SIGNED ROMAN EDGE k-DOMINATION IN GRAPHS

LEILA ASGHARSHARGHI, SEYED MAHMOUD SHEIKHOESLAMI

Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz, I.R. Iran

e-mail: {l.sharghi;s.m.sheikholeslami}@azaruniv.edu

AND

LUTZ VOLKMAN

Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

Let $k \geq 1$ be an integer, and $G = (V, E)$ be a finite and simple graph. The closed neighborhood $N_G[e]$ of an edge e in a graph G is the set consisting of e and all edges having a common end-vertex with e. A signed Roman edge k-dominating function (SREkDF) on a graph G is a function $f : E \rightarrow \{-1, 1, 2\}$ satisfying the conditions that (i) for every edge e of G, $\sum_{x \in N_G[e]} f(x) \geq k$ and (ii) every edge e for which $f(e) = -1$ is adjacent to at least one edge e' for which $f(e') = 2$. The minimum of the values $\sum_{e \in E} f(e)$, taken over all signed Roman edge k-dominating functions f of G is called the signed Roman edge k-domination number of G, and is denoted by $\gamma'_{sR_k}(G)$. In this paper we initiate the study of the signed Roman edge k-domination in graphs and present some (sharp) bounds for this parameter.

Keywords: signed Roman edge k-dominating function, signed Roman edge k-domination number.

2010 Mathematics Subject Classification: 05C69.
1. Introduction

In this paper, G is a simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. For every vertex $v \in V$, the open neighborhood $N_G(v) = N(v)$ is the set $\{u \in V \mid uv \in E\}$ and the closed neighborhood of v is the set $N_G[v] = N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $d_G(v) = d(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The open neighborhood $N(e) = N_G(e)$ of an edge $e \in E$ is the set of all edges adjacent to e. Its closed neighborhood is $N[e] = N_G[e] = N_G(e) \cup \{e\}$. The degree of an edge $e \in E$ is $d_G(e) = d(e) = |N(e)|$. The minimum and maximum edge degree of a graph G are denoted by $\delta_e = \delta_e(G)$ and $\Delta_e = \Delta_e(G)$, respectively. If v is a vertex, then denote by $E(v)$ the set of edges incident with the vertex v. We write K_n for a complete graph, C_n for a cycle, P_n for a path of order n and $K_{1,n}$ for a star of order $n + 1$. A subdivided star, denoted $K_{1,n}^*$, is a star $K_{1,n}$ whose edges are subdivided once, that is each edge is replaced by a path of length 2 by adding a vertex of degree 2. The line graph of a graph G, written $L(G)$, is the graph whose vertices are the edges of G, with $ee' \in E(L(G))$ when $e = uv$ and $e' = vw$ in G. It is easy to see that $L(K_{1,n}) = K_n$, $L(C_n) = C_n$ and $L(P_n) = P_{n-1}$.

A function $f : E \to \{-1,1\}$ is called a signed edge k-dominating function (SEkDF) of G if $\sum_{x \in N[e]} f(x) \geq k$ for each edge $e \in E$. The weight of f, denoted $\omega(f)$, is defined to be $\omega(f) = \sum_{e \in E} f(e)$. The signed edge k-domination number $\gamma'_{sk}(G)$ is defined as $\gamma'_{sk}(G) = \min\{\omega(f) \mid f \text{ is an SEkDF of } G\}$. The signed edge k-domination number was first defined in [3].

A signed Roman k-dominating function (SRkDF) on a graph G is a function $f : V \to \{-1,1,2\}$ satisfying the conditions that (i) $\sum_{x \in N[v]} f(x) \geq k$ for each vertex $v \in V$, and (ii) every vertex u for which $f(u) = -1$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of an SRkDF f is $\omega(f) = \sum_{v \in V} f(v)$. The signed Roman k-domination number of G, denoted γ'_{skR}, is the minimum weight of an SRkDF in G. The signed Roman k-domination number was introduced by Henning and Volkmann in [5] and has been studied in [6]. The special case $k = 1$ was introduced and investigated in [1].

A signed Roman edge k-dominating function (SREkDF) on a graph G is a function $f : E \to \{-1,1,2\}$ satisfying the conditions that (i) for every edge e of G, $\sum_{x \in N[e]} f(x) \geq k$ and (ii) every edge e for which $f(e) = -1$ is adjacent to at least one edge e' for which $f(e') = 2$. The weight of an SREkDF is the sum of its function values over all edges. The signed Roman edge k-domination number of G, denoted $\gamma'_{sRk}(G)$, is the minimum weight of an SREkDF in G. For an edge e, we denote $f[e] = f(N[e]) = \sum_{x \in N[e]} f(x)$ for notational convenience. The special case $k = 1$ was introduced by Ahangar et al. [2]. If G_1, G_2, \ldots, G_s are the components of G, then
Signed Roman Edge k-Domination in Graphs

(1) \[\gamma'_{sRk}(G) = \sum_{i=1}^{s} \gamma'_{sRk}(G_i). \]

Since assigning a weight 1 to every edge of G produces an SREkDF, we have

(2) \[\gamma'_{sRk}(G) \leq |E(G)|. \]

The signed Roman edge k-domination number exists if $|N_G(e)| \geq k - 1$ for every edge $e \in E$. However, for investigations of the signed Roman edge k-domination number it is reasonable to claim that for every edge $e \in E$, $|N_G(e)| \geq k - 1$. Thus we assume throughout this paper that $\delta_e(G) \geq k - 1$.

In this note we initiate the study of the signed Roman edge k-domination in graphs and present some (sharp) bounds for this parameter. In addition, we determine the signed Roman edge k-domination number of some classes of graphs.

The proof of the following results can be found in [5].

Proposition 1. If $k = 1$, then $\gamma^1_{sR}(K_3) = 2$ and $\gamma^1_{sR}(K_n) = 1$ for $n \neq 3$. If $n \geq 2$, then $\gamma^k_{sR}(K_n) = k$.

