A CONSTRUCTIVE EXTENSION OF THE CHARACTERIZATION ON POTENTIALLY $K_{s,t}$-BIGRAPHIC PAIRS

JI-YUN GUO AND JIAN-HUA YIN

Department of Mathematics
College of Information Science and Technology
Hainan University, Haikou 570228, P.R. China

e-mail: yinjh@hainu.edu.cn

Abstract

Let $K_{s,t}$ be the complete bipartite graph with partite sets of size s and t. Let $L_1 = ([a_1, b_1], \ldots, [a_m, b_m])$ and $L_2 = ([c_1, d_1], \ldots, [c_n, d_n])$ be two sequences of intervals consisting of nonnegative integers with $a_1 \geq a_2 \geq \cdots \geq a_m$ and $c_1 \geq c_2 \geq \cdots \geq c_n$. We say that $L = (L_1; L_2)$ is potentially $K_{s,t}$-bigraphic (resp. $A_{s,t}$-bigraphic) if there is a simple bipartite graph G with partite sets $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ such that $a_i \leq d_G(x_i) \leq b_i$ for $1 \leq i \leq m$, $c_i \leq d_G(y_i) \leq d_i$ for $1 \leq i \leq n$ and G contains $K_{s,t}$ as a subgraph (resp. the induced subgraph of $\{x_1, \ldots, x_s, y_1, \ldots, y_t\}$ in G is a $K_{s,t}$). In this paper, we give a characterization of L that is potentially $A_{s,t}$-bigraphic. As a corollary, we also obtain a characterization of L that is potentially $K_{s,t}$-bigraphic if $b_1 \geq b_2 \geq \cdots \geq b_m$ and $d_1 \geq d_2 \geq \cdots \geq d_n$. This is a constructive extension of the characterization on potentially $K_{s,t}$-bigraphic pairs due to Yin and Huang (Discrete Math. 312 (2012) 1241–1243).

Keywords: degree sequence, bigraphic pair, potentially $K_{s,t}$-bigraphic pair.

2010 Mathematics Subject Classification: 05C07.

1. Introduction

Let $A = (a_1, \ldots, a_m)$ and $B = (b_1, \ldots, b_n)$ be two nonincreasing sequences of nonnegative integers. The pair $S = (A; B)$ is said to be bigraphic if there exists a

\[1\] Supported by National Natural Science Foundation of China (No. 11561017) and Natural Science Foundation of Hainan Province (Nos. 20151004 and 2016CXTD004).

\[2\] Corresponding author.
simple bipartite graph G with partite sets $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ such that $d_G(x_i) = a_i$ for $1 \leq i \leq m$ and $d_G(y_i) = b_i$ for $1 \leq i \leq n$. In this case, G is referred to as a realization of S. The following well-known theorem due to Gale [2] and Ryser [4] independently gave a characterization of S that is bigraphic.

Theorem 1 [2, 4]. $S = (A; B)$ is bigraphic if and only if $\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i$ and

$$\sum_{i=1}^{k} a_i \leq \sum_{i=1}^{n} \min\{k, b_i\} \text{ for all } k \text{ with } 1 \leq k \leq m.$$

The pair $S = (A; B)$ is said to be potentially $K_{s,t}$-bigraphic if there is a realization of S containing $K_{s,t}$ as a subgraph. Yin and Huang [6] presented a characterization of S that is potentially $K_{s,t}$-bigraphic.

Theorem 2 [6]. $S = (A; B)$ is potentially $K_{s,t}$-bigraphic if and only if $a_s \geq t$, $b_t \geq s$, $\sum_{i=1}^{m} a_i = \sum_{i=1}^{n} b_i$ and

$$\sum_{i=1}^{p} a_i + \sum_{i=s+1}^{s+q} a_i \leq \sum_{i=1}^{t} \min\{p, i \geq s - p\} + \sum_{i=t+1}^{n} \min\{q, b_i\}$$

for all p and q with $0 \leq p \leq s$ and $0 \leq q \leq m - s$.

Let $L_1 = ([a_1, b_1], \ldots, [a_m, b_m])$ and $L_2 = ([c_1, d_1], \ldots, [c_n, d_n])$ be two sequences of intervals consisting of nonnegative integers with $a_1 \geq a_2 \geq \cdots \geq a_m$ and $c_1 \geq c_2 \geq \cdots \geq c_n$. We say that $L = (L_1; L_2)$ is bigraphic if there exists a simple bipartite graph G with partite sets $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ such that $a_i \leq d_G(x_i) \leq b_i$ for $1 \leq i \leq m$ and $c_i \leq d_G(y_i) \leq d_i$ for $1 \leq i \leq n$. In this case, G is referred to as a realization of L. Garg et al. [3] obtained a characterization of L that is bigraphic.

