Abstract

For a strong oriented graph D of order n and diameter d and an integer k with $1 \leq k \leq d$, the kth power D^k of D is that digraph having vertex set $V(D)$ with the property that (u, v) is an arc of D^k if the directed distance $d_D(u, v)$ from u to v in D is at most k. For every strong digraph D of order $n \geq 2$ and every integer $k \geq \lceil n/2 \rceil$, the digraph D^k is Hamiltonian and the lower bound $\lceil n/2 \rceil$ is sharp. The digraph D^k is distance-colored if each arc (u, v) of D^k is assigned the color i where $i = d_D(u, v)$. The digraph D^k is Hamiltonian-colored if D^k contains a properly arc-colored Hamiltonian cycle. The smallest positive integer k for which D^k is Hamiltonian-colored is the Hamiltonian coloring exponent $hce(D^k)$ of D^k. For each integer $n \geq 3$, the Hamiltonian coloring exponent of the directed cycle \vec{C}_n of order n is determined whenever this number exists. It is shown for each integer $k \geq 2$ that there exists a strong oriented graph D_k such that $hce(D_k) = k$ with the added property that every properly colored Hamiltonian cycle in the kth power of D_k must use all k colors. It is shown for every positive integer p there exists a a connected graph G with two different strong orientations D and D' such that $hce(D) - hce(D') \geq p$.

Keywords: powers of a strong oriented graph, distance-colored digraphs, Hamiltonian-colored digraphs, Hamiltonian coloring exponents.

2010 Mathematics Subject Classification: 05C12, 05C15, 05C20, 05C45.
$d_G(u, v)$ is a $u - v$ geodesic. The greatest distance between any two vertices of G is the diameter $\text{diam}(G)$ of G. For an integer k with $1 \leq k \leq d = \text{diam}(G)$, the kth power G^k of G is that graph with vertex set $V(G)$ and $uv \in E(G^k)$ if $1 \leq d_G(u, v) \leq k$. The graphs G^2 and G^3 are called the square and cube, respectively, of G, while $G^1 = G$. For an integer $k \geq d$, $G^k = K_n$, the complete graph of order n. We refer to [3] for graph theory notation and terminology not described in this paper.

In 1960 Sekanina [7] proved that the cube of every connected graph G of order at least 3 is Hamiltonian. In fact, he showed that for every such graph G, the graph G^3 is Hamiltonian-connected (every two vertices of G are connected by a Hamiltonian path). In 1971 Fleischner [4] verified a well-known conjecture (at the time) that the square of every 2-connected graph is Hamiltonian.

For a connected graph G, the edge-colored graph G^k is distance-colored if each edge uv of G^k is assigned the color i where $i = d_G(u, v)$. The graph G^k is Hamiltonian-colored if it contains a properly colored Hamiltonian cycle, that is, a Hamiltonian cycle in which every two adjacent edges are colored differently. There are connected graphs G for which G^k is not Hamiltonian-colored for any positive integer k. Indeed, if G is a graph of order n containing a vertex of degree $n - 1$, then G^k is not Hamiltonian-colored for any positive integer k. On the other hand, if G^k is Hamiltonian-colored for some positive integer k, then the smallest such integer k is called the Hamiltonian coloring exponent $\text{hce}(G)$ of G. These concepts were introduced in [1] and studied further in [6]. Applications of Hamiltonian-colored graphs to network communications were studied in [2]. Chartrand, Jones, Kolasinski and Zhang established the following result dealing with the Hamiltonian coloring exponent of a graph (see [1, 6]).

Theorem 1.1. For each integer $k \geq 2$, there exists a graph G such that $\text{hce}(G) = k$ and every properly colored Hamiltonian cycle in G^k must use all k colors.

In this paper we study the analogous concept of Hamiltonian-colored powers of strong oriented graphs. We begin by presenting some information on powers of strong oriented graphs.

2. Powers of Strong Oriented Graphs

A digraph D is an oriented graph if for every two distinct vertices x and y, at most one of the arcs (directed edges) (x, y) and (y, x) belongs to D. The digraph D is strong (or strongly connected) if for every two vertices u and v, the digraph D contains both a (directed) $u - v$ path and a $v - u$ path. The length of a shortest $u - v$ path in D is the (directed) distance $d_D(u, v)$ from u to v and a $u - v$ path of length $d_D(u, v)$ is a $u - v$ geodesic. The maximum value of $d_D(x, y)$ among all pairs x, y of vertices of D is the diameter $\text{diam}(D)$ of D.
For a strong oriented graph D of order n and diameter d and an integer k with $1 \leq k \leq d$, the kth power D^k of D is that digraph (not necessarily oriented graph) having vertex set $V(D)$ with the property that (u,v) is an arc of D^k if $1 \leq d_D(u,v) \leq k$. If $k \geq d$, then $D^k = K_n^*$, the complete symmetric digraph of order n. If $n \geq 2$ and $k \geq d$, then D^k is Hamiltonian. Unlike the situation for connected graphs of order at least 3 where there is a fixed constant c (namely $c = 3$) such that G^2 is Hamiltonian for every connected graph G of order at least 3, there is no fixed constant c such that D^c is Hamiltonian for every strong oriented graph D. We will see in Theorem 2.3 that if D is a strong digraph of order $n \geq 2$ and k is an integer such that $k \geq \lceil n/2 \rceil$, then D^k is Hamiltonian. In order to establish this result, we first present a lemma. Obviously, if D is a strong digraph of order $n \geq 2$ and diameter d, then od$v \geq 1$ and id$v \geq 1$ for every vertex v of D. Since $D^d = K_n^*$, it follows that od$_{D^d}v = id_{D^d}v = n - 1$ for every vertex v of D^d. More generally, we have the following.

Lemma 2.1. Let D be a strong digraph of order $n \geq 2$ and diameter d. For every integer k with $1 \leq k \leq d$ and every vertex v of D^k, od$_{D^k}v \geq k$ and id$_{D^k}v \geq k$.

Proof. Suppose that the lemma is false. Then there is a smallest positive integer r where $r < d$ such that either od$_{D^r}v < r$ or id$_{D^r}v < r$, say the former. Since od$_Dv \geq 1$ and id$_Dv \geq 1$, it follows that $r \geq 2$. Furthermore, because od$_{D^{r-1}}v \geq r - 1$ and id$_{D^{r-1}}v \geq r - 1$, it follows that od$_{D^{r-1}}v = r - 1$. Since $r < d$, it follows that $|N_{D^{r-1}}(v) \cup \{v\}| = r < n$ and so there are vertices of D that do not belong to $N_{D^{r-1}}(v) \cup \{v\}$. Let w be one of these vertices. Since D is strong, there are $v - w$ paths in D. Let P be a $v - w$ geodesic in D and let y be the first vertex of P that does not belong to $N_{D^{r-1}}(v) \cup \{v\}$, where x is the vertex immediately preceding y on P. Thus $d_D(v,x) \leq r - 1$ and $(x,y) \in E(D^{r-1})$. Therefore, $d_D(v,y) = r$ and $y \in N_{D^r}(v)$, a contradiction.