The case $k = 1$ in Proposition 1 was proved in [1]. A set $S \subseteq V$ is a 2-packing set of G if $N[u] \cap N[v] = \emptyset$ holds for any two distinct vertices $u, v \in S$. The 2-packing number of G, denoted $\rho(G)$, is defined as follows:

\[\rho(G) = \max\{|S| \mid S \text{ is a 2-packing set of } G\}. \]

Proposition 2. If G is a graph of order n with $\delta \geq k - 1$, then

\[\gamma^k_{sR}(G) \geq (\delta + k + 1)\rho(G) - n. \]

Proposition 3. \[\gamma^2_{sR}(P_n) = \begin{cases} n & \text{if } 1 \leq n \leq 7, \\ \left\lceil \frac{2n+5}{3} \right\rceil & \text{if } n \geq 8. \end{cases} \]

Proposition 4. For $n \geq 3$, we have $\gamma^2_{sR}(C_n) = \left\lceil \frac{2n}{3} \right\rceil + \left\lceil \frac{n}{3} \right\rceil - \left\lfloor \frac{n}{3} \right\rfloor$.

The proof of the following result is straightforward and therefore omitted.

Observation 5. For any nonempty graph G of order $n \geq 2$ and any integer $k \geq 1$,

\[\gamma'_{sRk}(G) = \gamma^k_{sR}(L(G)). \]

Observation 6. Let G be a graph and f be a $\gamma'_{sR2}(G)$-function. If $e = uv$ is a pendant edge in G with $d(v) = 2$ and $w \in N(v) \setminus \{u\}$, then $\min\{f(uv), f(vw)\} \geq 1$.

Observation 5 and Propositions 1, 2, 3 and 4 lead to

Corollary 7. If \(k = 1 \), then \(\gamma'_{sR1}(K_{1,3}) = 2 \) and \(\gamma'_{sR1}(K_{1,n}) = 1 \) for \(n \neq 3 \). If \(n \geq k \geq 2 \), then \(\gamma'_{sRk}(K_{1,n}) = k \).

Corollary 8. Let \(G \) be a graph of size \(m \). Then

\[
\gamma'_{sRk}(G) \geq (2\delta + k - 1)\rho(L(G)) - m.
\]

Corollary 9. \(\gamma'_{sR2}(P_n) = \begin{cases}
\frac{n-1}{2} & \text{if } 2 \leq n \leq 8, \\
\left\lfloor \frac{n}{3} \right\rfloor + 1 & \text{if } n \geq 9.
\end{cases} \)

Corollary 10. For \(n \geq 3 \), we have \(\gamma'_{sR2}(C_n) = \left\lceil \frac{2n}{3} \right\rceil + \left\lfloor \frac{n}{3} \right\rfloor - \left\lfloor \frac{n}{3} \right\rfloor \).

Next we show that for every two positive integers \(k \) and \(t \), there exists a connected graph \(G \) whose signed Roman edge \(k \)-domination number is at most \(-t\).

Proposition 11. For every positive integers \(k \) and \(t \), there exists a connected graph \(G \) such that \(\gamma'_{sRk}(G) \leq -t \).

Proof. Let \(n \geq \max\{k + 5, t/3\} \), and let \(G \) be the graph obtained from the complete graph \(K_n \) by adding \(n + 2 \) pendant edges at each vertex of \(K_n \). Define \(f : E(G) \to \{-1, 1, 2\} \) by \(f(e) = 2 \) if \(e \in E(K_n) \) and \(f(e) = -1 \) otherwise. Obviously, \(f \) is an SRE\(k\)DF on \(G \) of weight \(-3n\). This completes the proof. \(\blacksquare \)

We close this section by determining the signed Roman edge \(k \)-domination number of two classes of graphs.

Example 12. For \(n \geq 2 \), \(\gamma'_{sR2}(K_{2,n}) = \begin{cases}
4 & \text{if } n = 2, \\
5 & \text{if } n = 3, 4, \\
6 & \text{otherwise}.
\end{cases} \)

Proof. Let \(X = \{u_1, u_2\} \) and \(Y = \{v_1, v_2, \ldots, v_n\} \) be the partite sets of \(K_{2,n} \) and let \(f \) be a \(\gamma'_{sR2}(K_{2,n}) \)-function such that \(r = \min\{\sum_{i=1}^{n} f(u_1 v_i), \sum_{i=1}^{n} f(u_2 v_i)\} \) is as small as possible. Assume that \(r = \sum_{i=1}^{n} f(u_1 v_i) \). The result is immediate for \(n = 2 \) by Corollary 10. Assume that \(n \geq 3 \). Since \(f[u_1 v_1] = f(u_2 v_1) + \sum_{i=1}^{n} f(u_1 v_i) \geq 2 \), we have \(\sum_{i=1}^{n} f(u_1 v_i) \geq 0 \). Consider three cases.

Case 1. \(n \geq 5 \). Define \(g : E(K_{2,n}) \to \{-1, 1, 2\} \) by \(g(u_1 v_1) = g(u_2 v_1) = 2 \), \(g(u_1 v_2) = g(u_2 v_1) = 1 \) and \(g(u_1 v_3) = (-1)^i, g(u_2 v_i) = (-1)^{i+1} \) for \(3 \leq i \leq n \). Obviously, \(g \) is an SRE\(2\)DF of \(K_{2,n} \) of weight 6 and so \(\gamma'_{sR2}(K_{2,n}) \leq 6 \). Now, we show that \(\gamma'_{sR2}(K_{2,n}) = 6 \). If \(r \geq 3 \), then we obtain \(\gamma'_{sR2}(K_{2,n}) = r + \sum_{i=1}^{n} f(u_2 v_i) \geq 6 \) implying that \(\gamma'_{sR2}(K_{2,n}) = 6 \). Assume that \(r \leq 2 \). If \(r = 0 \), then we deduce from \(f[u_1 v_1] = f(u_2 v_1) + \sum_{i=1}^{n} f(u_1 v_i) \geq 2 \) that \(f(u_2 v_i) \geq 2 \) for each \(i \) and hence \(\gamma'_{sR2}(K_{2,n}) = r + \sum_{i=1}^{n} f(u_2 v_i) = 2n > 6 \), a contradiction.
Thus \(r = 1 \) or \(r = 2 \). Then it follows from \(f[u_1v_i] = f(u_2v_i) + \sum_{i=1}^{n} f(u_1v_i) \geq 2 \) that \(f(u_2v_i) \geq 1 \) for each \(i \). Hence, \(\gamma'_s(K_{2,n}) = \sum_{i=1}^{n} f(u_1v_i) + \sum_{i=1}^{n} f(u_2v_i) \geq 1 + n \geq 6 \) that implies \(\gamma'_s(K_{2,n}) = 6 \).

