RAINBOW CONNECTION NUMBER OF GRAPHS WITH DIAMETER 3

HENGZHE LI, XUELIANG LI

AND

YUEFANG SUN

Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China

e-mail: lhz@htu.cn
lxl@nankai.edu.cn
bruceseun@gmail.com

Abstract

A path in an edge-colored graph G is rainbow if no two edges of the path are colored the same. The rainbow connection number $rc(G)$ of G is the smallest integer k for which there exists a k-edge-coloring of G such that every pair of distinct vertices of G is connected by a rainbow path. Let $f(d)$ denote the minimum number such that $rc(G) \leq f(d)$ for each bridgeless graph G with diameter d. In this paper, we shall show that $7 \leq f(3) \leq 9$.

Keywords: edge-coloring, rainbow path, rainbow connection number, diameter.

2010 Mathematics Subject Classification: 05C15, 05C40.

1. Introduction

All graphs in this paper are undirected, finite, and simple. We refer to book [2] for notation and terminology not described here. A path $u_0u_1 \cdots u_k$ is called a P_{uv} path, where $u = u_0$ and $u_k = v$. The distance between two vertices x and y in G, denoted by $d(x, y)$, is the number of edges of a shortest path between them. The eccentricity of a vertex x, denoted by $ecc(x)$, is $\max_{y \in V(G)} d(x, y)$. The radius and diameter of G, denoted by $rad(G)$ and $diam(G)$, are $\min_{x \in V(G)} ecc(x)$ and $\max_{x \in V(G)} ecc(x)$, respectively. A vertex u is a center if $ecc(u) = rad(G)$.
A path in an edge-colored graph G, where adjacent edges may have the same color, is *rainbow* if no two edges of the path are colored the same. An edge-coloring of a graph G is a *rainbow-connected edge-coloring* if every pair of distinct vertices of G is connected by a rainbow path. The *rainbow connection number* $rc(G)$ of G is the minimum integer k for which there exists a rainbow-connected k-edge-coloring of G. It is easy to see that $\text{diam}(G) \leq rc(G)$ for any connected graph G.

The rainbow connection number was introduced by Chartrand, Johns, McKeeon, and Zhang in [4]. It has application in transferring information of high security in multicomputer networks. We refer the readers to [3, 8] for details.

Chakraborty, Fischer, Matsliah, and Yuster [3] investigated the hardness and algorithms for the rainbow connection number, and showed that given a graph G, deciding if $rc(G) = 2$ is NP-complete. Bounds for the rainbow connection number of a graph have also been studied in terms of other graph parameters, for example, radius and diameter, etc. [1, 5, 6, 7].

Let $f(d)$ denote the minimum number such that each bridgeless graph G with diameter d has a rainbow-connected $f(d)$-edge-coloring. It is easy to check that $f(1) = 1$. In [7], we showed that $f(2) = 5$. In this paper, we shall show that $7 \leq f(3) \leq 9$.

The following theorem will be used in this paper.

Theorem 1 [5]. For every bridgeless graph G,

$$rc(G) \leq \sum_{i=1}^{\text{rad}(G)} \min\{2i+1, \eta(G)\} \leq \text{rad}(G) \eta(G),$$

where $\eta(G)$ is the smallest integer such that every edge of G is contained in a cycle of length at most $\eta(G)$.

In this paper, we investigate the upper bound on the rainbow connection number of bridgeless graphs with diameter 3, and obtain the following result.

Theorem 2. For every bridgeless graph G with diameter 3, $rc(G) \leq 9$.

If each edge of a bridgeless graph G with diameter 3 belongs to a triangle, then $rc(G) \leq 9$ by Theorem 1. Thus, we suppose that there exists an edge e such that e does not belong to any triangle in G.

This paper is organized as follows. In Section 2, we partition $V(G)$, and present a partial edge-coloring of G under this partition. In Section 3, we further partition $V(G)$ and give a complete edge-coloring of G under this partition. In Section 4, we prove that the edge-coloring in Section 3 is a rainbow-connected 9-edge-coloring of G, and give a class of bridgeless graphs with diameter 3 and rainbow connection number at least 7.
2. A Partial Edge-Coloring

Let G be a graph. For any integer $k \geq 1$, the k-step open neighborhood $N^k(X)$ is $\{ y \in V(G) : d(X, y) = k \}$. We simply write $N(X)$ for $N^1(X)$ and $N^k(x)$ for $N^k(\{x\})$. Similarly, the k-step closed neighborhood $N^k[X]$ is $\{ y \in V(G) : d(X, y) \leq k \}$. We simply write $N[X]$ for $N^1[X]$ and $N^k[x]$ for $N^k(\{x\})$.

Let c be an edge-coloring of G, and let P be a rainbow path in G. We use $c(P)$ to denote the set of colors used on P, that is, $c(P) = \{c(e) : \text{the edge } e \text{ belongs to } P\}$. If $c(P) \subseteq \{k_1, k_2, \ldots, k_r\}$, then P is a $\{k_1, k_2, \ldots, k_r\}$-rainbow path. In particular, an edge e is a k-color edge if $c(e) = k$. We use $x_0 \sim x_1 \sim \cdots \sim x_k$ to denote a rainbow path $x_0x_1\cdots x_k$ with $c(x_{i-1}x_i) = c_i$ for each $1 \leq i \leq k$. Let $X_1, X_2, \ldots, X_{k-1}$ be pairwise disjoint vertex subsets of G. The notation $x_0 \sim X_1 \sim \cdots \sim X_{k-1} \sim x_k$ means that there exists a rainbow path $x_0 \sim x_1 \sim \cdots \sim x_k$, where $x_i \in X_i$ for $1 \leq i \leq k - 1$.

