-i}^{t} \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right) (j+i-1) = (k-i) \sum_{j=k-i}^{t} \left(\begin{array}{c} j \\ k-i \end{array} \right) + (i-1) \sum_{j=k-i}^{t} \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right)$$

$$= (k-i) \left(\begin{array}{c} t+1 \\ k-i+1 \end{array} \right) + (i-1) \left(\begin{array}{c} t \\ k-i \end{array} \right),$$

and hence

$$X = \sum_{i=1}^{k-1} \left(\begin{array}{c} n-t \\ i \end{array} \right) \left[\sum_{j=k-i}^{t} \left(\begin{array}{c} j-1 \\ k-i-1 \end{array} \right) (j+i-1) \right]$$

$$= \sum_{i=1}^{k-1} \left(\begin{array}{c} n-t \\ i \end{array} \right) \left[(k-i) \left(\begin{array}{c} t+1 \\ k-i+1 \end{array} \right) + (i-1) \left(\begin{array}{c} t \\ k-i \end{array} \right) \right]$$

$$= \sum_{i=1}^{k-1} \left(\begin{array}{c} n-t \\ i \end{array} \right) (k-i) \left(\begin{array}{c} t+1 \\ k-i+1 \end{array} \right) + \sum_{i=1}^{k-1} \left(\begin{array}{c} n-t \\ i \end{array} \right) (i-1) \left(\begin{array}{c} t \\ k-i \end{array} \right)$$

$$= \sum_{i=1}^{k-1} (k-i) \left(\begin{array}{c} t \\ k-i+1 \end{array} \right) \left(\begin{array}{c} n-t \\ i \end{array} \right) + \sum_{i=1}^{k-1} (k-i) \left(\begin{array}{c} t \\ k-i \end{array} \right) \left(\begin{array}{c} n-t \\ i \end{array} \right)$$

$$+ \sum_{i=1}^{k-1} (i-1) \left(\begin{array}{c} t \\ k-i \end{array} \right) \left(\begin{array}{c} n-t \\ i \end{array} \right).$$
\[
\begin{align*}
&= \sum_{i=1}^{k-1} (k-i) \binom{t}{k-i+1} \binom{n-t}{i} + (k-1) \sum_{i=1}^{k-1} \binom{t}{k-i} \binom{n-t}{i} \\
&= \sum_{i=1}^{k-1} (k-i) \binom{t}{k-i+1} \binom{n-t}{i} + (k-1) \left[\binom{n}{k} - \binom{t}{k} - \binom{n-t}{k} \right].
\end{align*}
\]

Let
\[
Y = \sum_{i=1}^{k-1} (k-i) \binom{t}{k-i+1} \binom{n-t}{i}.
\]

Then
\[
\begin{align*}
Y &= \sum_{i=1}^{k-1} (k-i+1) \binom{t}{k-i+1} \binom{n-t}{i} - \sum_{i=1}^{k-1} \binom{t}{k-i+1} \binom{n-t}{i} \\
&= t \sum_{i=1}^{k-1} \binom{t-1}{k-i} \binom{n-t}{i} - \sum_{i=1}^{k-1} \binom{t}{k+1-i} \binom{n-t}{i} \\
&= t \left[\binom{n-1}{k} - \binom{t-1}{k} - \binom{n-t}{k} \right] \\
&\quad - \left[\binom{n}{k+1} - \binom{t}{k+1} - t \binom{n-t}{k+1} - \binom{n-t}{k+1} \right],
\end{align*}
\]

and hence
\[
SW_k(T) = (k-1) \binom{t+1}{k+1} + k \binom{n-t}{k} + X
\]
\[
= (k-1) \binom{t+1}{k+1} + k \binom{n-t}{k} + Y + (k-1) \left[\binom{n}{k} - \binom{t}{k} - \binom{n-t}{k} \right]
\]
\[
= (k-1) \binom{t+1}{k+1} + k \binom{n-t}{k} + t \left[\binom{n-1}{k} - \binom{t-1}{k} - \binom{n-t}{k} \right] \\
&\quad - \left[\binom{n}{k+1} - \binom{t}{k+1} - t \binom{n-t}{k+1} - \binom{n-t}{k+1} \right] \\
&\quad + (k-1) \left[\binom{n}{k} - \binom{t}{k} - \binom{n-t}{k} \right].
\]
Inverse Problem on the Steiner Wiener Index

\[
\begin{align*}
= (k - 1) \left(\frac{t}{k + 1} \right) + (k - 1) \left(\frac{t}{k} \right) + k \left(\frac{n - t}{k} \right) + t \left(\frac{n - 1}{k} \right) - t \left(\frac{t - 1}{k} \right) \\
- t \left(\frac{n - t}{k} \right) - \left(\frac{n}{k + 1} \right) + \left(\frac{t}{k + 1} \right) + t \left(\frac{n - t}{k} \right) + \left(\frac{n - t}{k + 1} \right) \\
+ (k - 1) \left(\frac{n}{k} \right) - (k - 1) \left(\frac{t}{k + 1} \right) - (k - 1) \left(\frac{n - t}{k} \right)
\end{align*}
\]