Theorem 3 [3]. $L = (L_1; L_2)$ is bigraphic if and only if

$$\sum_{i=1}^{k} a_i \leq \sum_{j=1}^{n} \min\{k, d_j\} \text{ for all } k \text{ with } 1 \leq k \leq m$$

and

$$\sum_{i=1}^{k} c_i \leq \sum_{j=1}^{m} \min\{k, b_j\} \text{ for all } k \text{ with } 1 \leq k \leq n.$$

Theorem 3 reduces to Theorem 1 when $a_i = b_i$ for $1 \leq i \leq m$ and $c_i = d_i$ for $1 \leq i \leq n$. We say that $L = (L_1; L_2)$ is potentially $K_{s,t}$-bigraphic (resp. $A_{s,t}$-bigraphic) if there is a simple bipartite graph G with partite sets $X = \{x_1, \ldots, x_m\}$ and $Y = \{y_1, \ldots, y_n\}$ such that $a_i \leq d_G(x_i) \leq b_i$ for $1 \leq i \leq m$, $c_i \leq d_G(y_i) \leq d_i$ for $1 \leq i \leq n$.

for $1 \leq i \leq n$ and G contains $K_{s,t}$ as a subgraph (resp. the induced subgraph of $\{x_1, \ldots, x_s, y_1, \ldots, y_t\}$ in G is a $K_{s,t}$).

The purpose of this paper is to investigate a characterization of L that is potentially $K_{s,t}$-bigraphic. We first give a characterization of L that is potentially $A_{s,t}$-bigraphic as follows.

Theorem 4. Let $L_1 = ([a_1, b_1], \ldots, [a_m, b_m])$ and $L_2 = ([c_1, d_1], \ldots, [c_n, d_n])$ be two sequences of intervals consisting of nonnegative integers with $a_1 \geq a_2 \geq \cdots \geq a_m$ and $c_1 \geq c_2 \geq \cdots \geq c_n$. If $a_s \geq t$ and $c_t \geq s$, then $L = (L_1; L_2)$ is potentially $A_{s,t}$-bigraphic if and only if

$$\begin{align*}
(1) \quad & \sum_{i=1}^{p_1} a_i + \sum_{i=s+1}^{s+q_1} a_i \leq \sum_{i=1}^{t} \min\{p_1 + q_1, d_i - s + p_1\} + \sum_{i=t+1}^{n} \min\{p_1 + q_1, d_i\} \\
& \text{for all } p_1 \text{ and } q_1 \text{ with } 0 \leq p_1 \leq s \text{ and } 0 \leq q_1 \leq m - s \text{ and }
\end{align*}$$

$$\begin{align*}
(2) \quad & \sum_{i=1}^{p_2} c_i + \sum_{i=t+1}^{t+q_2} c_i \leq \sum_{i=1}^{s} \min\{p_2 + q_2, b_i - t + p_2\} + \sum_{i=s+1}^{m} \min\{p_2 + q_2, b_i\} \\
& \text{for all } p_2 \text{ and } q_2 \text{ with } 0 \leq p_2 \leq t \text{ and } 0 \leq q_2 \leq n - t.
\end{align*}$$

If $s = t = 0$, then $p_1 = p_2 = 0$ and Theorem 4 reduces to Theorem 3. If we further assume that $b_1 \geq b_2 \geq \cdots \geq b_m$ and $d_1 \geq d_2 \geq \cdots \geq d_n$, then we can prove the following theorem.

Theorem 5. Let $L_1 = ([a_1, b_1], \ldots, [a_m, b_m])$ and $L_2 = ([c_1, d_1], \ldots, [c_n, d_n])$ be two sequences of intervals consisting of nonnegative integers with $a_1 \geq a_2 \geq \cdots \geq a_m$ and $c_1 \geq c_2 \geq \cdots \geq c_n$. If $b_1 \geq b_2 \geq \cdots \geq b_m$ and $d_1 \geq d_2 \geq \cdots \geq d_n$, then $L = (L_1; L_2)$ is potentially $K_{s,t}$-bigraphic if and only if it is potentially $A_{s,t}$-bigraphic.

Combining Theorem 4 with Theorem 5, we have the following corollary.