Recall that e is an edge not belonging to any triangle in G. Let u and v be the ends of e.

Since e does not belong to any triangle, for the open neighborhood, $N(\{u, v\})$, of $\{u, v\}$ in G, we can divide it as follows:

$$A = N(u) \setminus \{v\},$$
$$B = N(v) \setminus \{u\}.$$

See Figure 1 for details.

For the 2-step open neighborhood, $N^2(\{u, v\})$, of $\{u, v\}$ in G, we can divide it as follows:

$$X = \{ x \in N(A) \setminus N(B) : x \notin A \cup B \cup \{u, v\} \},$$
$$Y = \{ x \in N(B) \setminus N(A) : x \notin A \cup B \cup \{u, v\} \},$$
$$Z = \{ x \in N(A) \cap N(B) : x \notin A \cup B \cup \{u, v\} \}.$$

See Figure 1 for details. It is easy to see that $x \in X$ if and only if $x \notin N[\{u, v\}]$, $d(x, u) = 2$ and $d(x, v) = 3$; $y \in Y$ if and only if $y \notin N[\{u, v\}]$, $d(y, u) = 3$ and $d(y, v) = 2$; $z \in Z$ if and only if $z \notin N[\{u, v\}]$, $d(x, u) = 2$ and $d(x, v) = 2$.

Note that for $x \in N^3(\{u, v\})$, we have $d(x, u) = d(x, v) = 3$, since $\text{diam}(G) = 3$, that is, $N(x) \cap N(A) \neq \emptyset$ and $N(x) \cap N(B) \neq \emptyset$.

For the 3-step open neighborhood, $N^3(\{u, v\})$, of $\{u, v\}$ in G, we can partition $N^3\{u, v\}$ based on the distribution of the neighbors of x as follows:

$$W = \{ x \in N^3(\{u, v\}) : N(x) \cap X \neq \emptyset \text{ and } N(x) \cap Y \neq \emptyset \},$$
$$I = \{ x \in N^3(\{u, v\}) \setminus W : N(x) \cap X \neq \emptyset \text{ and } N(x) \cap Z \neq \emptyset \},$$

See Figure 1 for details.
\[K = \{ x \in N^3(\{u, v\}) \setminus (W \cup I) : N(x) \cap Y \neq \emptyset \text{ and } N(x) \cap Z \neq \emptyset \}, \]
\[J = \{ x \in N^3(\{u, v\}) \setminus (W \cup I \cup K) : N(x) \cap Z \neq \emptyset \}. \]

See Figure 1 for details. It is easy to see that \(N^3(\{u, v\}) = I \cup J \cup K \cup W \).

At this point, we further partition \(A \) and \(B \) as follows:
\[A_1 = \{ x \in A : N(x) \cap (B \cup X \cup Z) \neq \emptyset \}, \]
\[A_2 = \{ x \in A \setminus A_1 : N(x) \cap (A \setminus A_1) \neq \emptyset \}, \]
\[A_3 = A \setminus (A_1 \cup A_2), \]
\[B_1 = \{ x \in B : N(x) \cap (A \cup Y \cup Z) \neq \emptyset \}, \]
\[B_2 = \{ x \in B \setminus B_1 : N(x) \cap (B \setminus B_1) \neq \emptyset \}, \]
\[B_3 = B \setminus (B_1 \cup B_2). \]

That is, \(A_1 \) consists of vertices which have neighbors outside \(A \cup \{u\} \), \(A_2 \) consists of vertices which do not have neighbors outside \(A \) (apart from \(u \)) but have neighbors in \(A \setminus A_1 \), and \(A_3 \) consists of vertices which have neighbors only in \(A_1 \) (apart from \(u \)). It is clear that for each \(x \in A_2 \), there exists a vertex \(x' \in A_2 \) such that \(xx'u \) is a triangle. Similar results also hold for \(B_1, B_2 \) and \(B_3 \).

Note that there may exist edges between between \(A_1 \) and \(A_2 \), but it does not matter for our proof.

Meanwhile, we partition \(X \) and \(Y \) as follows:
\[X_1 = \{ x \in X : N(x) \cap (Y \cup Z \cup I \cup W) \neq \emptyset \}, \]
\[X_2 = \{ x \in X \setminus X_1 : N(x) \cap (X \setminus X_1) \neq \emptyset \}, \]
\[X_3 = \{ x \in X \setminus (X_1 \cup X_2) : N(x) \subseteq A \}, \]
\[X_4 = X \setminus (X_1 \cup X_2 \cup X_3), \]
\[Y_1 = \{ y \in Y : N(y) \cap (X \cup Z \cup K \cup W) \neq \emptyset \}, \]
\[Y_2 = \{ y \in Y \setminus Y_1 : N(y) \cap (Y \setminus Y_1) \neq \emptyset \}, \]
\[Y_3 = \{ y \in Y \setminus (Y_1 \cup Y_2) : N(y) \subseteq B \}, \]
\[Y_4 = Y \setminus (Y_1 \cup Y_2 \cup Y_3). \]

That is, \(X_1 \) consists of vertices which have neighbors outside \(X \) (apart from \(A_1 \)), \(X_2 \) consists of vertices which do not have neighbors outside \(X \) (apart from \(A_1 \)) but have neighbors in \(X \setminus X_1 \), \(X_3 \) consists of vertices which have neighbors only in \(A_1 \), and \(X_4 \) consists of vertices which have neighbors only in \(X_1 \) (apart from \(A_1 \)). Similar results also hold for \(Y_1, Y_2, Y_3 \) and \(Y_4 \).