Among the sufficient conditions that exist for a digraph to be Hamiltonian is the following due to Ghouila-Houri [5].

Theorem 2.2 (Ghouila-Houri’s Theorem). If D is a strong digraph of order n such that od$v + idv \geq n$ for every vertex v of D, then D is Hamiltonian.

As a consequence of Lemma 2.1 and Ghouila-Houri’s theorem, we have the following.

Theorem 2.3. For every strong digraph D of order $n \geq 2$ and every integer $k \geq \lceil n/2 \rceil$, the digraph D^k is Hamiltonian. Furthermore, the lower bound $\lceil n/2 \rceil$ is sharp.

Proof. Let d be the diameter of D. If $k > d$, then D^d is the complete symmetric digraph of order n and so D^k is Hamiltonian. Thus, we may assume that $1 \leq
By Lemma 2.1, \(od_{D^k} v \geq \lceil n/2 \rceil \) and \(id_{D^k} v \geq \lceil n/2 \rceil \) for every vertex \(v \) of \(D \). Therefore, \(od_{D^k} v + id_{D^k} v \geq 2\lceil n/2 \rceil \geq n \). By Ghouila-Houri’s theorem, \(D^k \) is Hamiltonian. Thus, it remains to show that the lower bound \(\lceil n/2 \rceil \) is sharp. For a given integer \(k \geq 3 \), consider the strong oriented graph \(D_k \) shown in Figure 1. (If \(k = 3 \), then we replace the (directed) \(u - v \) path \((u, v_1, v_2, \ldots, v_{k-3}, v) \) by the arc \((u, v) \).

![Figure 1. The strong oriented graph \(D_k \) in the proof of Theorem 2.3.](image)

Since the order of \(D_k \) is \(n = 2k - 1 \), it follows by the first statement in this theorem that the \(k \)th power of \(D_k \) is Hamiltonian. The diameter of \(D_k \) is \(k \). In fact, the only vertices \(y \) and \(z \) in \(D_k \) for which \(d_D(y, z) = k \) are distinct vertices of \(\{x_1, x_2, \ldots, x_k\} \). In fact, if we let \(G = \overline{K}_k + K_{k-1} \) (the join of \(\overline{K}_k \) and \(K_{k-1} \)), then \(D_k^{k-1} = G^* \) (the complete symmetric digraph with underlying graph \(G \)). Because \(G \) is not Hamiltonian, it follows that \(D_k^k \) is Hamiltonian but \(D_k^{k-1} \) is not. Therefore, the lower bound \(\lceil n/2 \rceil \) is sharp.

By Theorem 2.3, unlike the situation for connected graphs of order at least 3, there is no fixed constant \(c \) such that \(D^c \) is Hamiltonian for every strong oriented graph \(D \).

3. Distance-colored Digraphs

For a strong oriented graph \(D \) and a positive integer \(k \), the \(k \)th power \(D^k \) is called distance-colored if each arc \((u, v) \) of \(D^k \) is assigned the color \(i \) if \(d_D(u, v) = i \). The digraph \(D^k \) is called Hamiltonian-colored if \(D^k \) contains a properly colored Hamiltonian cycle \(C = (v_1, v_2, \ldots, v_n, v_{n+1} = v_1) \), that is, the colors of \((v_i, v_{i+1}) \) and \((v_{i+1}, v_{i+2}) \) are distinct for \(1 \leq i \leq n \), where \(v_{n+2} = v_2 \).

If \(D \) is a strong oriented graph such that the distance-colored digraph \(D^2 \) is Hamiltonian-colored, then \(D \) must have even order \(n \). The only strong digraph
of order 2 is K_2^*, which is not an oriented graph. There is also no strong oriented graph D of order 4 for which D^2 is Hamiltonian-colored, for suppose, to the contrary, that such a digraph D exists and $C = (u, v, w, x, u)$ is a properly colored Hamiltonian cycle in D^2, where (u, v) and (w, x) are colored 1 and (v, w) and (x, u) are colored 2 (see Figure 2). Since (v, w) belongs to D^2 but not D, $(v, w) \notin E(D)$. Because D is strong and an oriented graph, $(v, x) \in E(D)$. Similarly, $(x, v) \notin E(D)$. However then, D is not an oriented graph, a contradiction. The situation for the orders 2 and 4 are the exceptions, however, as we now see.

![Figure 2. Showing that the square of no strong oriented graph of order 4 is Hamiltonian-colored.](image)

![Figure 3. The strong oriented graph D (for $k = 5$) in the proof of Theorem 3.1.](image)

Theorem 3.1. For every even integer $n \geq 6$, there exists a strong oriented graph D of order n such that D^2 is Hamiltonian-colored.

Proof. Let D be the strong oriented graph of order $n = 2k \geq 6$ and size $3k$ for which $V(D) = \{v_1, v_2, \ldots, v_{2k}\}$ and $E(D) = \{(v_{2i-1}, v_{2i}) : 1 \leq i \leq k\} \cup \{(v_{2k+3-2i}, v_{2i+1-2i}) : 1 \leq i \leq k\} \cup \{(v_{2i}, v_{2i+3}) : 1 \leq i \leq k\}$, where $v_{2k+1} = v_1$ and $v_{2k+3} = v_3$. (The digraph D is shown in Figure 3 for the case where $k = 5$.) In D^2, the Hamiltonian cycle $(v_1, v_2, \ldots, v_{2k}, v_1)$ is properly colored.

If D is a strong oriented graph such that D^k is Hamiltonian-colored for some positive integer k, then the smallest such integer k is defined as the Hamiltonian coloring exponent $hce(D)$ of D. Thus if $hce(D) = k$, then D^{k-1} is not Hamiltonian-colored. In particular, Theorem 3.1 shows that if D is a strong oriented graph such that D^2 is Hamiltonian-colored, then $hce(D) = 2$.