Corollary 6. Let $L_1 = ([a_1, b_1], \ldots, [a_m, b_m])$ and $L_2 = ([c_1, d_1], \ldots, [c_n, d_n])$ be two sequences of intervals consisting of nonnegative integers with $a_1 \geq a_2 \geq \cdots \geq a_m$ and $c_1 \geq c_2 \geq \cdots \geq c_n$. If $a_s \geq t$, $c_t \geq s$, $b_1 \geq b_2 \geq \cdots \geq b_m$ and $d_1 \geq d_2 \geq \cdots \geq d_n$, then $L = (L_1; L_2)$ is potentially $K_{s,t}$-bigraphic if and only if (1) holds for all p_1 and q_1 with $0 \leq p_1 \leq s$ and $0 \leq q_1 \leq m - s$ and (2) holds for all p_2 and q_2 with $0 \leq p_2 \leq t$ and $0 \leq q_2 \leq n - t$.

Corollary 6 reduces to Theorem 2 when $a_i = b_i$ for $1 \leq i \leq m$ and $c_i = d_i$ for $1 \leq i \leq n$.
2. Proofs of Theorems 4 and 5

The proof technique of Theorem 4 was developed earlier by Tripathi, Venugopalan and West [5].

Proof of Theorem 4. For the necessity, we suppose that \(G \) is a realization of \(L = (L_1; L_2) \) with partite sets \(X = \{x_1, \ldots, x_m\} \) and \(Y = \{y_1, \ldots, y_n\} \) such that \(a_i \leq d_G(x_i) \leq b_i \) for \(1 \leq i \leq m \), \(c_i \leq d_G(y_i) \leq d_i \) for \(1 \leq i \leq n \) and the induced subgraph of \(\{x_1, \ldots, x_s, y_1, \ldots, y_t\} \) in \(G \) is a \(K_{s,t} \). For \(p_1 \) and \(q_1 \), with \(0 \leq p_1 \leq s \) and \(0 \leq q_1 \leq m - s \), it is easy to see that \(\sum_{i=1}^{t} \min\{p_1 + q_1, d_G(y_i) - s + p_1\} + \sum_{i=t+1}^{n} \min\{p_1 + q_1, d_G(y_i)\} \) is the maximum contribution to \(\sum_{i=1}^{s} a_i + \sum_{i=s+1}^{s+q_1} a_i + \sum_{i=s+1}^{s+q_1} d_G(x_i) \). Thus,

\[
\sum_{i=1}^{p_1} a_i + \sum_{i=s+1}^{s+q_1} a_i \leq \sum_{i=1}^{p_1} d_G(x_i) + \sum_{i=s+1}^{s+q_1} d_G(x_i)
\]

\[
\leq \sum_{i=1}^{t} \min\{p_1 + q_1, d_G(y_i) - s + p_1\} + \sum_{i=t+1}^{n} \min\{p_1 + q_1, d_G(y_i)\}
\]

\[
\leq \sum_{i=1}^{p_1} \min\{p_1 + q_1, d_i - s + p_1\} + \sum_{i=t+1}^{n} \min\{p_1 + q_1, d_i\},
\]

that is, (1) holds for \(p_1 \) and \(q_1 \). Similarly, we can prove that (2) holds for \(p_2 \) and \(q_2 \) with \(0 \leq p_2 \leq t \) and \(0 \leq q_2 \leq n - t \).

For the sufficiency, we assume that (1) holds for \(p_1 \) and \(q_1 \) with \(0 \leq p_1 \leq s \) and \(0 \leq q_1 \leq m - s \) and (2) holds for \(p_2 \) and \(q_2 \) with \(0 \leq p_2 \leq t \) and \(0 \leq q_2 \leq n - t \). A subrealization of \(L = (L_1; L_2) \) is a bipartite graph \(G \) with partite sets \(X = \{x_1, \ldots, x_m\} \) and \(Y = \{y_1, \ldots, y_n\} \) such that \(d_G(x_i) \leq b_i \) for \(1 \leq i \leq m \) and \(d_G(y_i) \leq d_i \) for \(1 \leq i \leq n \). If \(a_i \leq d_G(x_i) \leq b_i \) for \(1 \leq i \leq m \) and \(c_i \leq d_G(y_i) \leq d_i \) for \(1 \leq i \leq n \), then \(G \) is a realization of \(L \). We will construct a realization of \(L \) through successive subrealizations. The initial subrealization is \(K_{s,t} \cup K_{m-s} \cup K_{n-t} \), where \(K_r \) is the complement of \(K_r \). \(K_{s,t} \) has partite sets \(\{x_1, \ldots, x_s\} \) and \(\{y_1, \ldots, y_t\} \), \(V(K_{m-s}) = \{x_{s+1}, \ldots, x_m\} \) and \(V(K_{n-t}) = \{y_{t+1}, \ldots, y_n\} \).