By the definitions of sets \(A_1, A_2 \) and \(A_3 \), we know that \(N(X_3) \subseteq A_1 \) and \(N(Y_3) \subseteq B_1 \). Thus \(X_3 = \{ x \in X \setminus (X_1 \cup X_2) : N(x) \subseteq A_1 \} \) and \(Y_3 = \{ y \in Y \setminus (Y_1 \cup Y_2) : N(y) \subseteq B_1 \} \).
We denote the above set partition by \mathcal{P}. The following observation holds for \mathcal{P} since G is bridgeless.

Lemma 3.
1. For $x \in A_3$, $N(x) \cap A_1 \neq \emptyset$.
2. For $x \in B_3$, $N(x) \cap B_1 \neq \emptyset$.
3. For $x \in X_4$, $N(x) \cap X_1 \neq \emptyset$.
4. For $x \in Y_4$, $N(x) \cap Y_1 \neq \emptyset$.

We give a partial 9-edge-coloring of G as follows:

$$c(e) = \begin{cases}
1, & \text{if } e = uv; \\
2, & \text{if } e \in E[u, A_3] \cup E[v, B_1]; \\
3, & \text{if } e \in E[u, A_1] \cup E[v, B_3]; \\
4, & \text{if } e \in E[A_1, X_1 \cup Z] \cup E(G[A_1]); \\
5, & \text{if } e \in E[B_1, Y_1 \cup Z] \cup E(G[B_1]); \\
6, & \text{if } e \in E[A_1, B_1] \cup E[Z, K] \cup E[X_1, Z \cup I \cup W \cup Y_1]; \\
7, & \text{if } e \in E[Z, I] \cup E[Y_1, K \cup W \cup Z]; \\
8, & \text{if } e \in E[A_1, A_3] \cup E[B_1, B_3] \cup E[X_1, X_4] \\
& \cup E[Y_1, Y_4] \cup E[I, I \cup K \cup W]; \\
9, & \text{if } e \in E[A_1, X_4] \cup E[B_1, Y_4].
\end{cases}$$

See Figure 1 for details.
For each $x \in X_3$, $N(x) \subseteq A_1$ by the above set partition. Since G is a bridgeless graph, $|N(x)| \geq 2$. Thus, we can color one edge incident to x by 8, and color the others incident to x by 9. Similarly, for each vertex $y \in Y_3$, we can color edges incident to y by colors 8 and 9.

Lemma 4. (1) For $x \in X_1$, there exists an $x \overset{6}{\sim} Y_1 \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{6}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{6}{\sim} I \overset{7}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{6}{\sim} W \overset{7}{\sim} Y_1 \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring.

(2) For $y \in Y_1$, there exists a $y \overset{6}{\sim} I \overset{7}{\sim} Z \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path, or $y \overset{7}{\sim} W \overset{6}{\sim} Y_1 \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path, or $y \overset{7}{\sim} K \overset{6}{\sim} Z \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path under the above partial edge-coloring.

Proof. We only show (1) since the proofs are similar. For any $x \in X_1$, by the definition of set X_1, we know that x has a neighbor, say x', in $Y \cup Z \cup I \cup W$.

If $x' \in Y$, then $x' \in Y_1$ by the definition of set Y_1. Thus $xx'x''y$ is an $x \overset{6}{\sim} Y_1 \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring, where x'' is a neighbor of x' in B_1.

If $x' \in Z$, then $xx'x''y$ is an $x \overset{6}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring, where x'' is a neighbor of x' in B_1.

If $x' \in I$, then $xx'x''y$ is an $x \overset{6}{\sim} I \overset{7}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring, where x'' is a neighbor of x' in Z and x'' is a neighbor of x' in B_1.

Otherwise, $x' \in W$, and then $xx'x''y$ is an $x \overset{6}{\sim} W \overset{7}{\sim} Y_1 \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring, where x'' is a neighbor of x' in Y_1 and x'' is a neighbor of x' in B_1.

Lemma 5. (1) For $x \in A_1$, there exists an $x \overset{6}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{4}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{4}{\sim} X_1 \overset{6}{\sim} Y_1 \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{4}{\sim} X_1 \overset{6}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{4}{\sim} X_1 \overset{6}{\sim} I \overset{7}{\sim} Z \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path, or $x \overset{4}{\sim} X_1 \overset{6}{\sim} W \overset{7}{\sim} Y_1 \overset{5}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring.

(2) For $y \in B_1$, there exists a $y \overset{6}{\sim} A_1 \overset{3}{\sim} u$-rainbow path, or $y \overset{5}{\sim} Z \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path, or $y \overset{5}{\sim} Y_1 \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path, or $y \overset{5}{\sim} Y_1 \overset{7}{\sim} Z \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path, or $y \overset{5}{\sim} Y_1 \overset{7}{\sim} K \overset{6}{\sim} Z \overset{4}{\sim} A_1 \overset{3}{\sim} u$-rainbow path under the above partial edge-coloring.