Case 2. \(n = 3 \). Define \(g : E(K_{2,n}) \to \{-1, 1, 2\} \) by \(g(u_1v_2) = 2, g(u_1v_3) = -1, g(u_1v_1) = 1 \) and \(g(u_2v_i) = 1 \) for \(1 \leq i \leq 3 \). Obviously, \(g \) is an SRE2DF of \(K_{2,3} \) of weight 5 and hence \(\gamma'_s(K_{2,3}) \leq 5 \). Now we show that \(\gamma'_s(K_{2,3}) = 5 \). Since \(\gamma'_s(K_{2,3}) = r + \sum_{i=1}^{3} f(u_2v_i) \leq 5 \), we have \(r \leq 2 \). If \(r = 2 \), then it follows from \(f[u_1v_1] = f(u_2v_2) + r \geq 2 \) that \(f(u_2v_i) \geq 1 \) for each \(i = 1, 2, 3 \). Hence, \(\gamma'_s(K_{2,3}) = r + \sum_{i=1}^{3} f(u_2v_i) \geq 5 \) that implies \(\gamma'_s(K_{2,3}) = 5 \). If \(r = 0 \), then as above we must have \(f(u_2v_i) = 2 \) for each \(i \). But then \(\gamma'_s(K_{2,3}) = r + \sum_{i=1}^{3} f(u_2v_i) = 6 \), a contradiction. Let \(r = 1 \). We may assume without loss of generality, that \(f(u_1v_1) = -1 \) and \(f(u_1v_2) = f(u_1v_3) = 1 \). It follows from \(f[u_1v_1] = f(u_2v_2) + \sum_{i=1}^{3} f(u_1v_i) = f(u_2v_2) + 1 \geq 2 \) that \(f(u_2v_i) \geq 1 \) for each \(i \). Since \(u_1v_1 \) must be adjacent to an edge with label 2, we have \(\sum_{i=1}^{3} f(u_2v_i) \geq 4 \) implying that \(\gamma'_s(K_{2,3}) = 5 \).

Case 3. \(n = 4 \). Define \(g : E(K_{2,4}) \to \{-1, 1, 2\} \) by \(g(u_1v_1) = 2, g(u_1v_2) = g(u_1v_3) = -1 \) and \(g(u_2v_1) = g(u_2v_2) = 1 \) for \(1 \leq i \leq 4 \). Obviously, \(g \) is an SRE2DF of \(K_{2,4} \) of weight 5 and hence \(\gamma'_s(K_{2,4}) \leq 5 \). Using an argument similar to that described in Case 2, we obtain \(\gamma'_s(K_{2,4}) = 5 \) and the proof is complete.

A leaf of a tree \(T \) is a vertex of degree 1, a support vertex is a vertex adjacent to a leaf. For \(r, s \geq 1 \), a double star \(S(r, s) \) is a tree with exactly two vertices that are not leaves, with one adjacent to \(r \) leaves and the other to \(s \) leaves.

Example 13. For positive integers \(r \geq s \geq k-1 \geq 1 \),

\[
\gamma'_s(R_k)(S(r, s)) = \begin{cases}
3 & \text{if } s = 1, \\
2k - 2 & \text{if } s \geq 2.
\end{cases}
\]

Proof. Let \(u \) and \(v \) be the central vertices of \(S(r, s) \) and let \(N(u) \setminus \{v\} = \{u_1, u_2, \ldots, u_r\} \) and \(N(v) \setminus \{u\} = \{v_1, v_2, \ldots, v_s\} \). Suppose that \(f \) is a \(\gamma'_s(R_k)(S(r, s)) \)-function. Consider two cases.

Case 1. \(s = 1 \). By assumption, we have \(k = 2 \). We deduce from \(f[vv_1] = f(vv_1) + f(uv) \geq 2 \) that \(f(vv_1) \geq 1 \). Hence,

\[
\gamma'_s(R_k)(S(r, s)) = f(vv_1) + f(uu_1) = 1 + f(uu_1) \geq 3.
\]

If \(r = 1 \), then define \(f : E(S(r, s)) \to \{-1, 1, 2\} \) by \(f(x) = 1 \) for each \(x \in E(S(r, s)) \). If \(r \) is even, then define \(f : E(S(r, s)) \to \{-1, 1, 2\} \) by \(f(vv_1) = 1, f(uv) = 2 \) and \(f(uu_i) = (-1)^i \) for \(1 \leq i \leq r \), and if \(r \geq 3 \) is odd, then define \(f : E(S(r, s)) \to \{-1, 1, 2\} \) by \(f(vv_1) = 1, f(uv) = f(uu_1) = 2, f(uu_2) = f(uu_3) = 2 \).
−1 and \(f(uu_i) = (-1)^i \) for \(i \geq 4 \). Clearly, \(f \) is an SRE\(k \)DF of \(S(r, s) \) of weight 3 and so \(\gamma'_{sRk}(S(r, s)) = 3 \).

Case 2. \(s \geq 2 \). We have \(\gamma'_{sRk}(S(r, s)) = f[uu_1]+f[vv_1]−f(uv) \geq 2k−f(uv) \geq 2k−2 \). To prove \(\gamma'_{sRk}(S(r, s)) \leq 2k−2 \), we distinguish the following subcases.

Subcase 2.1. \(r−k+2 \) and \(s−k+2 \) are even. Define \(f : E(S(r, s)) \to \{-1, 1, 2\} \) by \(f(uv) = 2, f(uu_i) = f(vv_i) = 1 \) for \(1 \leq i \leq k−2 \), \(f(uu_i) = (-1)^i \) for each \(k−1 \leq i \leq r \) and \(f(vv_j) = (-1)^j \) for each \(k−1 \leq j \leq s \). Obviously, \(f \) is an SRE\(k \)DF of \(S(r, s) \) of weight \(2k−2 \) and so \(\gamma'_{sRk}(S(r, s)) = 2k−2 \).