In each successive subrealization, let \(p_1 \) be the largest index such that \(d(x_i) = a_i \) for \(1 \leq i < p_1 \) and \(d(x_p) < a_p \) and \(q_1 \) be the largest index such that \(d(x_i) = a_i \) for \(s + 1 \leq i < s + q_1 \) and \(d(x_{s+q_1}) < a_{s+q_1} \). When \(p_1 \leq s \) or \(q_1 \leq m - s \), we can obtain a new subrealization containing the initial subrealization and having smaller deficiency \((a_{p_1} - d(x_p)) + (a_{s+q_1} - d(x_{s+q_1})) \) at \(x_p \) and \(x_{s+q_1} \) while not changing the degree of any vertex \(x_i \) with \(i \in \{1, \ldots, p_1 - 1, s + 1, \ldots, s + q_1 - 1\} \).

Let \(X_1 = \{x_{p_1+1}, \ldots, x_s\} \) and \(X_2 = \{x_{s+q_1+1}, \ldots, x_m\} \). We maintain the condition that \(\{x_1, \ldots, x_s\} \) and \(\{y_1, \ldots, y_t\} \) form a \(K_{s,t} \), there is no edge between \(\{y_1, \ldots, y_t\} \) and \(X_2 \) and there is no edge between \(\{y_{t+1}, \ldots, y_n\} \) and \(X_1 \cup X_2 \),
which certainly hold initially. For convenience, we write \(v_i \leftrightarrow v_j\) for \("v_i is adjacent to v_j\) and \(v_i \not\leftrightarrow v_j\) for \("v_i is not adjacent to v_j\)."

Case 0. Suppose \(x_{p_1} \not\leftrightarrow y_k\) for some \(k > t\) such that \(d(y_k) < d_k\). Add \(x_{p_1}y_k\).

Case 1. Suppose \(x_{s+q_1} \not\leftrightarrow y_k\) for some \(k\) such that \(d(y_k) < d_k\). Add \(x_{s+q_1}y_k\).

Case 2. Suppose \(d(y_k) \neq \min\{p_1 + q_1, d_k\}\) for some \(k\) with \(k \geq t + 1\). In a subrealization, \(d(y_k) \leq d_k\). Since there is no edge between \(\{y_{t+1}, \ldots, y_n\}\) and \(X_1 \cup X_2\), \(d(y_k) \leq p_1 + q_1\). Hence, \(d(y_k) < \min\{p_1 + q_1, d_k\}\). Case 0 and Case 1 apply, unless \(x_{p_1} \leftrightarrow y_k\) and \(x_{s+q_1} \leftrightarrow y_k\). Since \(d(y_k) < p_1 + q_1\), there exists \(i \in \{1, \ldots, p_1 - 1, s + 1, \ldots, s + q_1 - 1\}\) such that \(x_i \not\leftrightarrow y_k\). By \(d(x_i) > d(s+q_1)\), there exists \(e \in N(x_i) \setminus N(x_{p_1})\), then replace \(ux_i\) by \(\{x_iy_k, ux_{s+q_1}\}\). If \(i \in \{s + 1, \ldots, s + q_1 - 1\}\), by \(d(x_i) > d(s+q_1)\), there exists \(u \in N(x_i) \setminus N(x_{s+q_1})\), then replace \(ux_i\) by \(\{x_iy_k, ux_{s+q_1}\}\).

Case 3. Suppose \(d(y_k) - s + p_1 \neq \min\{p_1 + q_1, d_k - s + p_1\}\) for some \(k\) with \(k \leq t\). In a subrealization, \(d(y_k) - s + p_1 \leq d_k - s + p_1\). Since there is no edge between \(\{y_1, \ldots, y_t\}\) and \(X_2\), \(d(y_k) - s + p_1 \leq p_1 + q_1\). Hence \(d(y_k) - s + p_1 < \min\{p_1 + q_1, d_k - s + p_1\}\). Case 1 applies unless \(x_{s+q_1} \leftrightarrow y_k\). Since \(d(y_k) - s + p_1 < p_1 + q_1\) and \(x_i \leftrightarrow y_k\) for \(1 \leq i \leq p_1\), there exists \(i \in \{s + 1, \ldots, s + q_1 - 1\}\) such that \(x_i \not\leftrightarrow y_k\). By \(d(x_i) > d(s+q_1)\), there exists \(u \in N(x_i) \setminus N(x_{s+q_1})\), then replace \(ux_i\) by \(\{x_iy_k, ux_{s+q_1}\}\).