4. Hamiltonian Coloring Exponents of Directed Cycles

We now determine $hce(\vec{C}_n)$ for the directed cycle \vec{C}_n of order $n \geq 3$. Since $diam(\vec{C}_n) = n - 1$, it follows that if $hce(\vec{C}_n)$ exists, then $2 \leq hce(\vec{C}_n) \leq n - 1$. Let $D = \vec{C}_n$ where $n \geq 3$. If $hce(\vec{C}_n)$ exists, let $hce(D) = k$. Then D^k contains a properly colored Hamiltonian cycle $C' = (v_1, v_2, \ldots, v_n, v_{n+1} = v_1)$ where $1 \leq d_D(v_i, v_{i+1}) \leq k$ for $i = 1, 2, \ldots, n$. Let $d_D(v_i, v_{i+1}) = a_i$ for $1 \leq i \leq n$. Thus, corresponding to the properly colored directed cycle C' is the sequence $s : a_1, a_2, \ldots, a_n$ of colors where $a_i \in \{1, 2, \ldots, k\}$ for $1 \leq i \leq n$. Since C' starts and ends at v_1, it follows that C' proceeds around \vec{C}_n a certain number of times, say p, and so $\sum_{i=1}^{n} d_D(v_i, v_{i+1}) = \sum_{i=1}^{n} a_i = pn$.

For a cyclic sequence $s : a_1, a_2, \ldots, a_n$ of length n and any integer t with $1 \leq t \leq n$, the sequence s can also be expressed as $s : a_t, a_{t+1}, \ldots, a_n, a_1, \ldots, a_{t-1}$. A proper subsequence s^* of s is defined as a sequence $s^* : a_t, a_{t+1}, \ldots, a_{t+n^*-1}$ of length n^*, where $1 \leq n^* < n$ and the subscripts are expressed as integers modulo n. There is no proper subsequence $s^* : a_t, a_{t+1}, \ldots, a_{t+q-1}$ of s for which $\sum_{i=t}^{t+q-1} a_i$ is a multiple of n, for otherwise, the cycle $C^* = (v_1, v_{t+1}, \ldots, v_{t+q-1}, v_{t-q} = v_1)$ is a cycle of length $q < n$ that is a proper subdiagram of the Hamiltonian cycle C', which is impossible. Consequently, $s : a_1, a_2, \ldots, a_n$ where $a_i \in \{1, 2, \ldots, k\}$ for $1 \leq i \leq n$ is a cyclic sequence of colors of a Hamiltonian-colored digraph D^k with $hce(D) = k$ if and only if

1. no two consecutive terms in s are equal,
2. $\sum_{i=1}^{n} a_i$ is a multiple of n and
3. the sum of the terms in no proper subsequence of s is a multiple of n.

Any cyclic sequence $s : a_1, a_2, \ldots, a_n$ of terms $a_i \in \{1, 2\}$ for $1 \leq i \leq n$ satisfying condition (1) has the property that $n < \sum_{i=1}^{n} a_i < 2n$. Thus condition (2) is not satisfied. Therefore, we have the following observation.

Observation 4.1. Let $n \geq 3$ be an integer. If $hce(\vec{C}_n)$ exists, then $hce(\vec{C}_n) \geq 3$.

Since $diam(\vec{C}_3) = 2$, it follows by Observation 4.1 that $hce(\vec{C}_3)$ does not exist. On the other hand, if $\vec{C}_4 = (v_1, v_2, v_3, v_4, v_1)$, then $C' = (v_1, v_2, v_3, v_1)$ is a properly colored Hamiltonian cycle in the cube of \vec{C}_4 and so $hce(\vec{C}_4) = 3$. Corresponding
to \(C' \) is the cyclic sequence \(s : 1, 2, 3, 2 \) of colors. In fact, not only is \(\text{hce}(\vec{C}_4) = 3 \) but \(\text{hce}(\vec{C}_n) = 3 \) for all even integers \(n \geq 4 \), as we show next.

Theorem 4.2. For every even integer \(n \geq 4 \), \(\text{hce}(\vec{C}_n) = 3 \).

Proof. We have already observed that \(\text{hce}(\vec{C}_4) = 3 \) and \(\text{hce}(\vec{C}_n) \geq 3 \) for all integers \(n \geq 3 \) (if \(\text{hce}(\vec{C}_n) \) exists). Thus, it remains only to show that there is a cyclic sequence \(s : a_1, a_2, \ldots, a_n \) of \(n \geq 6 \) terms with \(n \) even and \(a_i \in \{1, 2, 3\} \) for \(1 \leq i \leq n \) satisfying conditions (1)–(3). We consider two cases.

Case 1. \(n \equiv 2(\text{mod } 4) \). So \(n = 4r + 2 \) for \(r \geq 1 \). Consider the cyclic sequence \(s : 1, 3, 1, 3, \ldots, 1, 3 \) of \(4r + 2 \) terms. Then the sum of the terms of \(s \) is \(8r + 4 = 2n \). Since the sum of the terms of any subsequence of \(s \) is either odd or a multiple of 4, this sum is not \(n \).

Case 2. \(n \equiv 0(\text{mod } 4) \). So \(n = 4r \) for \(r \geq 2 \). Consider the cyclic sequence \(s : 1, 3, 1, 3, \ldots, 1, 3, 2 \) of \(4r \) terms where there are \(2r - 1 \) terms between the occurrences of 2 in \(s \). Then the sum of the terms of \(s \) is \(8r = 2n \). Now observe that the sum of the terms of any subsequence

- (i) containing both terms 2 exceeds \(n \),
- (ii) containing neither term 2 is less than \(n \) and
- (iii) containing exactly one term 2 is either odd or is congruent to 2 modulo 4 and consequently is not \(n \).

We now consider \(\text{hce}(\vec{C}_n) \) where \(n \geq 3 \) is odd. We saw that \(\text{hce}(\vec{C}_3) \) does not exist. In fact, \(\text{hce}(\vec{C}_5) \) does not exist either.

Proposition 4.3. The number \(\text{hce}(\vec{C}_5) \) does not exist.

Proof. Let \(D = \vec{C}_5 \). Assume, to the contrary, that \(\text{hce}(D) \) exists. By Observation 4.1, \(3 \leq \text{hce}(D) \leq \text{diam}(D) = 4 \), that is, either \(\text{hce}(D) = 3 \) or \(\text{hce}(D) = 4 \).

If \(\text{hce}(D) = 3 \), then there exists a cyclic sequence \(s : a_1, a_2, a_3, a_4, a_5 \) with \(a_i \in \{1, 2, 3\}, 1 \leq i \leq 5 \), satisfying (1)–(3). Necessarily, some term, say \(a_2 \), is 3. If either \(a_1 = 2 \) or \(a_3 = 2 \), then either \(a_1 + a_2 = 5 \) or \(a_2 + a_3 = 5 \), which is impossible. Thus \(a_1 = a_3 = 1 \). However then, \(a_1 + a_2 + a_3 = 5 \), also impossible.