Subcase 2.2. \(r−k+2 \) and \(s−k+2 \) are odd. Define \(f : E(S(r, s)) \to \{-1, 1, 2\} \) by \(f(uv) = f(uu_1) = f(vv_1) = 2, f(uu_2) = f(vv_2) = −1, f(uu_i) = f(vv_i) = 1 \) for \(3 \leq i \leq k−1 \), \(f(uu_i) = (-1)^i \) for each \(i \geq k \) and \(f(vv_j) = (-1)^j \) for each \(j \geq k \).

Clearly, \(f \) is an SRE\(k \)DF of \(S(r, s) \) of weight \(2k−2 \) and so \(\gamma'_{sRk}(S(r, s)) = 2k−2 \). This completes the proof.

2. Trees

In this section we first present a lower bound on the signed Roman edge \(k \)-domination number of trees and then we characterize all extremal trees.

Theorem 14. Let \(k \geq 2 \) be an integer and \(T \) be a tree of order \(n \geq k \). Then \(\gamma'_{sRk}(T) \geq k \). Moreover, this bound is sharp for stars.

Proof. We proceed by induction on \(n \). The base step handles trees with few vertices or diameter 2 and 3. If \(\text{diam}(T) \leq 3 \), then by Corollary 7 and Example 13, we have \(\gamma'_{sRk}(T) \geq k \). Assume that \(T \) is an arbitrary tree of order \(n \) and that the statements holds for all trees of order less than \(n \). We may assume, that \(\text{diam}(T) \geq 4 \). Let \(f \) be a \(\gamma'_{sRk}(T) \)-function.

If \(T \) has a non-pendant edge \(e = u_1u_2 \) with \(f(u_1u_2) = -1 \), then let \(T−u_1u_2 = T_1∪T_2 \) where \(T_i \) is the component of \(T−u_1u_2 \) containing \(u_i \) for \(i = 1, 2 \). It is easy to verify that the function \(f \), restricted to \(T_i \) is an SRE\(k \)DF of \(T_i \) for \(i = 1, 2 \). It follows from the induction hypothesis that

\[
\gamma'_{sRk}(T) = f(E(T_1)) + f(E(T_2)) − 1 \geq \gamma'_{sRk}(T_1) + \gamma'_{sRk}(T_2) − 1 \geq 2k−1 > k.
\]

Henceforth, we may assume that every edge with label \(-1\) is a pendant edge.
Let \(P = u_1u_2 \cdots u_k \) be a diametral path in \(T \) such that \(d_T(u_2) \) is as large as possible. Root \(T \) at \(u_k \). Since \(f[u_1u_2] \geq k \), we have \(d_T(u_2) \geq \lceil \frac{k}{2} \rceil \). By assumption \(f(u_2u_3) \geq 1 \). Let \(T_1 \) and \(T_2 \) be the components of \(T - u_2u_3 \) containing \(u_2 \) and \(u_3 \), respectively. Assume that \(T'_1 \) is the tree obtained from \(T_1 \) by adding a new pendant edge \(u_2w \) and define \(f_1 : E(T'_1) \to \{-1, 1, 2\} \) by \(f_1(u_2w) = f(u_2u_3) \) and \(f_1(x) = f(x) \) otherwise. Clearly, \(f_1 \) is an SRE-kDF of \(T'_1 \) and by the induction hypothesis we have \(\omega(f_1) \geq k \). Consider two cases.

Case 1. \(k = 2 \). Let \(T'_2 \) be the tree obtained from \(T_2 \) by adding a new pendant edge \(u_3w_1 \) and define \(f_2 : E(T'_2) \to \{-1, 1, 2\} \) by \(f_2(u_3w_1) = f(u_2u_3) \) and \(f_2(x) = f(x) \) otherwise. Clearly, \(f_2 \) is an SRE2DF of \(T'_1 \) and by the induction hypothesis we have \(\omega(f_2) \geq 2 \). Since \(\omega(f) = \omega(f_1) + \omega(f_2) - f(u_2u_3) \), we have

\[
\gamma'_{sR_k}(T) = \omega(f_1) + \omega(f_2) - f(u_2u_3) \geq 4 - f(u_2u_3) \geq 2.
\]

Case 2. \(k \geq 3 \). Let \(T'_2 \) be the tree obtained from \(T_2 \) by adding \(\left\lfloor \frac{k-2}{2} \right\rfloor \) new pendant edges \(u_3w_i, \ldots, u_3w_{i+\left\lfloor \frac{k-2}{2} \right\rfloor} \). Clearly, \(|V(T'_2)| < n \). First let \(k \) be odd. Define \(f_2 : E(T'_2) \to \{-1, 1, 2\} \) by \(f_2(u_3w_i) = 2 \) for each \(i \) and \(f_2(x) = f(x) \) otherwise. It is easy to verify that \(f_2 \) is an SREkDF of \(T'_2 \) and by the induction hypothesis we have \(\omega(f_2) \geq k \). Now we have

\[
\gamma'_{sR_k}(T) = \omega(f) = \omega(f_1) + \omega(f_2) - (k - 2) \geq k + (\omega(f_2) - k) + 2 > k.
\]

Now let \(k \) be even. Define \(f_2 : E(T'_2) \to \{-1, 1, 2\} \) by \(f_2(u_3w_4) = f_2(u_3w_5) = 2 \) for each \(i \) and \(f_2(x) = f(x) \) otherwise. It is not hard to see that \(f_2 \) is an SREkDF of \(T'_2 \) and by the induction hypothesis we have \(\omega(f_2) \geq k \). Then

\[
\gamma'_{sR_k}(T) = \omega(f) = \omega(f_1) + \omega(f_2) - (k - 2) - (2 - f(u_3u_4)) \\
\geq k + (\omega(f_2) - k) + f(u_3u_4) > k.
\]

Using Corollary 7, Example 13 and a closer look at the proof of Theorem 14, we obtain the next result.

Corollary 15. If \(k \geq 3 \) and \(T \) is a tree of order \(n \geq k \), then \(\gamma'_{sR_k}(T) = k \) if and only if \(T \) is a star.