\[
= (k - 1) \left(\frac{t}{k + 1} \right) + k \left(\frac{n - t}{k} \right) + t \left(\frac{n - 1}{k} \right) - t \left(\frac{t - 1}{k} \right) \\
- \left(\frac{n}{k + 1} \right) + \left(\frac{t}{k + 1} \right) + \left(\frac{n - t}{k + 1} \right) + (k - 1) \left(\frac{n}{k} \right) \\
= k \left(\frac{t}{k + 1} \right) + \left(\frac{n - t}{k} \right) + t \left(\frac{n - 1}{k} \right) - \left(\frac{t}{k + 1} \right) - \left(\frac{n}{k + 1} \right) + \left(\frac{n - t}{k + 1} \right) + (k - 1) \left(\frac{n}{k} \right)
\]

The following corollary is immediate from Theorem 4.1.

Corollary 4.2. For a positive integer \(w \), there exists a tree \(T \) of order \(n \) such that

\[
SW_k(T) = w
\]

if

\[
w = t \left(\frac{n - 1}{k} \right) - \left(\frac{t}{k + 1} \right) - \left(\frac{n}{k + 1} \right) + \left(\frac{n - t + 1}{k + 1} \right) + (k - 1) \left(\frac{n}{k} \right),
\]

where \(1 \leq t \leq n - 1 \) and \(k \leq n \).

For general graphs, we have the following.

Theorem 4.3. Let \(G \) be a graph obtained from a clique \(K_{n-r} \) and a star \(S_{r+1} \) by identifying a vertex of \(K_{n-r} \) and the center \(v \) of \(S_{r+1} \). For \(k \leq r \leq n - 1 - k \),

\[
SW_k(G) = (n - 1) \left(\frac{n - 1}{k - 1} \right) - \left(\frac{n - r - 1}{k} \right).
\]
Proof. For any $S \subseteq V(G)$ and $|S| = k$, if $S \subseteq V(K_{n-r})$, then $d_G(S) = k - 1$. There are $\binom{n-r}{k}$ such subsets, contributing to SW_k by $(k-1)^{\binom{n-r}{k}}$. If $S \subseteq V(S_{r+1}) - v$, then $d_G(S) = k$. There are $\binom{k}{r}$ such subsets, contributing to SW_k by $k^{\binom{k}{r}}$. Suppose that $S \cap V(K_{n-r}) \neq \emptyset$ and $S \cap (V(S_{r+1}) - v) \neq \emptyset$. If $v \in S$, then $d_G(S) = k - 1$. There are $\binom{n-r}{k-r-1}\binom{k}{r}$ such subsets, contributing to SW_k by $(k-1)\sum_{x=1}^{k-1}\binom{n-r-1}{k-x-1}\binom{r}{x}$. If $v \notin S$, then $d_G(S) = k$. There are $\binom{n-r}{k-x}\binom{r}{x}$ such subsets, contributing to SW_k by $k\sum_{x=1}^{k-1}\binom{n-r-1}{k-x}\binom{r}{x}$. Then

$$SW_k(G) = (k-1)^{\binom{n-r}{k}} + k^{\binom{k}{r}} + (k-1)\sum_{x=1}^{k-1}(n-r-1)\binom{r}{x}$$

$$+ k\sum_{x=1}^{k-1}\binom{n-r-1}{k-x-1}\binom{r}{x}$$

$$= (k-1)^{\binom{n-r}{k}} + k^{\binom{k}{r}} + (k-1)\left[\binom{n-1}{k-1} - \binom{n-1-r}{k-1}\right]$$

$$+ k\left[\binom{n-1}{k} - \binom{n-1-r}{k}\right]$$

$$= (k-1)^{\binom{n-r}{k}} + (n-1)^{\binom{n-1}{k-1}} - (k-1)\binom{n-1-r}{k-1} - k\binom{n-1-r}{k}$$

$$= (n-1)^{\binom{n-1}{k-1}} + (k-1)\binom{n-r-1}{k} - k\binom{n-1-r}{k}$$

$$= (n-1)^{\binom{n-1}{k-1}} - \binom{n-1-r}{k},$$

as desired.

The following corollary is immediate from Theorems 4.1 and 4.3.

Corollary 4.4. For a positive integer w, there exists a connected graph G of order n such that $SW_k(G) = w$ if w satisfies one of the following conditions.
Inverse Problem on the Steiner Wiener Index

(1) \[w = t \binom{n-1}{k} - \binom{t}{k+1} - \binom{n}{k+1} + \binom{n-t+1}{k+1} + (k-1) \binom{n}{k}, \text{ where } 1 \leq t \leq n-1 \text{ and } \ k \leq n. \]

(2) \[w = (n-1)\binom{n-1}{k-1} - \binom{n-r-1}{k}, \text{ where } k \leq r \leq n-1-k \text{ and } k \leq n. \]

Acknowledgement

The authors are very grateful to the referees for their valuable comments and suggestions.

References

Received 16 September 2015
Revised 5 October 2016
Accepted 5 October 2016