Proof. We only show (1) since the proofs are similar. For any $x \in A_1$, by the definition of set A_1, we know that x has a neighbor, say x', in $B_1 \cup Z \cup X_1$.

If $x' \in B_1$, then $xx'y$ is an $x \overset{6}{\sim} B_1 \overset{2}{\sim} v$-rainbow path under the above partial edge-coloring,
If \(x' \in Z \), then \(xx'x''v \) is an \(x \sim Z \sim B_1 \sim v \)-rainbow path, where \(x'' \) is a neighbor of \(x' \) in \(B_1 \).

Otherwise, \(x' \in X_1 \). By Lemma 4, there exists a desired rainbow path. ■

Lemma 6. (1) For \(x \in Z \), there exists an \(x \sim B_1 \sim v \sim u \sim A_1 \sim x \)-rainbow cycle under the above partial edge-coloring.

(2) For \(x \in I \), there exists an \(x \sim Z \sim B_1 \sim v \sim u \sim A_1 \sim X_1 \sim x \)-rainbow cycle under the above partial edge-coloring.

(3) For \(x \in K \), there exists an \(x \sim Y_1 \sim B_1 \sim v \sim u \sim A_1 \sim Z \sim x \)-rainbow cycle under the above partial edge-coloring.

(4) For \(x \in W \), there exists an \(x \sim Y_1 \sim B_1 \sim v \sim u \sim A_1 \sim X_1 \sim x \)-rainbow cycle under the above partial edge-coloring.

Proof. We only show (4) since (1), (2) and (3) can be proved similarly. For any \(x \in W \), by the definition of set \(W \), the vertex \(x \) has a neighbor \(v_1 \in X_1 \) and a neighbor \(v_2 \in Y_1 \). Moreover, by the definitions of sets \(X_1 \) and \(Y_1 \), the vertex \(v_1 \) has a neighbor \(v_3 \in A_1 \), and the vertex \(v_2 \) has a neighbor \(v_4 \in B_1 \). Thus \(x \sim v_2 \sim v_4 \sim v_3 \sim v_1 \sim x \) is a rainbow cycle, that is, there exists an \(x \sim Y_1 \sim B_1 \sim v \sim u \sim A_1 \sim X_1 \sim x \)-rainbow cycle under the above partial edge-coloring. ■

Lemma 7. For any two vertices \(x, y \in V(G) \setminus (A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J) \), there exists a rainbow path joining \(x \) and \(y \) under the above partial edge-coloring.

Proof. Let \(x \) and \(y \) be any two vertices in \(V(G) \setminus (A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J) \). It is easy to see that there exists a rainbow path between \(u \) (respectively \(v \)) and another vertex \(w \in V(G) \setminus (A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J) \) in the partial edge-color graph \(G \). Thus suppose that \(\{u, v\} \cap \{x, y\} = \emptyset \).

Case 1. \(x, y \in A_1 \cup B_1 \cup X_1 \cup Y_1 \cup Z \cup I \cup K \cup W \). By Lemmas 4, 5 and 6, we can pick a special rainbow path \(P_1 \) between \(x \) and \(v \) and a special rainbow path \(P_2 \) between \(y \) and \(v \) such that \(c(P_1) \cap c(P_2) = \emptyset \). Thus we can obtain a rainbow path joining \(x \) and \(y \) by combining the paths \(P_1 \) and \(P_2 \).

Case 2. Exactly one of \(x \) and \(y \) belongs to \(A_1 \cup B_1 \cup X_1 \cup Y_1 \cup Z \cup I \cup K \cup W \). Without loss of generality, say \(x \in A_1 \cup B_1 \cup X_1 \cup Y_1 \cup Z \cup I \cup K \cup W \) and \(y \in A_3 \cup B_3 \cup X_3 \cup X_4 \cup Y_3 \cup Y_4 \). We only check the case \(y \in A_3 \cup X_3 \cup X_4 \) since the case \(y \in B_3 \cup Y_3 \cup Y_4 \) can be checked similarly.

For \(y \in A_3 \cup X_3 \cup X_4 \), there exists a \(y \sim B_4 \sim u \sim v \)-rainbow path \(P_1 \) joining \(y \) and \(v \). Moreover, there exists a \(\{2, 4, 5, 6, 7\} \)-rainbow path \(P_2 \) joining \(x \) and \(v \). Thus a rainbow path joining \(x \) and \(y \) can be obtained from \(P_1 \) and \(P_2 \).

Case 3. \(x \in A_3 \cup X_3 \cup X_4 \) and \(y \in B_3 \cup Y_3 \cup Y_4 \).
Subcase 3.1. $x \in A_3$. There exist an $x \sim u$-rainbow path P_1 and an $x \sim A_1 3 \sim u$-rainbow path P_2 by Figure 1 and Lemma 3.

If $y \in Y_3 \cup Y_4$, then there exists a $y \sim B_1 2 \sim v 1 \sim u$-rainbow path P_3. Thus a rainbow path joining x and y can be obtained from P_2 and P_3.

If $y \in B_3$, then there exists a $y 2 \sim v 1 \sim u$-rainbow path P_4. Thus a rainbow path joining x and y can be obtained from P_1 and P_4.