In what follows, we provide a constructive characterization of all trees \(T \) for which \(\gamma'_{sR_k}(T) = 2 \). To do this, we describe a procedure to build a family \(F \) that attains the bound in Theorem 14 when \(k = 2 \). First we define the following operations. Let \(F \) be the family of trees that:

1. contains \(P_2 \), and
2. is closed under the operations \(\Sigma_1, \Sigma_2 \) and \(\Sigma_3 \), which extend the tree \(T \) by attaching a tree to the vertex \(y \in V(T) \), called the attacher.
Operation T_1. If $T \in \mathcal{F}$, uv is a pendant edge with $d(u) = 1$, and there is a $\gamma'_s\mathcal{R}_2(T)$-function with $f(uv) = 2$ and either no -1-edge at v or a 2-edge at v other than uv, then T_1 adds a pendant edge vv'.

Operation T_2. If $T \in \mathcal{F}$, uv is a pendant edge with $d(u) = 1$, and there is a $\gamma'_s\mathcal{R}_2(T)$-function with $f(uv) = 1$, then T_2 adds a pendant edge vv_1.

Operation T_3. If $T \in \mathcal{F}$, $uv \in E(T)$, and there is a $\gamma'_s\mathcal{R}_2(T)$-function with $f(uv) = 2$, then T_3 adds two pendant edges vv_1, vw_2.

Lemma 16. If $T \in \mathcal{F}$, then $\gamma'_s\mathcal{R}_2(T) = 2$.

Proof. Let $T \in \mathcal{F}$ be obtained from a path P_2 by successive operations T^1, T^2, \ldots, T^m, where $T^i \in \{T_1, T_2, T_3\}$ if $m \geq 1$ and $T = P_2$ if $m = 0$. The proof is by induction on m. If $m = 0$, then clearly the statement is true. Let $m \geq 1$ and assume that the statement holds for all trees which are obtained from P_2 by applying at most $m - 1$ operations. Let T_{m-1} be the tree obtained from P_2 by the first $m - 1$ operations $T^1, T^2, \ldots, T^{m-1}$. We consider the following cases.

Case 1. $T^m = T_1$. Assume that $uv \in T_{m-1}$ is a pendant edge with $d(u) = 1$, f a $\gamma'_s\mathcal{R}_2(T)$-function with $f(uv) = 2$ such that either no -1-edge at v or a 2-edge at v other than uv, and T^m adds a pendant edge vv'. Define $g : E(T) \to \{-1, 1, 2\}$ by $g(uv) = g(vv') = 1$ and $g(x) = f(x)$ otherwise. Obviously, g is an SRE2DF of $T = T_m$ of weight 2 and so $\gamma'_s\mathcal{R}_2(T) = 2$ by Theorem 14.

Case 2. $T^m = T_2$. Let $uv \in T_{m-1}$ be a pendant edge with $d(u) = 1$, f a $\gamma'_s\mathcal{R}_2(T)$-function with $f(uv) = 1$, and T^m adds a pendant edge vw_1. Then the function $g : E(T) \to \{-1, 1, 2\}$ defined by $g(uv) = 2, g(vw_1) = -1$ and $g(x) = f(x)$ otherwise, is an SRE2DF of $T = T_m$ of weight 2 that implies $\gamma'_s\mathcal{R}_2(T) = 2$ by Theorem 14.

Case 3. $T^m = T_3$. Let $uv \in T_{m-1}$, f be a $\gamma'_s\mathcal{R}_2(T)$-function with $f(uv) = 2$, and T^m adds two pendant edges vw_1, vw_2. Define $g : E(T) \to \{-1, 1, 2\}$ by $g(vw_1) = 1, g(vw_2) = -1$ and $g(x) = f(x)$ otherwise. Obviously, g is an SRE2DF of $T = T_m$ of weight 2 implying that $\gamma'_s\mathcal{R}_2(T) = 2$. This completes the proof.

Theorem 17. Let T be a tree of order $n \geq 2$. Then $\gamma'_s\mathcal{R}_2(T) = 2$ if and only if $T \in \mathcal{F}$.

Proof. By Lemma 16, we only need to prove that every tree T with $\gamma'_s\mathcal{R}_2(T) = 2$ is in \mathcal{F}. We prove this by induction on n. If $n = 2$, then the only tree T of order 2 and $\gamma'_s\mathcal{R}_2(T) = 2$ is $P_2 \in \mathcal{F}$. If $\text{diam}(T) = 2$, then T is a star and obviously T can be obtained from P_2 by applying Operations T_1 and T_2. Let $n \geq 4$ and assume that the statement holds for every tree of order less than n with $\gamma'_s\mathcal{R}_2(T) = 2$. Let T be a tree of order n and $\gamma'_s\mathcal{R}_2(T) = 2$. We may assume that $\text{diam}(T) \geq 3$.

Suppose f is a $\gamma'_{sR2}(T)$-function. Then $f(v) = \sum_{e \in E(v)} f(e) \geq 2$ for every support vertex v.

Claim 1. T has no non-pendant edge $e = u_1u_2$ with $f(u_1u_2) = -1$.

Proof. Assume, to the contrary, that T has a non-pendant edge $e = u_1u_2$ such that $f(u_1u_2) = -1$. Assume $T - e = T_{u_1} \cup T_{u_2}$, where T_{u_i} is the component of $T - e$ containing u_i, for $i = 1, 2$. Obviously, $\gamma'_{sR2}(T) = f(E(T_{u_1})) - 1 + f(E(T_{u_2}))$ and the function f, restricted to T_{u_i} is an SRE2DF and hence $\gamma'_{sR2}(T_{u_i}) \leq f(E(T))$ for $i = 1, 2$. By Theorem 14, we get

$$\gamma'_{sR2}(T) \geq \gamma'_{sR2}(T_{u_1}) + \gamma'_{sR2}(T_{u_2}) - 1 \geq 3,$$

a contradiction.

Claim 2. T has no non-pendant edge with label 1.