If \(\text{hce}(D) = 4 \), then there exists a cyclic sequence \(s : a_1, a_2, a_3, a_4, a_5 \) with \(a_i \in \{1, 2, 3, 4\}, 1 \leq i \leq 5 \), satisfying (1)–(3). Necessarily, some term, say \(a_3 \), is 4. Neither \(a_2 \) nor \(a_4 \) is 1, for otherwise, either \(a_2 + a_3 = 5 \) or \(a_3 + a_4 = 5 \), which is impossible. Also, we cannot have \(a_2 = a_4 = 3 \) for then \(a_2 + a_3 + a_4 = 10 \), also impossible. Thus, one of \(a_2 \) and \(a_4 \) is 2 and the other is 2 or 3. First, suppose that \(a_2 = 3 \) and \(a_4 = 2 \). Now \(a_5 \neq 1 \), for otherwise, \(a_2 + a_3 + a_4 + a_5 = 10 \), which is impossible. Also, \(a_5 \neq 3 \), for otherwise, \(a_4 + a_5 = 5 \). Finally, \(a_5 \neq 4 \), for otherwise, \(a_3 + a_4 + a_5 = 10 \). Thus, this case cannot occur. Next suppose that \(a_2 = a_4 = 2 \). Neither \(a_1 = 4 \) nor \(a_5 = 4 \) for otherwise, either \(a_1 + a_2 + a_3 = 10 \)
or \(a_3 + a_4 + a_5 = 10 \). Also, neither \(a_1 = 3 \) nor \(a_5 = 3 \), for otherwise, \(a_1 + a_2 = 5 \) or \(a_4 + a_5 = 5 \). Consequently, \(a_1 = a_5 = 1 \), which contradicts (1). Again, this is impossible.

On the other hand, \(\text{hce}(\vec{C}_n) \) exists for each odd integer \(n \geq 7 \). First, we present a lemma.

Lemma 4.4. For every odd integer \(n \geq 7 \), \(\text{hce}(\vec{C}_n) \neq 3 \).

Proof. Assume, to the contrary, that there is an odd integer \(n \geq 7 \) such that \(\text{hce}(\vec{C}_n) = 3 \). Let \(D = \vec{C}_n = (v_1, v_2, \ldots, v_n, v_{n+1} = v_1) \). Hence there exists a properly colored Hamiltonian cycle \(C' = (v_1, v_2, \ldots, v_n, u_{n+1} = u_1) \) in \(D^3 \), where \(u_1 = v_1 \) and where \(C' \) proceeds about \(\vec{C}_n \) twice. If \(s : a_1, a_2, \ldots, a_n \) is the corresponding cyclic sequence of colors for \(C' \), then no two consecutive terms in \(s \) are equal, \(\sum_{i=1}^n a_i = 2n \) and no proper subsequence of \(s \) has the property that the sum of its terms is \(n \). Since \(C' \) is an odd cycle, all three colors 1, 2 and 3 must appear in \(s \). Furthermore, since the sum \(\sum_{i=1}^n a_i \) is even and the average term in this sum is 2, the colors 1 and 3 must appear an equal number of times, implying that the color 2 must appear an odd number of times in \(s \).

First, we show that neither 1, 2, 1 nor 3, 2, 3 can occur as a subsequence of \(s \). If 1, 2, 1 occurs as a subsequence of \(s \), then \(C' \) contains the path \((v_i, v_{i+1}, v_{i+3}, v_{i+4}) \) for some \(i \) with \(1 \leq i \leq n \) where the subscripts are expressed as integers modulo \(n \). This, however, implies that \((v_{i-1}, v_{i+2}, v_{i+5}) \) is a path on \(C' \) and that 3, 3 is a subsequence of \(s \), which is impossible. If 3, 2, 3 occurs as a subsequence of \(s \), then \(C' \) contains the path \((v_i, v_{i+3}, v_{i+5}, v_{i+8}) \) for some \(i \) (\(1 \leq i \leq n \)). Since \(C' \) proceeds about \(\vec{C}_n \) twice, \((v_{i+1}, v_{i+2}, v_{i+4}, v_{i+6}, v_{i+7}) \) is also a path on \(C' \) and so 1, 2, 2, 1 is a subsequence of \(s \), which is impossible.

Therefore, each occurrence of the color 2 in \(s \) must occur as 1, 2, 3 or 3, 2, 1. If 1, 2, 3 occurs in \(s \), then \(C' \) contains the path \((v_i, v_{i+1}, v_{i+3}, v_{i+6}) \) for some \(i \) (\(1 \leq i \leq n \)), implying that \(C' \) also contains \((v_{i-1}, v_{i+2}, v_{i+4}, v_{i+5}) \) and so 3, 2, 1 is a subsequence (later) in \(s \). Similarly, if 3, 2, 1 occurs in \(s \), then 1, 2, 3 occurs (later) in \(s \). That is, the subsequences 1, 2, 3 and 3, 2, 1 occur in pairs in \(s \), implying that 2 appears an even number of times in \(s \), which is a contradiction.

We next show that \(\text{hce}(\vec{C}_7) = \text{hce}(\vec{C}_9) = 5 \), beginning with \(\text{hce}(\vec{C}_7) = 5 \).

Proposition 4.5. \(\text{hce}(\vec{C}_7) = 5 \).

Proof. Let \(D = \vec{C}_7 = (v_1, v_2, \ldots, v_7, v_1) \). Since the cyclic sequence
\[
s : 1, 5, 3, 2, 1, 5, 4
\]
corresponds to the properly colored Hamiltonian cycle
\[
(v_1, v_2, v_7, v_3, v_5, v_6, v_4, v_1)
\]
in \(D^5 \), it follows that \(\text{hce}(\vec{C}_7) \leq 5 \). By Lemma 4.4, \(\text{hce}(\vec{C}_7) \geq 4 \). Thus \(\text{hce}(\vec{C}_7) = 4 \) or \(\text{hce}(\vec{C}_7) = 5 \). We show that \(\text{hce}(\vec{C}_7) = 5 \).
Assume, to the contrary, that $\text{hce}(\vec{C}_7) = 4$. Then D^4 contains a properly colored Hamiltonian cycle C'. Corresponding to C' is a cyclic sequence of colors $s : a_1, a_2, \ldots, a_7$, where $\sum_{i=1}^7 a_i = 14$ or $\sum_{i=1}^7 a_i = 21$. Necessarily, at least one of the terms in s is the color 4, say $a_4 = 4$. Since the sum of the terms in no proper subsequence of s is a multiple of 7, it follows that (1) neither a_3 nor a_5 is 3 and (2) $\{a_3, a_5\} \neq \{1, 2\}$. Hence either $a_3 = a_5 = 1$ or $a_3 = a_5 = 2$. First, assume that $a_3 = a_5 = 1$. Thus either $a_1 + a_2 + a_6 + a_7 = 8$ or $a_1 + a_2 + a_6 + a_7 = 15$. Since no two consecutive terms in s are 4, it follows that $a_1 + a_2 + a_6 + a_7 = 8$.