Subcase 3.2. $x \in X_3 \cup X_4$. There exists an $x \sim A_1 3 \sim u$-rainbow path P_1 by Figure 1. Moreover, there exists a $y \sim B_1 2 \sim v 1 \sim u$-rainbow path P_2 if $y \in B_3 \cup Y_3$, or there exists a $y \sim B_1 2 \sim v 1 \sim u$-rainbow path P_2 if $y \in Y_4$. Thus a rainbow path joining x and y can be obtained from P_1 and P_2.

Case 4. $x, y \in A_3 \cup X_3 \cup X_4$ or $x, y \in B_3 \cup Y_3 \cup Y_4$. We only check the case $x, y \in A_3 \cup X_3 \cup X_4$ since the case $x, y \in B_3 \cup Y_3 \cup Y_4$ can be checked similarly.

Subcase 4.1. $x \in A_3$ or $y \in A_3$. Without loss of generality, say $x \in A_3$. Then there exists a $x 2 \sim u 3 \sim A_1 8(9) \sim y$-rainbow path connecting x and y.

Subcase 4.2. At least one of x and y belongs to X_3. Without loss of generality, assume that $x \in X_3$. Let x' and y' be neighbors of x and y in A_1 such that $c(xx') = 8$ and $c(yy') = 9$. By Lemma 5, there exists a $\{2, 4, 5, 6, 7\}$-rainbow path P joining y' and v. Thus $yy'Pvux'x$ is a rainbow path connecting x and y.

Subcase 4.3. Both x and y belong to X_4. Let x' be a neighbor of x in A_1, and let y' be a neighbor of y in X_1. By Lemma 4, there exists a $\{2, 5, 6, 7\}$-rainbow path P joining y' and v. Thus $yy'Pvux'x$ is a rainbow path connecting x and y.

3. A Complete Edge-Coloring

To complete our edge-coloring, we further partition J as follows:

- $J_0 = \{ x \in J : x$ is not an isolated vertex in $G[J]$ $\}$,
- $J_1 = \{ x \in J \setminus J_0 : x$ has at least a neighbor in K $\}$,
- $J_2 = \{ x \in J \setminus (J_0 \cup J_1) : x$ has at least a neighbor in W $\}$,
- $J_3 = \{ x \in J \setminus (J_0 \cup J_1 \cup J_2) : x$ has at least a neighbor in I $\}$,
- $J_4 = J \setminus (J_0 \cup J_1 \cup J_2 \cup J_3)$.

Now we further color the edges of G as follows: color the edges in $E[Z, J_1 \cup J_2 \cup J_3]$ by color 7; for any $x \in J_4$, color one in $E[x, Z]$ by 8, color the others in $E[x, Z]$ by 9 (there exists at least one such edge since G is bridgeless).

To color the remaining edges, we need the following lemma.
Figure 2. A complete edge-coloring of G (we omit the line between Z and J_1, the line between Z and J_2, and the line between Z and J_3).

Lemma 8. Let S and T be two disjoint vertex sets of a graph G such that $S \subseteq N(T)$. If the induced subgraph $G[S]$ has no trivial components, then there is an $\{\alpha, \beta, \gamma\}$-edge-coloring of $G[S] \cup E[S,T]$ such that there exist two rainbow paths P_1 and P_2 joining s and T for every $s \in S$. Furthermore, if P_1 has color $\{\alpha\}$, then P_2 has colors $\{\beta, \gamma\}$; if P_1 has color $\{\beta\}$, then P_2 has colors $\{\alpha, \gamma\}$.

Proof. Let F be a maximal spanning forest of $G[S]$, and let (X,Y) be any of the bipartitions defined by this forest F. We give a 3-edge-coloring $c : E(G[S]) \cup E[S,T] \rightarrow \{\alpha, \beta, \gamma\}$ of G by defining

$$c(e) = \begin{cases}
\alpha, & \text{if } e \in E[T,X]; \\
\beta, & \text{if } e \in E[T,Y]; \\
\gamma, & \text{otherwise}.
\end{cases}$$

Clearly, for the edge-coloring above, there exist two rainbow paths P_1 and P_2 joining s and T for every $s \in S$. Furthermore, if P_1 has color $\{\alpha\}$, then P_2 has colors $\{\beta, \gamma\}$; if P_2 has color $\{\beta\}$, then P_2 has colors $\{\alpha, \gamma\}$. \qed
Remark. The edge-coloring in Lemma 8 is called an \(\langle \alpha, \beta, \gamma \rangle\)-edge-coloring for \(T\) and \(X \cup Y\). Let \(T_{A_2}, T_{B_2}, T_{X_2}, T_{Y_2}\) and \(T_{J_0}\) be maximal spanning forests of \(G[A_2], G[B_2], G[X_2], G[Y_2]\) and \(G[J_0]\), respectively. Clearly, the forests have no isolated vertex. Let \(A_{02}^1\) and \(A_{12}^1\), \(B_{02}^1\) and \(B_{21}^1\), \(X_{02}^1\) and \(X_{21}^1\), \(Y_{02}^1\) and \(Y_{21}^1\), and \(J_{01}^1\) and \(J_{10}^1\) be bipartitions of \(T_{A_2}, T_{B_2}, T_{X_2}, T_{Y_2}\) and \(T_{J_0}\). Now we give a \((2, 3, 8)\)-edge-coloring for \(u\) and \(A_{02}^1 \cup A_{12}^1\), a \((2, 3, 8)\)-edge-coloring for \(v\) and \(B_{02}^1 \cup B_{21}^1\), an \((8, 9, 7)\)-edge-coloring for \(A_1\) and \(X_{02}^1 \cup X_{21}^1\), an \((8, 9, 7)\)-edge-coloring for \(B_1\) and \(Y_{02}^1 \cup Y_{21}^1\), a \((7, 9, 8)\)-edge-coloring for \(Z\) and \(J_{01}^1 \cup J_{10}^1\) as shown in Figure 2.