Proof. Assume, to the contrary, that T has a non-pendant edge $e = u_1u_2$ such that $f(u_1u_2) = 1$. Let T_{u_1} and T_{u_2} be the components of $T - e$ containing u_1 and u_2, respectively, and let T_{u_i}' be the tree obtained from T_{u_i} by adding a new pendant edge u_iu_i' for $i = 1, 2$. Define $f_i : E(T_i') \rightarrow \{-1, 1, 2\}$ by $f_i(u_iu_i') = 1$ and $f_i(e) = f(e)$ if $e \in E(T_i)$, for $i = 1, 2$. Clearly, f_i is an SRE2DF of T_i' for each i, and $\omega(f) = \omega(f_1) + \omega(f_2) - 1$. Similar to Case 2, we can get the contradiction $\gamma'_{sR2}(T) = \omega(f_1) + \omega(f_2) - 1 \geq 3$.

Thus, all -1-edges and 1-edges are pendant edges and hence all non-pendant edges are 2-edges.

Let $v_1v_2 \cdots v_D$ be a diametral path in T and root T at v_D. Obviously, $d(v_1) = d(v_D) = 1$.

Claim 3. $d(v_2) \geq 3$.

Proof. Assume, to the contrary, that $d(v_2) = 2$. By Observation 6, we have $f(v_1v_2) \geq 1$. If there is a pendant -1-edge at v_3, then let $T' = T - v_1$. It is easy to see that the function $h = f|_{E(T')} \geq f|_{E(T')} \geq \omega(f)$, and it follows from Theorem 14 that $\gamma'_{sR2}(T) = \omega(f) \geq \omega(f|_{E(T)}) \geq \gamma'_{sR2}(T') \geq 2$. Assume that there is no pendant -1-edge at v_3. Let $T' = T - v_1$. Since $f(v_1v_2) \geq 1$, we have $\omega(f) \geq \omega(f|_{E(T)}) + 1$ and the function f restricted to T' is an SRE2DF of T'. This implies $\gamma'_{sR2}(T) > 2$ which is a contradiction.

Now we consider three cases.

Case 1. T has two pendant edges v_2u_1 and v_2u_2 with $f(v_2u_1) = 1$ and $f(v_2u_2) = -1$. Assume $T' = T - \{u_1, u_2\}$. Clearly, the function f restricted to T' is an SRE2DF on T'. So $\gamma'_{sR2}(T') = 2$ and by the induction hypothesis $T' \in \mathcal{F}$. Obviously T can be obtained from T' by operation Σ_3. Thus $T \in \mathcal{F}$.

Case 2. \(T \) has two pendant edges \(v_2u_1 \) and \(v_2u_2 \) with \(f(v_2u_1) = 2 \) and \(f(v_2u_2) = -1 \). Since \(T \) is not a star, we deduce that there is an edge \(v_2v_3 \) such that \(f(v_2v_3) = 2 \) and \(v_3 \neq u_1 \). Assume that \(T' = T - \{u_1\} \) and define \(g : E(T') \rightarrow \{-1, 1, 2\} \) by \(f(v_2u_2) = 1 \) and \(g(e) = f(e) \) for \(e \in E(T') \setminus \{v_2u_2\} \). Obviously, \(g \) is an SRE2DF on \(T' \) of weight 2 and by the induction hypothesis we have \(T' \in \mathcal{F} \). Clearly, \(T \) can be obtained from \(T' \) by operation \(\Sigma_2 \). This implies \(T \in \mathcal{F} \).

Case 3. \(T \) has two pendant edges \(v_2u_1 \) and \(v_2u_2 \) with \(f(v_2u_1) = f(v_2u_2) = 1 \). Assume \(T' = T - \{u_1\} \) and define \(g : E(T') \rightarrow \{-1, 1, 2\} \) by \(g(v_2u_2) = 2 \) and \(g(e) = f(e) \) for \(e \in E(T') \setminus \{v_2u_2\} \). Obviously, \(g \) is an SRE2DF on \(T' \) of weight 2 and by the induction hypothesis we have \(T' \in \mathcal{F} \). Then \(T \) can be obtained from \(T' \) by operation \(\Sigma_1 \). Thus \(T \in \mathcal{F} \) and the proof is complete. \(\blacksquare \)

3. Bounds on the Signed Roman Edge \(k \)-Domination

In this section we establish some sharp bounds on the signed Roman edge \(k \)-domination number and we characterize all connected graphs whose signed Roman edge \(k \)-domination number is equal to their size.

Proposition 18. If \(G \) is a graph of size \(m \), then

\[
\gamma'_{sRk}(G) \geq k + \Delta + \delta - m - 1.
\]

This bound is sharp for stars \(K_{1,r} \) with \(r \neq 3 \) when \(k = 1 \).

Proof. Let \(f \) be a \(\gamma'_{sRk}(G) \)-function, \(v \) a vertex of maximum degree \(\Delta \) and \(u \in N(v) \). By definition \(f[uv] \geq k \) and the least possible weight for \(f \) will now be achieved if \(f(e') = -1 \) for each \(e' \in E(G) \setminus N[uv] \). Thus \(\gamma'_{sRk}(G) \geq k - [m - (d(u) + d(v) - 1)] \geq k - m + \Delta + \delta - 1 \).

Theorem 19. Let \(G \) be a graph of size \(m \). Then

\[
\gamma'_{sRk}(G) \geq \frac{m(2(\delta - \Delta) + k)}{2\Delta - 1}.
\]

Proof. Assume that \(g \) is a \(\gamma'_{sRk}(G) \)-function. Define \(f : E(G) \rightarrow \{0, 2, 3\} \) by \(f(e) = g(e) + 1 \) for each \(e \in E \). We have

\[
\sum_{e \in E(G)} f(N[e]) = \sum_{e = uv \in E(G)} (g(N[e]) + d(u) + d(v) - 1) \geq \sum_{e = uv \in E(G)} (g(N[e]) - 1) + 2m\delta = m(2\delta + k - 1).
\]

On the other hand,

\[\sum_{e \in E(G)} f(N[e]) = \sum_{e=uv \in E(G)} (d(u) + d(v) - 1) f(e) \]

(4)

\[\leq \sum_{e \in E(G)} (2\Delta - 1) f(e) = (2\Delta - 1) f(E(G)). \]

By (3) and (4), we have

\[f(E(G)) \geq m \left(2\delta + k - 1 \right) \frac{2\Delta - 1}{2\Delta - 1} - m, \]

as desired.

Corollary 20. For any \(r \)-regular graph \(G \), \(\gamma'_{sRk}(G) \geq \frac{km}{2r-1} \).