If one of the colors a_1, a_2, a_6 and a_7 is 4, then two of them are 1, contradicting the assumption of the case. Again, the assumption of the case implies that no two the colors a_1, a_2, a_6, a_7 can be 1. Consequently, we may assume that $s : 1, 2, 1, 4, 1, 3, 2$. Since $a_2 + a_3 + a_4 = 7$, a contradiction is produced. Next, assume that $a_3 = a_5 = 2$. First, we observe that neither a_2 nor a_6 is 1 since the sum of the terms in no proper subsequence of s is 7. Also, since the sum of the terms in no proper subsequence of s is 14, it cannot occur that $a_2 = a_6 = 3$. Therefore, either $a_2 = a_6 = 4$ or we may assume that $a_2 = 3$ and $a_6 = 4$. If $a_2 = a_6 = 4$, then $a_1 \notin \{1, 2, 3, 4\}$, for otherwise, the sum of the terms in a proper subsequence of s is a multiple of 7; if $a_2 = 3$ and $a_6 = 4$, then $a_7 \notin \{1, 2, 3, 4\}$, a contradiction.

Proposition 4.6. $\text{hce}(\vec{C}_9) = 5$.

Proof. Let $D = \vec{C}_9 = (v_1, v_2, \ldots, v_9, v_1)$. Since the cyclic sequence $s : 1, 4, 3, 4, 3, 5, 2, 3, 2$ corresponds to the properly colored Hamiltonian cycle

$$(v_1, v_2, v_6, v_9, v_4, v_7, v_3, v_5, v_8, v_1)$$

in D^5, it follows that $\text{hce}(\vec{C}_9) \leq 5$. By Lemma 4.4, $\text{hce}(\vec{C}_9) \geq 4$. Thus $\text{hce}(\vec{C}_9) = 4$ or $\text{hce}(\vec{C}_9) = 5$. We show that $\text{hce}(\vec{C}_9) = 5$.

Assume, to the contrary, that $\text{hce}(\vec{C}_9) = 4$. Then D^4 contains a properly colored Hamiltonian cycle C'. Corresponding to C' is a cyclic sequence of colors $s : a_1, a_2, \ldots, a_9$, where $\sum_{i=1}^9 a_i = 18$ or $\sum_{i=1}^9 a_i = 27$. (There is no proper subsequence of s, the sum of whose terms is a multiple of 9.) We consider two cases.

Case 1. $\sum_{i=1}^9 a_i = 18$. Then the cycle C' proceeds about \vec{C}_9 exactly twice. Since at least one of the terms in s is the color 4, we may assume that (v_1, v_5) is a path on C'. However then, (v_2, v_3, v_4) is also path on C', implying that $1, 1$ is a subsequence of s, which is impossible.

Case 2. $\sum_{i=1}^9 a_i = 27$. Consider the three subsequences of s,

$s_1 : a_1, a_2, a_3, s_2 : a_4, a_5, a_6, s_3 : a_7, a_8, a_9$,

where σ_i is the sum of the terms in s_i for $i = 1, 2, 3$. Necessarily, no σ_i has the value 9. Since $\sigma_1 + \sigma_2 + \sigma_3 = 27$, two of the numbers $\sigma_1, \sigma_2, \sigma_3$ exceed 9 or two.
are less than 9. First assume that two of the numbers \(\sigma_1, \sigma_2, \sigma_3 \) exceed 9, say \(\sigma_1 \) and \(\sigma_2 \). Thus each of \(\sigma_1 \) and \(\sigma_2 \) is 10 or 11. If \(\sigma_1 = 11 \), then \(s_1 : 4, 3, 4 \). If \(\sigma_1 = 10 \), then \(s_1 : 4, 2, 4 \) or \(s_1 : 3, 4, 3 \). Since \(a_3 \neq a_4 \), we may assume that \(s_1 : 3, 4, 3 \) and either \(s_2 : 4, 2, 4 \) or \(s_2 : 4, 3, 4 \). Since \(a_3 + a_4 + a_5 \neq 9 \), it follows that \(s_1 : 3, 4, 3 \) and \(s_2 : 4, 3, 4 \). Thus \(\sigma_3 = 6 \), which implies that \(a_7 + a_8 + a_9 + a_1 = 9 \), producing a contradiction. Next, assume that two of the numbers \(\sigma_1, \sigma_2, \sigma_3 \) are less than 9, say \(\sigma_1 \) and \(\sigma_3 \). Thus \(\sigma_2 = 11 \), which implies that \(s_2 : 4, 3, 4 \). Hence \(\sigma_1 = \sigma_3 = 8 \). Consequently, \(s_1 \) is one of (1) 4, 3, 1, (2) 4, 1, 3 or (3) 1, 4, 3; while \(s_3 \) is one of (1') 1, 3, 4, (2') 3, 1, 4 or (3') 3, 4, 1. Since \(a_1 \neq a_9, a_9 + a_1 + a_2 \neq 9 \) and \(a_8 + a_9 + a_1 \neq 9 \), none of these are possible.

We now show that \(hce(C_n) = 5 \) for each odd integer \(n \geq 7 \).

Figure 4. Properly colored Hamiltonian cycles in the 5th powers of \(\tilde{C}_{11} \) and \(\tilde{C}_{17} \).

Theorem 4.7. For every odd integer \(n \geq 7 \), \(hce(C_n) = 5 \).

Proof. Let \(D = \tilde{C}_n = (v_1, v_2, \ldots, v_n, v_1) \). We have seen by Propositions 4.5 and 4.6 that \(hce(C_7) = hce(C_9) = 5 \). Hence we may assume that \(n \geq 11 \). We first show that \(hce(C_n) \leq 5 \). There are three cases, according to whether \(n \) is congruent to 5, 1 or 3 modulo 6.