If none of Cases 0–3 applies, then \(d(y_k) = \min\{p_1 + q_1, d_k\}\) for \(k \geq t + 1\) and \(d(y_k) - s + p_1 = \min\{p_1 + q_1, d_k - s + p_1\}\) for \(k \leq t\). Since \(\{x_1, \ldots, x_t\}\) and \(\{y_1, \ldots, y_t\}\) form a \(K_{s,t}\), there is no edge between \(\{y_1, \ldots, y_t\}\) and \(X_2\) and there is no edge between \(\{y_{t+1}, \ldots, y_n\}\) and \(X_1 \cup X_2\), we have that

\[
\sum_{i=1}^{p_1} d(x_i) + \sum_{i=1}^{q_1} d(x_{s+i}) = \sum_{i=1}^{t} \min\{p_1 + q_1, d_i - s + p_1\} + \sum_{i=t+1}^{n} \min\{p_1 + q_1, d_i\}.
\]

By (1) and the observation that \(d(x_i) = a_i\) for \(1 \leq i \leq p_1 - 1\) and \(d(x_{s+i}) = a_{s+i}\) for \(1 \leq i \leq q_1 - 1\), we get that \(\sum_{i=1}^{p_1} a_i + \sum_{i=1}^{s+q_1} a_i = \sum_{i=1}^{p_1} d(x_i) + \sum_{i=1}^{q_1} d(x_{s+i})\), which implies that \(d(x_{p_1}) = a_{p_1}\) and \(d(x_{s+q_1}) = a_{s+q_1}\). Now we have shown that while \(p_1 \leq s\) or \(q_1 \leq m - s\), we obtain a new subrealization containing the initial subrealization and having \(d(x_{p_1}) = a_{p_1}\) and \(d(x_{s+q_1}) = a_{s+q_1}\) while not changing the degree of any vertex \(x_i\) with \(i \in \{1, \ldots, p_1 - 1, s + 1, \ldots, s + q_1 - 1\}\). Increase \(p_1\) by 1 and \(q_1\) by 1, and repeat the process from Case 0 to Case 3. Thus when \(p_1 = s\) and \(q_1 = m - s\), a subrealization \(G'\) containing the initial subrealization can be obtained so that \(d(x_i) = a_i\) for \(1 \leq i \leq m\) and \(d(y_i) \leq d_i\) for \(1 \leq i \leq n\).

We now regard \(G'\) as a new initial subrealization. In the following, for each successive subrealization, we define \(p_2\) to be the largest index such that \(d(y_{p_2}) \geq c_{i+1}\) for \(1 \leq i < p_2\) and \(d(y_{p_2}) < c_{p_2}\), and \(q_2\) to be the largest index such that \(d(y_{q_2}) \geq c_{i+1}\) for \(t+1 \leq i < t+q_2\) and \(d(y_{t+q_2}) < c_{t+q_2}\). While \(p_2 \leq t\) or \(q_2 \leq n-t\), we can obtain
a new subrealization having smaller deficiency \((c_{p_2} - d(y_{p_2})) + (c_{t+q_2} - d(y_{t+q_2}))\) at \(y_{p_2}\) and \(y_{t+q_2}\) while maintaining the conditions that \(\{x_1, \ldots, x_s\}\) and \(\{y_1, \ldots, y_t\}\) form a \(K_{s,t}\), \(d(y_i) \geq c_i\) for \(i \in \{1, \ldots, p_2-1, t+1, \ldots, t+q_2-1\}\) and \(a_i \leq d(x_i) \leq b_i\) for \(1 \leq i \leq m\). The process can only stop when the subrealization is a realization of \(L\).

Case 4. Suppose, for some \(j > s\), \(x_j \leftrightarrow y_k\) for some \(p_2 + 1 \leq k \leq t\) and \(x_j \not\leftrightarrow y_\ell\) for some \(\ell \leq p_2\). If \(\ell = p_2\), then replace \(y_kx_j\) by \(y_{p_2}x_j\). If \(\ell < p_2\), then replace \(\{y_kx_j, yv\}\) by \(\{y_{p_2}x_j, yv\}\), where \(v \in N(y_\ell) \setminus N(y_{p_2})\).

Case 5. Suppose, for some \(j \in \{1, \ldots, m\}\), \(x_j \leftrightarrow y_k\) for some \(k > t + q_2\) and \(x_j \not\leftrightarrow y_\ell\) for some \(1 + t \leq \ell \leq t + q_2\). If \(\ell = t + q_2\), then replace \(x_jy_k\) by \(x_jy_{t+q_2}\). If \(t + 1 \leq \ell < t + q_2\), then replace \(\{x_jy_k, yv\}\) by \(\{x_jy_{t+q_2}, yv\}\), where \(v \in N(y_\ell) \setminus N(y_{t+q_2})\).