The special case \(k = 1 \) of Theorem 19 and Corollary 20 can be found in [2].

Corollary 10 shows that Corollary 20 is sharp for \(k = 2 \) and \(m \equiv 0 \pmod{3} \).

Theorem 21. Let \(G \) be a connected graph of size \(m \geq 2 \). Then

\[\gamma'_{sRk}(G) \leq \frac{\gamma'_{sk}(G) + m}{2}. \]

Proof. Let \(f \) be a \(\gamma'_{sk}(G) \)-function, and let \(P = \{ e \mid f(e) = 1 \} \) and \(M = \{ e \mid f(e) = -1 \} = \{ e_1, e_2, \ldots, e_{|M|} \} \). Suppose \(e'_i \in P \) is an edge adjacent to \(e_i \) for each \(i \). Define \(g : E(G) \rightarrow \{-1, 1, 2\} \) by \(g(e'_i) = 2 \) for \(1 \leq i \leq |M| \) and \(g(e) = f(e) \) otherwise. It is easy to see that \(g \) is an SREkDF on \(G \) of weight at most \(\gamma'_{sk}(G) + |M| \). It follows from \(\gamma'_{sk}(G) = |P| - |M| \) and \(m = |P| + |M| \) that

\[|P| = \frac{\gamma'_{sk}(G) + m}{2} \]

and hence

\[\gamma'_{sRk}(G) \leq \omega(g) \leq \gamma'_{sk}(G) + |M| = |P| = \frac{\gamma'_{sk}(G) + m}{2}, \]

as desired.

Theorem 22. Let \(G \) be a connected graph of order \(n \geq 3 \) and size \(m \). Then

\[\gamma'_{sR2}(G) \geq 2(n - m). \]

Furthermore, this bound is sharp.

Proof. Let \(p \) be the number of cycles of \(G \). The proof is by induction on \(p \). The statement is true for \(p = 0 \) by Theorem 14. Assume the statement is true for all simple connected graphs \(G \) for which the number of cycles is less than \(p \), where \(p \geq 1 \). Let \(G \) be a simple connected graph with \(p \) cycles. Assume that \(f \) is a
\(\gamma'_{sR2}(G)\)-function and let \(e = uv\) be a non-cut edge. If \(f(e) = -1\), then obviously \(f|_{G-e}\) is an SRE2DF for \(G - e\) and by the induction hypothesis, we have

\[
2(n - m) < 2(n - (m - 1)) - 1 \leq f(E(G - e)) - 1 = f(E(G)) = \gamma'_{sR2}(G).
\]

Thus, we may assume that all non-cut edges are assigned 1 or 2 by \(f\). We consider two cases.

Case 1. \(f(uv) = 1\). Consider two subcases.

Subcase 1.1. \(f(E(u)) \leq 1\) (the case \(f(E(v)) \leq 1\) is similar). Then \(u\) has at least one neighbor \(u'\) such that \(f(uu') = -1\). Assume that \(G'\) is the graph obtained from \(G - \{uv, uu'\}\) by adding a new pendant edge \(vv'\). Define \(g : E(G') \to \{-1, 1, 2\}\) by \(g(vv') = 1, g(a) = f(a)\) for \(a \in E(G) \setminus \{uv, uu'\}\). Clearly, \(g\) is an SRE2DF for \(G'\) and it follows from the induction hypothesis and (1) that

\[
\omega(f) = -1 + \omega(g) \geq -1 + 2(n(G') - m(G')) = -1 + 2(n - (m - 1)) > 2(n - m).
\]

Subcase 1.2. \(f(E(u)) \geq 2\) and \(f(E(v)) \geq 2\). Let \(G'\) be the graph obtained from \(G - \{e\}\) by adding two new pendant edges \(vv'\) and \(uu'\) and define \(g : E(G') \to \{-1, 1, 2\}\) by \(g(vv') = g(uu') = 1\) and \(g(a) = f(a)\) otherwise. Clearly, \(g\) is an SRE2DF for \(G'\). It follows from the induction hypothesis that

\[
\omega(f) = -1 + \omega(g) \geq -1 + 2(n(G') - m(G')) = -1 + 2(n + 2 - (m + 1)) > 2(n - m).
\]

By Case 1, we may assume that all non-cut edges are assigned 2 by \(f\).

Case 2. \(f(uv) = 2\). Consider two subcases.

Subcase 2.1. \(f(E(u)) \leq 2\) (the case \(f(E(v)) \leq 2\) is similar). Then clearly \(f(E(v)) \geq 2\). Since all non-cut edges are assigned 2 by \(f\) (by assumption) and since \(uv\) belongs to a cycle in \(G\), it follows from \(f(E(u)) \leq 2\) that there are two \(-1\)-edges at \(u\), say \(e', e''\). Assume that \(G'\) is the graph obtained from \(G - \{e, e', e''\}\) by adding a new pendant edge \(vv'\) at \(v\). Define \(g : E(G') \to \{-1, 1, 2\}\) by \(g(vv') = 2\) and \(g(a) = f(a)\) otherwise. It is easy to see that \(g\) is an SRE2DF of \(G'\) and we deduce from the induction hypothesis and (1) that

\[
\omega(f) = -2 + \omega(g) \geq -2 + 2(n(G') - m(G')) = -2 + 2(n - 1 - (m - 2)) = 2(n - m).
\]

Subcase 2.2. \(f(E(u)) \geq 3\) and \(f(E(v)) \geq 3\). Let \(G'\) be the graph obtained from \(G - \{e\}\) by adding two new pendant edges \(vv'\) and \(uu'\). Define \(g : E(G') \to \{-1, 1, 2\}\) by \(g(vv') = g(uu') = 2\) and \(g(a) = f(a)\) otherwise. Clearly, \(g\) is an SRE2DF for \(G'\) and by the induction hypothesis, we obtain

\[
\omega(f) = -2 + \omega(g) \geq -2 + 2(n(G') - m(G')) = -2 + 2(n + 2 - (m + 1)) = 2(n - m).
\]

\[\blacksquare\]
Theorem 23. Let $k \geq 1$ be an integer, and let G be a graph of size m and minimum degree δ. If $2\delta - k \geq 3$, then $\gamma_{sRk}'(G) \leq m - 1$.