Case 1. \(n \equiv 5 \pmod{6} \). First, observe that the cyclic sequence
\[
s_{11} : 5, 1, 3, 4, 2, 3, 5, 2, 5, 2, 1
\]
corresponds to the properly colored Hamiltonian cycle
\[
C'_{11} = (v_1, v_6, v_7, v_{10}, v_3, v_5, v_8, v_2, v_4, v_9, v_{11}, v_1)
\]
shown in Figure 4(a) in the 5th power of \(\tilde{C}_{11} \); while the cyclic sequence
\[
s_{17} : 5, 1, 5, 1, 3, 4, 2, 4, 2, 3, 5, 2, 4, 2, 5, 2, 1
\]
corresponds to the properly colored Hamiltonian cycle
\[
(1) \quad C'_{17} = (v_1, v_6, v_7, v_{12}, v_{16}, v_3, v_5, v_9, v_{11}, v_{14}, v_2, v_4, v_8, v_{10}, v_{15}, v_{17}, v_1)
\]
shown in Figure 4(b) in the 5th power of \vec{C}_{17}. Thus $hce(\vec{C}_{11}) \leq 5$ and $hce(\vec{C}_{17}) \leq 5$. For the cycle C'_{17} (in (1) and in Figure 4(b)), let $n = 17$ and relabel v_i

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig5.png}
\caption{Properly colored Hamiltonian cycles in the 5th powers of \vec{C}_{13} and \vec{C}_{19}.}
\end{figure}

(1 $\leq i \leq 17 = n$) as v_{i+6} and delete the arcs $(v_{n+6}, v_7), (v_{n+5}, v_9), (v_{n+3}, v_8)$. We next add vertices v_1, v_2, \ldots, v_6 along with all arcs of C'_{17} incident with and directed away from v_1, v_2, \ldots, v_6. Finally, we add the arcs $(v_{n+6}, v_1), (v_{n+5}, v_3), (v_{n+3}, v_2)$. This produces a properly colored Hamiltonian cycle C' for the 5th power of \vec{C}_{23}. Corresponding to this cycle is the cyclic sequence

$s' : 5, 1, 5, 1, 3, 4, 2, 4, 2, 4, 2, 3, 5, 2, 4, 2, 5, 2, 1$.

By first letting $n = 23$ and then proceeding successively as above, we obtain a properly colored Hamiltonian cycle in the 5th power of \vec{C}_n for each $n \geq 29$ such that $n \equiv 5 \pmod{6}$. Such a cycle also corresponds to the cyclic sequence obtained by inserting in s' (a) the sequence 5, 1 between 5, 1 and 3, 4, (b) the sequence 2, 4 between 2, 4 and 2, 3 and (c) the sequence 2, 4 between 2, 4 and 2, 5.

\textbf{Case 2.} $n \equiv 1 \pmod{6}$. First, observe that the cyclic sequence

$s_{13} : 5, 1, 5, 1, 3, 1, 4, 3, 4, 3, 4, 1, 4$

corresponds to the properly colored Hamiltonian cycle

$C'_{13} = (v_1, v_6, v_7, v_12, v_13, v_3, v_4, v_8, v_11, v_2, v_5, v_9, v_{10}, v_1)$

shown in Figure 5(a) in the 5th power of \vec{C}_{13}; while the cyclic sequence

$s_{19} : 5, 1, 5, 1, 5, 1, 3, 1, 4, 2, 4, 3, 4, 3, 4, 2, 4, 1, 4$

corresponds to the properly colored Hamiltonian cycle

\begin{equation}
C'_{19} = (v_1, v_6, v_7, v_{12}, v_{13}, v_{18}, v_{19}, v_3, v_4, v_8, v_{10}, v_{14}, v_{17}, v_5, v_9, v_{11}, v_{15}, v_{16}, v_1)
\end{equation}

shown in Figure 5(b) in the 5th power of \vec{C}_{19}. Thus $hce(\vec{C}_{13}) \leq 5$ and $hce(\vec{C}_{19}) \leq 5$. For the cycle C'_{19} (in (2) and in Figure 5(b)), let $n = 19$ and relabel v_i
We next add vertices \(v_1, v_2, \ldots, v_6 \) along with all arcs of \(C_9 \) incident with and directed away from \(v_1, v_2, \ldots, v_6 \). Finally, we add the arcs \((v_{n+6}, v_1), (v_{n+5}, v_3), (v_{n+4}, v_2)\). This produces a properly colored Hamiltonian cycle \(C' \) for the 5th power of \(\tilde{C}_{25} \). Corresponding to this cycle is the cyclic sequence

\[
s' : 5, 1, 5, 1, 5, 1, 3, 1, 4, 2, 4, 2, 4, 3, 4, 2, 4, 1, 4.
\]

By first letting \(n = 25 \) and then proceeding successively as above, we obtain a properly colored Hamiltonian cycle in the 5th power of \(\tilde{C}_n \) for every integer \(n \geq 31 \) such that \(n \equiv 1 \pmod{6} \). Such a cycle also corresponds to the cyclic sequence obtained by inserting in \(s' \) (a) the sequence 5, 1 between between 5, 1 and 3, 1, 4, (b) the sequence 2, 4 after 3, 1, 4 and (c) the sequence 2, 4 after 3, 4, 3, 4.

Case 3. \(n \equiv 3 \pmod{6} \). First, observe that the cyclic sequence

\[
s_{15} : 5, 1, 5, 1, 5, 1, 4, 2, 5, 2, 3, 4, 2, 3, 2
\]

corresponds to the properly colored Hamiltonian cycle

\[
C'_{15} = (v_1, v_6, v_7, v_{12}, v_{13}, v_3, v_4, v_8, v_{10}, v_{15}, v_2, v_5, v_9, v_{11}, v_{14}, v_1)
\]

shown in Figure 6(a) in the 5th power of \(\tilde{C}_{15} \); while the cyclic sequence

\[
s_{21} : 5, 1, 5, 1, 5, 1, 5, 1, 4, 2, 4, 2, 5, 2, 3, 4, 2, 4, 3, 2
\]

corresponds to the properly colored Hamiltonian cycle

\[
(3) \quad C'_{21} = (v_1, v_6, v_7, v_{12}, v_{13}, v_{18}, v_{19}, v_3, v_4, v_8, v_{10}, v_{14}, v_{16}, v_{21}, v_2, v_5, v_9, v_{11}, v_{15}, v_{17}, v_{20}, v_1)
\]

shown in Figure 6(b) in the 5th power of \(\tilde{C}_{21} \). Thus \(\text{hce}(\tilde{C}_{15}) \leq 5 \) and \(\text{hce}(\tilde{C}_{21}) \leq 5 \).

Figure 6. Properly colored Hamiltonian cycles in the 5th powers of \(\tilde{C}_{15} \) and \(\tilde{C}_{21} \).

For the cycle \(C'_{21} \) (in (3) and in Figure 6(b)), let \(n = 21 \) and relabel \(v_i \) (\(1 \leq i \leq 21 = n \)) as \(v_{i+6} \) and delete the arcs \((v_{n+6}, v_8), (v_{n+5}, v_7), (v_{n+4}, v_9)\). We next
add vertices \(v_1, v_2, \ldots, v_6 \) along with all arcs of \(C'_{21} \) incident with and directed away from \(v_1, v_2, \ldots, v_6 \). Finally, we add the arcs \((v_{n+6}, v_2), (v_{n+5}, v_1), (v_{n+4}, v_3)\).