Case 6. Suppose \(d(x_j) < b_j\) for some \(j > s\) and \(x_j \not\leftrightarrow y_\ell\) for some \(\ell \leq p_2\). If \(\ell = p_2\), then add \(x_jy_{p_2}\). If \(\ell < p_2\), then replace \(vy_\ell\) by \(\{vy_{p_2}, yvx_j\}\), where \(v \in N(y_\ell) \setminus N(y_{p_2})\).

Case 7. Suppose \(d(x_j) < b_j\) for some \(j \in \{1, \ldots, m\}\) and \(x_j \not\leftrightarrow y_\ell\) for some \(t + 1 \leq \ell \leq t + q_2\). If \(\ell = t + q_2\), then add \(x_jy_{t+q_2}\). If \(t + 1 \leq \ell < t + q_2\), then replace \(vy_\ell\) by \(\{vy_{t+q_2}, yvx_j\}\), where \(v \in N(y_\ell) \setminus N(y_{t+q_2})\).

Case 8. Suppose, for some \(j > s\), \(x_j \leftrightarrow y_k\) for some \(p_2 + 1 \leq k \leq t\) and \(x_j \not\leftrightarrow y_\ell\) for some \(t + 1 \leq \ell \leq t + q_2\). If \(\ell = t + q_2\), then replace \(x_jy_k\) by \(x_jy_{t+q_2}\). If \(t + 1 \leq \ell < t + q_2\), then replace \(\{x_jy_k, yv\}\) by \(\{x_jy_{t+q_2}, yv\}\), where \(v \in N(y_\ell) \setminus N(y_{t+q_2})\).

Case 9. Suppose, for some \(j > s\), \(x_j \leftrightarrow y_k\) for some \(k > t + q_2\) and \(x_j \not\leftrightarrow y_\ell\) for some \(\ell \leq p_2\). If \(\ell = p_2\), then replace \(x_jy_k\) by \(x_jy_{p_2}\). If \(\ell < p_2\), then replace \(\{x_jy_k, vy\}\) by \(\{x_jy_{p_2}, vy\}\), where \(v \in N(y_\ell) \setminus N(y_{p_2})\).

Case 10. Suppose \(d(y_i) > c_i\) for some \(i \in \{1, \ldots, p_2-1, t+1, \ldots, t+q_2-1\}\). If \(i \in \{1, \ldots, p_2-1\}\), then replace \(vy_i\) by \(vy_{p_2}\), where \(v \in N(y_i) \setminus N(y_{p_2})\). If \(i \in \{t+1, \ldots, t+q_2-1\}\), then replace \(vy_i\) by \(vy_{t+q_2}\), where \(v \in N(y_i) \setminus N(y_{t+q_2})\).

If none of Cases 4–9 applies, we can prove the following claim.

Claim. Assume that none of Cases 4–9 applies. Then

(i) For each \(x_j \in \{x_1, \ldots, x_s\}\), \(\min\{p_2 + q_2, d(x_j) - t + p_2\} = \min\{p_2 + q_2, b_j - t + p_2\}\) and \(\min\{p_2 + q_2, b_j - t + p_2\}\) is the maximum contribution to \(\sum_{i=1}^{q_2} d(y_{i+1})\) from edges incident to \(x_j\).

(ii) For each \(x_j \in \{x_1, \ldots, x_m\}\), \(\min\{p_2 + q_2, d(x_j)\} = \min\{p_2 + q_2, b_j\}\) and \(\min\{p_2 + q_2, b_j\}\) is the maximum contribution to \(\sum_{i=1}^{q_2} d(y_{i+1})\) from edges incident to \(x_j\).

Proof. If \(x_j \in \{x_1, \ldots, x_s\}\), we consider the following two cases depending on whether \(x_j\) is adjacent to all the vertices in \(\{y_{t+1}, \ldots, y_{t+q_2}\}\) or not.
Suppose $x_j \leftrightarrow y_k$ for all $t+1 \leq k \leq t+q_2$. Since $\{x_1, \ldots, x_s\}$ and $\{y_1, \ldots, y_t\}$ form a $K_{s,t}$, x_j is adjacent to every vertex in $\{y_1, \ldots, y_t\}$. Thus, $p_2 + q_2$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j.

By $b_j - t + p_2 \geq d(x_j) - t + p_2 \geq p_2 + q_2$, we have that $\min\{p_2 + q_2, d(x_j) - t + p_2\} = \min\{p_2 + q_2, b_j - t + p_2\} = p_2 + q_2$ and $\min\{p_2 + q_2, b_j - t + p_2\}$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j.