Furthermore, we color the edges in subgraphs \(G[A_1], G[X_{02}^1]\) and \(G[X_{21}^1]\) by 4, the edges in subgraphs \(G[B_1], G[Y_{02}^1]\) and \(G[Y_{21}^1]\) by 5, the edges in \(E[X_1, X_2]\) and \(E[Y_1, Y_2]\) by 8, and the edges in \(E[X_1, X_3]\) and \(E[Y_1, Y_3]\) by 9.

For the remaining edges, we can color them arbitrarily. Up to now, we give the graph \(G\) a complete edge-coloring. Let \(\mathcal{P}\) be our final vertex set partition and let \(c\) be our final edge-coloring.

Lemma 9. For any two vertices \(x \in A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J\) and \(y \in V(G) \setminus (A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J)\), there exists a rainbow path under the above partial edge-coloring.

Proof. We consider the following three cases.

Case 1. \(x \in A_2 \cup B_2\). We only consider the case \(x \in A_2\) since the case \(x \in B_2\) can be checked similarly.

Subcase 1.1. \(x \in A_{02}^1\). By observing Figure 2, there exist an \(x \sim \sim u\)-rainbow path \(P_1\) joining \(x\) and \(u\), or an \(x \sim \sim A_{12}^1 \sim \sim u\)-rainbow path \(P_2\) joining \(x\) and \(u\).

If \(y \in A_3\), then \(P_2 y\) is a rainbow path joining \(x\) and \(y\).

If \(y \in B_3\), then \(P_1 v y\) is a rainbow path joining \(x\) and \(y\).

If \(y \in B_1 \cup Y_1 \cup Y_3 \cup Y_4 \cup Z \cup I \cup K \cup W\), then there exists a \(\{1, 2, 5, 6, 7, 9\}\)-rainbow path \(Q_1\) joining \(u\) and \(y\). Thus a rainbow path joining \(x\) and \(y\) can be obtained by combining \(P_2\) and \(Q_1\).

If \(y \in A_1 \cup X_1 \cup X_3 \cup X_4\), then there exists a \(\{3, 4, 9\}\)-rainbow path \(Q_2\) joining \(u\) and \(y\). Thus a rainbow path joining \(x\) and \(y\) can be obtained by combining \(P_1\) and \(Q_2\).

Subcase 1.2. \(x \in A_{12}^1\). By observing Figure 2, there exist an \(x \sim \sim \sim \sim u\)-rainbow path \(P_1\) joining \(x\) and \(u\), or an \(x \sim \sim \sim \sim A_{02}^1 \sim \sim \sim \sim u\)-rainbow path \(P_2\) joining \(x\) and \(u\).

If \(y \in A_3\), then \(P_1 y\) is a rainbow path joining \(x\) and \(y\).

If \(y \in B_3\), then \(P_2 v y\) is a rainbow path joining \(x\) and \(y\).

If \(y \in B_1 \cup Y_1 \cup Y_3 \cup Y_4 \cup Z \cup I \cup K \cup W\), then there exists a \(\{1, 2, 5, 6, 7, 9\}\)-rainbow path \(Q_1\) joining \(u\) and \(y\). Thus a rainbow path joining \(x\) and \(y\) can be obtained by combining \(P_1\) and \(Q_1\).

If \(y \in A_1 \cup X_1 \cup X_3 \cup X_4\), then there exists a \(\{3, 4, 9\}\)-rainbow path \(Q_2\) joining \(u\) and \(y\). Thus a rainbow path joining \(x\) and \(y\) can be obtained by combining \(P_2\) and \(Q_2\).
Case 2. \(x \in X_2 \cup Y_2 \). We only consider the case \(x \in X_2 \) since the case \(x \in Y_2 \) can be checked similarly.

Subcase 2.1. \(x \in X_2^0 \). By observing Figure 2, there exists an \(x \sim A_1 \sim u \)-rainbow path \(P_1 \) joining \(x \) and \(u \).

If \(y \in A_3 \), then \(P_1 y \) is a rainbow path joining \(x \) and \(y \).

If \(y \in B_3 \), then \(x \sim X_2^1 \sim A_1 \sim u \sim v \sim B_1 \sim y \) is a rainbow path joining \(x \) and \(y \).

If \(y \in B_1 \cup Y_1 \cup Y_2 \cup Z \cup I \cup K \cup W \), then there exists a \(\{1, 2, 5, 6, 7, 9\} \)-rainbow path \(Q_1 \) joining \(v \) and \(y \). Thus a rainbow path joining \(x \) and \(y \) can be obtained by combining \(P_1 \) and \(Q_1 \).