This produces a properly colored Hamiltonian cycle \(C' \) for the 5th power of \(C_n \). Corresponding to this cycle is the cyclic sequence

\[s' : 5, 1, 5, 1, 5, 1, 5, 1, 5, 1, 4, 2, 4, 2, 4, 2, 5, 2, 3, 4, 2, 4, 2, 3, 2. \]

By first letting \(n = 27 \) and then proceeding successively as above, we obtain a properly colored Hamiltonian cycle in the 5th power of \(C_n \) for every integer \(n \) such that \(n \geq 33 \) and \(n \equiv 3 \pmod{6} \). Such a cycle also corresponds to the cyclic sequence obtained by inserting in \(s' \) (a) the sequence 5, 1 between 5, 1 and 4, 2, (b) the sequence 2, 4 between 2, 4 and 2, 5 and (c) the sequence 2, 4 between 2, 4 and 2, 3.

Next, we show that \(\text{hce}(\vec{C}_n) \geq 5 \). We have seen by Lemma 4.4 that \(\text{hce}(\vec{C}_n) \geq 4 \) for every odd integer \(n \geq 7 \). Thus it remains only to show that \(\text{hce}(\vec{C}_n) \neq 4 \) for all such integers \(n \). Assume, to the contrary, that the distance-colored digraph \(D^4 \) contains a properly colored Hamiltonian cycle \(C \), which we assume begins and ends at \(v_1 \). Thus, the arcs of \(C \) are colored with elements of the set \(\{1, 2, 3, 4\} \).

Since \(\text{hce}(\vec{C}_n) \geq 4 \), at least one arc of \(C \) is colored 4, say \((v_i, v_{i+4})\) is colored 4 for some \(i \). If the cycle \(C \) proceeds about \(\vec{C}_n \) only twice, then \(C \) must contain the path \((v_{i+1}, v_{i+2}, v_{i+3})\), which implies that two consecutive arcs of \(C \) are colored 1, which is impossible. Consequently, \(C \) proceeds about \(\vec{C}_n \) exactly three times.

We claim that no arc of \(C \) is colored 1. Suppose that this is not the case. Then one or more arcs of \(C \) are colored 1. We may assume that \((v_1, v_2)\) is colored 1 and this is the first arc of \(C \). Thus \((v_2, v_3)\) is not an arc of \(C \). Let \(v_{k+1} \) \((2 \leq k \leq n)\) be the next vertex of \(C \) that is incident with an arc colored 1, where \(v_{n+1} = v_1 \).

Therefore, no arc of \(C \) that is incident with any of \(v_3, v_4, \ldots, v_k \) is colored 1. We refer to the set \(\{v_1, v_2, \ldots, v_k\} \) of vertices as a block of \(C \), where the block is even or odd according to whether \(k \) is even or odd. We show that this block is even.

First, we show that \((v_n, v_4)\) and \((v_n-1, v_3)\) are arcs of \(C \). Certainly, \(v_n \) is adjacent to either \(v_3 \) or \(v_4 \). If \((v_n, v_3)\) is an arc of \(C \), then \((v_1, v_2)\) and \((v_n, v_3)\) belong to two of the three distinct paths that pass by \(v_1 \) as we proceed about \(\vec{C}_n \) on \(C \). However then, the third path that passes by \(v_1 \) must contain an arc \((v_j, v_1)\), where \(j < n \) and \(\ell > 3 \), which is impossible. Hence \((v_n, v_4)\) is an arc on \(C \), which implies that \((v_{n-1}, v_3)\) is an arc on \(C \).

In summary, the cycle \(C \) contains the arc \((v_1, v_2)\) colored 1 and the arcs \((v_n, v_4)\) and \((v_{n-1}, v_3)\), both colored 4. The vertex \(v_2 \) is adjacent to either \(v_5 \) or \(v_4 \). We consider these two cases.

Case 1. \((v_2, v_5)\) is an arc on \(C \). In this case, \((v_3, v_6)\) and \((v_4, v_7)\) are arcs of \(C \). This implies that \((v_5, v_9)\) is an arc of \(C \) (see Figure 7). The vertex \(v_{n-2} \) is adjacent to either \(v_{n-1}, v_n \) or \(v_1 \). We consider these three subcases.

Subcase 1.1. \((v_{n-2}, v_{n-1})\) is an arc of \(C \). Since \((v_{n-2}, v_{n-1})\) is an arc of \(C \) colored 1, it follows by the previous discussion that \((v_{n-3}, v_n)\) is not an arc of \(C \).
and so \((v_{n-3}, v_1)\) is an arc of \(C\). This, however, implies that \((v_{n-4}, v_n)\) is an arc of \(C\) colored 4, which is impossible since \((v_n, v_4)\) is also an arc of \(C\) colored 4.

Subcase 1.2. \((v_{n-2}, v_n)\) is an arc of \(C\). If \((v_7, v_8)\) is an arc of \(C\) colored 1, then the block is even. Thus, we may assume that \((v_7, v_8)\) is not an arc of \(C\). This implies that \((v_7, v_{11})\) is an arc of \(C\). If \(n = 11\), then a contradiction is produced since \((v_n, v_4) = (v_{11}, v_4)\) is also an arc of \(C\). Thus, \(n \geq 13\) and then \((v_6, v_8)\) must be an arc of \(C\). This implies that \((v_8, v_{10})\) cannot be an arc of \(C\). Thus \((v_9, v_{10})\) is an arc of \(C\) colored 1 and the block is even.

Subcase 1.3. \((v_{n-2}, v_1)\) is an arc of \(C\). If \((v_7, v_8)\) is an arc of \(C\), then the block is even; otherwise, \((v_7, v_{11})\) is an arc of \(C\). As we saw in Subcase 1.2, a contradiction is produced if \(n = 11\). Thus, \(n \geq 13\). In this case, \((v_6, v_8)\) and \((v_8, v_{12})\) are arcs of \(C\). From this, it follows that \((v_9, v_{10})\) is an arc of \(C\) and the block is even.

Case 2. \((v_2, v_6)\) is an arc of \(C\). In this case, \((v_3, v_5)\) and \((v_4, v_7)\) are also arcs of \(C\). See Figure 8. Then \(v_5\) is adjacent to either \(v_8\) or \(v_9\). We consider these two subcases.