Suppose $x_j \not\leftrightarrow y_k$ for some $t+1 \leq k \leq t+q_2$. Since Case 5 and Case 7 cannot apply, we have that $x_j \not\leftrightarrow y_k$ for all $\ell > t + q_2$ and $d(x_j) = b_j$. This implies that $b_j - t + p_2 = d(x_j) - t + p_2 < p_2 + q_2$, $\min\{p_2 + q_2, d(x_j) - t + p_2\} = \min\{p_2 + q_2, b_j - t + p_2\} = b_j - t + p_2$ and $b_j - t + p_2$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j.

If $x_j \in \{x_{s+1}, \ldots, x_m\}$, we consider the following two cases depending on whether x_j is adjacent to all the vertices in $\{y_1, \ldots, y_{p_2}\}$ or not.

Suppose $x_j \leftrightarrow y_k$ for all $k \leq p_2$. If $x_j \leftrightarrow y_{\ell}$ for all $\ell \leq t + q_2$, then $p_2 + q_2$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j. By $b_j \geq d(x_j) \geq p_2 + q_2$, we have that $\min\{p_2 + q_2, d(x_j)\} = \min\{p_2 + q_2, b_j\} = p_2 + q_2$ and $\min\{p_2 + q_2, b_j\}$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j. Assume that $x_j \not\leftrightarrow y_\ell$ for some $t+1 \leq \ell \leq t+q_2$. Since Case 5, Case 7 and Case 8 cannot apply, we have that $x_j \not\leftrightarrow y_k$ for all $k > t + q_2$, $d(x_j) = b_j$ and $x_j \not\leftrightarrow y_\ell$ for all $p_2 + 1 \leq k \leq t$. Thus, b_j is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j. By $b_j = d(x_j) < p_2 + q_2$, we have that $\min\{p_2 + q_2, d(x_j)\} = \min\{p_2 + q_2, b_j\}$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j.

Suppose $x_j \not\leftrightarrow y_k$ for some $k \leq p_2$. Since Case 4, Case 6 and Case 9 cannot apply, we have that $x_j \not\leftrightarrow y_\ell$ for all $p_2 + 1 \leq \ell \leq t$, $x_j \not\leftrightarrow y_k$ for all $\ell > t + q_2$ and $d(x_j) = b_j$. By $b_j = d(x_j) < p_2 + q_2$, we have that $\min\{p_2 + q_2, d(x_j)\} = \min\{p_2 + q_2, b_j\}$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_j. The claim is proved. \hfill \Box

We now continue to proceed with the proof of theorem. By the previous claim, we have that $\sum_{i=1}^{s} \min\{p_2 + q_2, d(x_i) - t + p_2\} + \sum_{i=s+1}^{m} \min\{p_2 + q_2, d(x_i)\} = \sum_{i=1}^{s} \min\{p_2 + q_2, b_i - t + p_2\} + \sum_{i=s+1}^{m} \min\{p_2 + q_2, b_i\}$, and $\sum_{i=1}^{s} \min\{p_2 + q_2, b_i - t + p_2\} + \sum_{i=s+1}^{m} \min\{p_2 + q_2, b_i\}$ is the maximum contribution to $\sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})$ from edges incident to x_1, \ldots, x_m. If Case 10 cannot apply, then $d(y_i) = c_i$ for all $i \in \{1, \ldots, p_2 - 1, t + 1, \ldots, t + q_2 - 1\}$. Thus, we obtain that

$$
\sum_{i=1}^{s} c_i + \sum_{i=1}^{q_2-1} c_{t+i} + d(y_{p_2}) + d(y_{t+q_2}) = \sum_{i=1}^{p_2} d(y_i) + \sum_{i=1}^{q_2} d(y_{t+i})
$$

$$
= \sum_{j=1}^{m} \min\{p_2 + q_2, b_j - t + p_2\} + \sum_{j=s+1}^{m} \min\{p_2 + q_2, b_j\}.
$$
By (2), we further have that \(c_{p_2} + c_{t+q_2} \leq d(y_{p_2}) + d(y_{t+q_2}) \), which implies that \(d(y_{p_2}) = c_{p_2} \) and \(d(y_{t+q_2}) = c_{t+q_2} \). Now we have shown that while \(p_2 \leq t \) or \(q_2 \leq n-t \), we obtain a new subrealization having \(d(y_{p_2}) = c_{p_2} \) and \(d(y_{t+q_2}) = c_{t+q_2} \) while maintaining the conditions that \(\{x_1, \ldots, x_s\} \) and \(\{y_1, \ldots, y_t\} \) form a \(K_{s,t} \), \(d(y_i) \geq c_i \) for \(i \in \{1, \ldots, p_2 - 1, t + 1, \ldots, t + q_2 - 1\} \) and \(a_i \leq d(x_i) \leq b_i \) for \(1 \leq i \leq m \). Increase \(p_2 \) by 1 and \(q_2 \) by 1, and repeat the process from Case 4 to Case 10. When \(p_2 = t \) and \(q_2 = n - t \), we finally get a realization of \(L \) containing \(K_{s,t} \) and satisfying \(a_i \leq d(x_i) \leq b_i \) for \(1 \leq i \leq m \) and \(c_i \leq d(y_i) \leq d_i \) for \(1 \leq i \leq n \), where \(V(K_{s,t}) = \{x_1, \ldots, x_s, y_1, \ldots, y_t\} \). In other words, \(L \) is potentially \(A_{s,t} \)-bigraphic. The proof of Theorem 4 is completed. ■