If \(y \in B_1 \cup X_1 \), then there exists a \(\{2, 4, 5, 6, 7\} \)-rainbow path \(Q_1 \) joining \(v \) and \(y \) by Lemmas 4 and 5. Thus a \(\{1, 2, 3, 4, 5, 6, 7, 8\} \)-rainbow path joining \(x \) and \(y \) can be obtained by combining \(P_1 \), \(Q_1 \) and edge \(uv \).

If \(y \in X_3 \cup X_4 \), then \(y \) has a neighbor \(y' \) in \(A_1 \) such that \(c(yy') = 9 \). Note that there exists a \(\{1, 2, 3, 4, 5, 6, 7, 8\} \)-rainbow path \(P \) joining \(x \) and \(y' \) by the arguments of the above paragraph. Thus \(Py \) is a rainbow path joining \(x \) and \(y \).

Subcase 2.2. \(x \in X_2^1 \). By observing Figure 2, there exist an \(x \sim A_1 \sim u \)-rainbow path \(P_1 \) joining \(x \) and \(u \).

If \(y \in A_3 \), then \(P_1 y \) is a rainbow path joining \(x \) and \(y \).

If \(y \in B_3 \), then \(P_1 vy' y \) is a rainbow path joining \(x \) and \(y \), where \(y' \) is a neighbor of \(y \) in \(B_1 \).

If \(y \in B_1 \cup Y_1 \cup Y_2 \cup Z \cup I \cup K \cup W \), then there exists a \(\{1, 2, 5, 6, 7, 8\} \)-rainbow path \(Q_1 \) joining \(u \) and \(y \). Thus a rainbow path joining \(x \) and \(y \) can be obtained by combining \(P_1 \) and \(Q_1 \).

If \(y \in A_1 \cup X_1 \), then there exists a \(\{2, 4, 5, 6, 7\} \)-rainbow path \(Q_1 \) joining \(v \) and \(y \) by Lemmas 4 and 5. Thus a \(\{1, 2, 3, 4, 5, 6, 7, 9\} \)-rainbow path joining \(x \) and \(y \) can be obtained by combining \(P_1 \), \(Q_1 \) and edge \(uv \).

If \(y \in X_3 \cup X_4 \), then \(y \) has a neighbor \(y' \) in \(A_1 \) or \(X_1 \) such that \(c(yy') = 8 \). Note that there exists a \(\{1, 2, 3, 4, 5, 6, 7, 9\} \)-rainbow path \(P \) joining \(x \) and \(y' \) by the arguments of the above paragraph. Thus \(Py \) is a rainbow path joining \(x \) and \(y \).

Case 3. \(x \in J \). By observing Figure 2, there exists a \(\{7, 9\} \)-rainbow path \(P \) joining \(x \) and some vertex \(z \in Z \). Furthermore, there exist a \(z \sim A_1 \sim u \)-rainbow path \(Q_1 \) joining \(z \) and \(v \), and a \(z \sim B_1 \sim v \)-rainbow path \(Q_2 \) joining \(z \) and \(u \). Thus a \(\{1, 3, 4, 7, 9\} \)-rainbow path \(Q'_1 \) joining \(x \) and \(v \) can be obtained from \(P \) and \(Q_1 \), and a \(\{1, 2, 5, 7, 9\} \)-rainbow path \(Q'_2 \) joining \(x \) and \(u \) can be obtained from \(P \) and \(Q_2 \).

If \(y \in B_1 \cup B_3 \cup Y_1 \cup Y_2 \cup Y_4 \), then there exists a \(\{2, 5, 8\} \)-rainbow path \(R_1 \) between \(v \) and \(y \). Thus a rainbow path joining \(x \) and \(y \) can be obtained from \(Q'_1 \) and \(R_1 \).
If $y \in A_1 \cup A_3 \cup X_1 \cup X_3 \cup X_4 \cup Z \cup I \cup K \cup W$, then there exists a $\{3, 4, 6, 8\}$-rainbow path R_2 between u and y. Thus a rainbow path joining x and y can be obtained from Q'_2 and R_2.

4. **9-Rainbow-Connected Edge-Coloring**

In this section, we check that the above 9-edge-coloring is rainbow-connected 9-edge-coloring. It suffices to check that for any two vertices $x, y \in A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J$, there exists a rainbow path under the above partial edge-coloring.

Lemma 10. There exists a rainbow path joining any two vertices of X_2 under the edge-coloring c.

Proof. Let x and y be any two vertices in X_2. We consider the following two cases.

Case 1. $x \in X_2^0$ and $y \in X_2^1$, or $x \in X_2^0$ and $y \in X_2^1$. Without loss of generality, assume that $x \in X_2^0$ and $y \in X_2^1$. Let x' and y' be neighbors of x and y in A_1, respectively. By Figure 2, we know that $c(xx') = 8$ and $c(yy') = 9$. By Lemma 5, there exists a $\{2, 4, 5, 6, 7\}$-rainbow path $P'_{y',u}$. Thus, a $\{1, 2, 3, 4, 5, 6, 7, 8, 9\}$-rainbow path joining x and y is obtained from the edge yy', rainbow paths $P'_{y',v}$ and $vux'x$.

Case 2. $x, y \in X_2^0$ or $x, y \in X_2^1$. We only check the case $x, y \in X_2^0$ since the case $x, y \in X_2^1$ can be checked similarly.