Proof. Let $v \in V(G)$ be an arbitrary vertex, and let u_1, u_2, \ldots, u_p be the neighbors of v. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(uv_1) = -1$, $f(uv_2) = 2$ and $f(x) = 1$ otherwise. If $e = wz$ is an arbitrary edge, then $f[wz] \geq d(w) + d(z) - 3 \geq 2\delta - 3 \geq k$. Therefore f is an SREkDF on G of weight $m - 1$ and so $\gamma_{sRk}'(G) \leq m - 1$.

Theorem 24. Let $k \geq 1$ be an integer, and let G be a graph of size m and minimum degree δ. If $2\delta - k \geq 5$, then

$$\gamma_{sRk}'(G) \leq m - 2 \left\lfloor \frac{2\delta - k}{2} \right\rfloor + 1.$$

Proof. Let $t = \left\lfloor \frac{2\delta - k}{2} \right\rfloor$, and let $v \in V(G)$ be an arbitrary vertex. Now let $A = \{u_1, u_2, \ldots, u_t\}$ be a set of t neighbors of v. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(uv_i) = -1$ for $1 \leq i \leq t$, $f(uv_{t+1}) = 2$ and $f(x) = 1$ otherwise. Then $f[wz] \geq t + 1 + (d(v) - t) + (d(u) - 1) \geq 2\delta - 2t \geq k$ for $1 \leq i \leq d(v)$. If $e = wz$ is an edge different from vu_i, then $f[wz] \geq d(w) + d(z) - 5 \geq 2\delta - 5 \geq k$. Therefore f is an SREkDF on G of weight $m - 2t + 1$ and so $\gamma_{sRk}'(G) \leq m - 2t + 1$.

Theorem 25. Let $k \geq 1$ be an integer, and let G be a graph of size m, minimum degree δ and maximum matching M. If $2\delta - k \geq 5$, then $\gamma_{sRk}'(G) \leq m - |M|$.

Proof. Let $M = \{e_1, e_2, \ldots, e_{|M|}\}$ be a maximum matching, and let x_1, x_2, \ldots, x_t be a minimum edge set such that each e_i is adjacent to an edge x_j for $1 \leq i \leq |M|$ and $1 \leq j \leq t$. Then $t \leq |M|$. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(e_i) = -1$ for $1 \leq i \leq |M|$, $f(x_j) = 2$ for $1 \leq j \leq t$ and $f(x) = 1$ otherwise. If $e = uv$ is an arbitrary edge of G, then $f[e] \geq d(u) + d(v) - 5 \geq 2\delta - 5 \geq k$. Therefore f is an SREkDF on G of weight $m - 2|M| + t \leq m - |M|$ and so $\gamma_{sRk}'(G) \leq m - |M|$.

In what follows, we characterize all connected graphs attaining the bound in (2).

Theorem 26. Let G be a connected graph of size $m \geq 2$. Then $\gamma_{sR2}'(G) = m$ if and only if $G = C_4$, $G = C_5$, $G = P_n$ ($3 \leq n \leq 8$) or G is a subdivided star $K_{1,r}$ ($r \geq 1$).

Proof. If $G = C_4$, $G = C_5$, $G = P_n$ ($3 \leq n \leq 7$) or G is a subdivided star $K_{1,r}$ ($r \geq 1$), then the result is immediate by Corollary 9 and Observation 6. Let $\gamma_{sR2}'(G) = m$. If $\Delta \leq 2$, then it follows from Corollaries 9 and 10 that $G = P_n$ ($3 \leq n \leq 8$) or $G = C_4$ or $G = C_5$. Assume that $\Delta \geq 3$.

Claim 1. G has no support vertex of degree at least 3.
Proof. Let G have a support vertex u with $d(u) \geq 3$ and let $v, w \in N(u)$ where $d(v) = 1$. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(uv) = -1$, $f(uw) = 2$ and $f(x) = 1$ for $x \in E(G) \setminus \{uv, uw\}$. Obviously, f is an SRE2DF of weight less than m, a contradiction.
\hfill \Box

Claim 2. G is acyclic.

Proof. Let $C_g = (v_1v_2 \cdots v_g)$ be a cycle of G of length $g = \text{girth}(G)$. Since $\Delta \geq 3$, we observe that $G \neq C_g$. By Claim 1, v_i is not a support vertex for each $1 \leq i \leq g$. Since $G \neq C_g$, we may assume that $d(v_1) \geq 3$ and $u \in N(v_1) \setminus \{v_2, v_g\}$. Then the function $f : E(G) \to \{-1, 1, 2\}$ defined by $f(v_1v_2) = -1, f(v_2v_3) = 2$ and $f(x) = 1$ otherwise, is an SRE2DF of weight less than m, a contradiction.
\hfill \Box

Claim 3. For each non pendant edge $e = uv$, $\min\{d(u), d(v)\} = 2$.

Proof. Let $e = uv$ be a non pendant edge of G such that $\min\{d(u), d(v)\} \geq 3$. By Claim 1, both u and v are not support vertices. Let $v_1 \in N(v) \setminus \{u\}$ and define $f : E(G) \to \{-1, 1, 2\}$ by $f(vv_1) = 2, f(uv) = -1$ and $f(x) = 1$ otherwise. Clearly, f is an SRE2DF of weight $m - 1$, a contradiction.
\hfill \Box

Let v be a vertex of maximum degree Δ and let $N(v) = \{v_1, v_2, \ldots, v_\Delta\}$. By Claims 1 and 3, we deduce that $d(v_i) = 2$ for each i. If v_i is a support vertex for each i, then $G = K^*_\Delta$ and we are done. Assume that v_1 is not a support vertex. Let $u \in N(v_1) \setminus \{v\}$. Define $f : E(G) \to \{-1, 1, 2\}$ by $f(vv_1) = -1$, $f(uv_1) = 2$ and $f(x) = 1$ otherwise. Clearly, f is an SRE2DF of weight $m - 1$, a contradiction. This completes the proof.

We conclude this paper with an open problem.

Problem 27. Characterize all connected graphs G of order n and size m attaining the bound of Theorem 22.

References

Received 15 June 2015
Revised 8 February 2016
Accepted 8 February 2016