This constructive proof can be implemented as an algorithm to construct a realization of \(L \) containing \(K_{s,t} \). The following lemma due to Ferrara et al. [1] will be useful as we proceed with the proof of Theorem 5.

Lemma 7 [1]. Let \(S \) be a bigraphic pair with realization \(G = (X \cup Y, E) \) having partite sets \(X \) and \(Y \). Let \(H = (X' \cup Y', E') \) be a subgraph of \(G \) such that \(X' \) and \(Y' \) are contained in \(X \) and \(Y \), respectively. Then there exists a realization \(G_1 = (X \cup Y, E_1) \) of \(S \) containing \(H \) as a subgraph such that \(X' \) and \(Y' \) lie on the vertices of highest degree in \(X \) and \(Y \), respectively.

Proof of Theorem 5. We only need to show that if \(L = (L_1; L_2) \) is potentially \(K_{s,t} \)-bigraphic, then it is potentially \(A_{s,t} \)-bigraphic. Let \(G \) be a simple bipartite graph with partite sets \(X = \{x_1, \ldots, x_m\} \) and \(Y = \{y_1, \ldots, y_n\} \) such that \(a_i \leq d_G(x_i) \leq b_i \) for \(1 \leq i \leq m \), \(c_i \leq d_G(y_i) \leq d_i \) for \(1 \leq i \leq n \) and \(G \) contains \(K_{s,t} = (X' \cup Y', E') \) as a subgraph. Denote \(d_{1i} = d_G(x_i) \) for \(1 \leq i \leq m \) and \(d_{2i} = d_G(y_i) \) for \(1 \leq i \leq n \). Let \(A = (d_{11}, \ldots, d_{1m}) \) and \(B = (d_{21}, \ldots, d_{2n}) \). By Lemma 7, \((A; B) \) has a realization \(G_1 = (X \cup Y, E_1) \) satisfying \(d_{1i}(x_i) = d_{1i} \) for \(1 \leq i \leq m \), \(d_{2i}(y_i) = d_{2i} \) for \(1 \leq i \leq n \) and \(G_1 \) contains \(K_{s,t} \) so that \(X' \) and \(Y' \) lie on the vertices of highest degree in \(X \) and \(Y \), respectively. Let \(D = \{x_1, \ldots, x_s\} \setminus X' \), \(D' = \{x_{s+1}, \ldots, x_m\} \cap X' \), \(C = \{y_1, \ldots, y_t\} \setminus Y' \) and \(C' = \{y_{t+1}, \ldots, y_n\} \setminus Y' \). Then, it is easy to see that

\[
\max\{a_i|x_i \in D\} \leq \max\{d_{1i}|x_i \in D\} \leq d_{1j} \leq \min\{b_i|x_i \in D\}
\]

for each \(x_j \in D' \),

\[
\max\{a_i|x_i \in D'\} \leq d_{1j} \leq \min\{d_{1i}|x_i \in D'\} \leq \min\{b_i|x_i \in D'\}
\]

for each \(x_j \in D' \),

\[
\max\{c_i|y_i \in C\} \leq \max\{d_{2i}|y_i \in C\} \leq d_{2j} \leq \min\{d_i|y_i \in C\}
\]

for each \(y_j \in C' \),

\[
\max\{c_i|y_i \in C'\} \leq d_{2j} \leq \min\{d_{2i}|y_i \in C'\} \leq \min\{d_i|y_i \in C'\}
\]

for each \(y_j \in C' \).

Thus, we can see that \((L_1; L_2) \) is potentially \(A_{s,t} \)-bigraphic by exchanging \(D \) with \(D' \) and \(C \) with \(C' \). ■

Acknowledgements

The authors are very grateful to the anonymous referees for their valuable comments and suggestions.
REFERENCES

Received 6 July 2015
Revised 13 April 2016
Accepted 13 April 2016