Subcase 2.1. $d(x, B_1) = d(y, B_1) = 2$. Without loss of generality, assume $d(x, B_1) = 2$. Let $x' \in N(x) \cap N(B_1)$. By the definition of the above set partition, we know $x' \in A_1$. So, $xx'x''vu$ is a $\{1, 2, 6, 8\}$-rainbow path, where x'' is a neighbor of x' in B_1. By Figure 2 and Lemma 8, u and y are connected by a $\{3, 7, 9\}$-rainbow path P. Thus a $\{1, 2, 3, 6, 7, 8, 9\}$-rainbow path joining x and y can be obtained from rainbow paths $xx'x''vu$ and P.

Subcase 2.2. $d(x, B_1) = d(y, B_1) = 3$. Let $xx_1x_2x_3$ be a path joining x and some vertex $x_3 \in B_1$. By the set partition above, $x_1 \in A_1 \cup X_1 \cup X_2$.

Subsubcase 2.2.1. $x_1 \in A_1$. By the definition of \mathcal{P}, $x_2 \in A_1 \cup B_1 \cup Z$. So $xx_1x_2x_3$ is a $\{4, 5, 6\}$-rainbow path. Furthermore, $xx_1x_2x_3vu$ is $\{1, 2, 4, 5, 6, 8\}$-rainbow. By Figure 2, there exists a $\{3, 7, 9\}$-rainbow path P joining u and y. Hence a rainbow path joining x and y can be obtained from rainbow paths $xx_1x_2x_3vu$ and P.

Subsubcase 2.2.2. $x_1 \in X_1$. By the definition of the above set partition, $x_2 \in A_1 \cup Z$. Thus $xx_1x_2x_3$ is a $\{4, 5, 6, 9\}$-rainbow path. Thus $xx_1x_2x_3vu'y$ is a $\{1, 2, 3, 4, 5, 6, 8, 9\}$-rainbow path joining x and y, where y_1 is a neighbor of y in A_1.

Subsubcase 2.2.3. $x_1 \in X_2$. If $x_1 \in X_0^3$, then $c(xx_1) = 4$. Furthermore, $x_2 \in A_1$. Thus $xx_1x_2x_3vu$ is a $\{1, 2, 4, 6, 8\}$-rainbow path. By Figure 2, there exists a $\{3, 7, 9\}$-rainbow path P joining u and y. Hence a rainbow path joining x and y can be obtained from $xx_1x_2x_3vu$ and P.

If $x_1 \in X_1^3$, then $c(xx_1) = 7$. Furthermore, $x_2 \in A_1$. Thus $xx_1x_2x_3vu$ is a $\{1, 2, 4, 6, 7, 9\}$-rainbow path. By Figure 2, there exists a $\{3, 8\}$-rainbow path P joining u and y. Hence a rainbow path joining x and y can be obtained from $xx_1x_2x_3vu$ and P.

Similarly to Lemma 8, the following lemma holds.

Lemma 11. There exists a rainbow path joining any two vertices of Y_2 under the edge-coloring above.

Lemma 12. For any two vertices $x, y \in A_2 \cup B_2 \cup X_2 \cup Y_2 \cup J$, there exists a rainbow path under the above partial edge-coloring.

Proof. For $x, y \in X_2$ or $x, y \in Y_2$, there exists a rainbow path joining x and y by Lemmas 10 or 11. For the others, we can easily check them by Lemmas 4, 5, 6 and 8 in a similar way.

Combining Lemmas 7, 9 and 12, we have the following result.

Theorem 13. Let G be a bridgeless graph with diameter 3. If there exists an edge e such that e does not belong to any triangle in G, then $rc(G) \leq 9$.

For a bridgeless graph G with diameter 3, if each edge belongs to a triangle in G, then $rc(G) \leq 9$ by Theorem 1. Combining this result with Theorem 13, we know that Theorem 2 holds.

We can give the following example of graphs with diameter 3 for which the rainbow connection number reaches 7.

Example 2. Let K_n be a complete graph with vertex set $\{v_1, \ldots, v_n\}$, where $n \geq 217$. For every v_i, we add a pendant path $\langle v_i, v_{i1}, v_{i2}, v_{i3}\rangle$, denoted by P_i, and then we identify the vertex v_{i3} with a vertex v. The resulting graph is denoted by G. Clearly, $diam(G) = 3$. Let c be any 6-edge-coloring of G with colors $\{1, \ldots, 6\}$. Since $6^3 = 216$, at least two of them are colored the same. Without loss generality, say P_1 and P_2, that is, $c(v_1v_{11}) = c(v_2v_{21}), c(v_{11}v_{12}) = c(v_{21}v_{22})$ and $c(v_{12}v) = c(v_{22}v)$. By the structure of G, it is easy to see that there exists no rainbow path joining v_{11} and v_{21} in G under c. Thus $rc(G) \geq 7$.

Acknowledgement

We thank anonymous reviewers for their carefully reading of our work and their helpful suggestions. This paper is supported by NSFC No. 11371205.
References

doi:10.1007/s00373-012-1267-7

doi:10.1007/978-1-84628-970-5

doi:10.1007/s10878-009-9250-9

doi:10.1016/j.amc.2014.05.066

doi:10.1016/j.disc.2012.01.009

doi:10.1007/978-1-4614-3119-0

Received 22 October 2015
Revised 4 March 2016
Accepted 4 March 2016