Subcase 2.1. \((v_5, v_8)\) is an arc of \(C\). Here, both \((v_6, v_9)\) and \((v_7, v_{11})\) are arcs of \(C\). Again, if \(n = 11\), then a contradiction is produced since \((v_n, v_4) = (v_{11}, v_4)\) is an arc of \(C\). Thus, \(n \geq 13\). If \((v_9, v_{10})\) is an arc of \(C\), then the block is even; otherwise, \((v_9, v_{13})\) is an arc of \(C\) as is \((v_8, v_{10})\), which implies that \((v_{11}, v_{12})\) is an arc of \(C\) and once again the block is even.

Subcase 2.2. \((v_5, v_9)\) is an arc of \(C\). If \((v_7, v_8)\) is an arc of \(C\), then the block is even; otherwise, \((v_8, v_9)\) is an arc of \(C\), which implies that \((v_7, v_{11})\) is an arc of

![Diagram](image.png)
C. As we have seen that $n \neq 11$. Thus $n \geq 13$ and then (v_8, v_{12}) is an arc of C. From this, it follows that (v_9, v_{10}) is an arc of C and so the block is even.

Therefore, each arc of C colored 1 belongs to an even block. Since the distinct blocks produce a partition of $V(\vec{C}_n)$, it follows that n is even, which is a contradiction. Hence no arc of C is colored 1. Consequently, each arc of a properly colored Hamiltonian cycle C of the distance-colored digraph D^4 is colored 2, 3 or 4.

Let $s : a_1, a_2, \ldots, a_n$ be the corresponding cyclic sequence of colors of C, where, as we noted, $a_i \in \{2, 3, 4\}$ for each i ($1 \leq i \leq n$). Also $\sum_{i=1}^{n} a_i = 3n$. Since $(\sum_{i=1}^{n} a_i)/n = 3$ and n is odd, the color 3 appears an odd number of times in s and the colors 2 and 4 occur an equal number of times.

First, we show that 2, 3 is not a subsequence of s, for suppose that it is. We may assume that (v_3, v_5) and (v_5, v_8) are arcs of C. Observe that (v_2, v_6) and (v_4, v_7) are arcs of C. Then v_1 is adjacent to no vertex of D on C, a contradiction.

Consequently, each term 3 in s is immediately preceded by 4 in s. Since the number of terms 2 and the number of terms 4 are equal, each subsequence of s between consecutive occurrences of 3 must alternate 2 and 4, beginning with 2 and ending with 4. In particular, each occurrence of 3 in s is immediately followed by 2, 4, that is, 3, 2, 4 is a subsequence of s. We may assume therefore that C contains the arcs (v_1, v_4), (v_4, v_6) and (v_6, v_{10}). Note that (v_2, v_5) and (v_3, v_7) must be arcs on C. However then, v_5 is adjacent to no vertex of D on C, a contradiction.

Hence, D^4 contains no properly colored Hamiltonian cycle. Therefore, $hce(\vec{C}_n) \geq 5$ and so $hce(\vec{C}_n) = 5$ for each odd integer $n \geq 7$.

In summary, $hce(\vec{C}_3)$ and $hce(\vec{C}_5)$ do not exist and

$$hce(\vec{C}_n) = \begin{cases} 3 & \text{if } n \geq 4 \text{ is even}, \\ 5 & \text{if } n \geq 7 \text{ is odd}. \end{cases}$$

5. Distance-colored Digraphs with Prescribed Hamiltonian Coloring Exponent

We saw that there are strong oriented graphs D for which $hce(D)$ does not exist. On the other hand, for each integer $k \geq 2$, there exists a strong oriented graph D such that $hce(D) = k$. In fact, more can be said. We now present a result that is analogous to Theorem 1.1.

Theorem 5.1. For each integer $k \geq 2$, there exists a strong oriented graph D_k such that $hce(D_k) = k$. Furthermore, every properly colored Hamiltonian cycle in the kth power of D_k must use all k colors.
Proof. By Theorem 3.1, we may assume that \(k \geq 3 \). We consider two cases, according to whether \(k \) is even or \(k \) is odd.

Case 1. \(k \) is even. First, we define four oriented graphs \(H_1, H_2, H_3 \) and \(H_4 \) as follows:
- \(H_1 \) is a transitive tournament of order \(2k \) with the Hamiltonian path \((u_1, u_2, \ldots, u_{2k}) \),
- \(H_2 = (v_1, v_2, \ldots, v_k) \) is a directed path of order \(k \),
- \(H_3 \) is a transitive tournament of order \(2k \) with the Hamiltonian path \((w_1, w_2, \ldots, w_{2k}) \),
- \(H_4 = (x_1, x_2, \ldots, x_k) \) is a directed path of order \(k \).

The oriented graph \(D_k \) is then constructed from \(H_1, H_2, H_3 \) and \(H_4 \) by adding the arcs \((w_{2k}, v_1), (v_k, w_1), (w_2k, x_1) \) \(\) and \((x_k, u_1) \) (see Figure 9). Since \((u_1, u_2, \ldots, u_{2k}, v_1, v_2, \ldots, v_k, w_1, w_2, \ldots, w_{2k}, x_1, x_2, \ldots, x_k, u_1) \) is a Hamiltonian cycle in \(D_k \), it follows that \(D_k \) is a strong oriented graph.

We first show that \(\text{hec}(D_k) \geq k \). Assume, to the contrary, that the distance-colored digraph \(D_k^{k-1} \) contains a properly colored Hamiltonian cycle \(C^* \). Since, for each pair \(i, j \) with \(1 \leq i, j \leq 2k \) and \(i < j \), we have \(d_{D_k}(w_i, w_j) = 1 \) and \(d_{D_k}(w_j, w_i) > k \), at most two vertices of \(H_3 \) can appear consecutively on \(C^* \). On the other hand, \(v_2, v_3, \ldots, v_k \) are the only vertices of \(D_k \) that are adjacent to vertices of \(H_3 \) in \(D_k^{k-1} \). This implies that \(C^* \) encounters \(H_3 \) at most \(k - 1 \) times and so \(C^* \) contains at most \(2(k-1) \) vertices of \(H_3 \), which is a contradiction. Next, we show that \(\text{hec}(D_k) \leq k \) by constructing a properly colored Hamiltonian cycle in \(D_k^k \). Consider the \(k \) directed paths \(P_i = (u_{k+i}, v_i, w_i), \) \(1 \leq i \leq k \), of order 3 in \(D_k^k \). Observe that \(d_{D_k}(u_{k+i}, v_i) = 1 + i \) for \(1 \leq i \leq k - 1 \), \(d_{D_k}(u_{2k}, v_k) = k \), \(d_{D_k}(v_1, w_1) = k \) and \(d_{D_k}(v_i, w_i) = k + 2 - i \) for \(2 \leq i \leq k \). Also, \(k \geq 4 \) is even and so \(k + 1 \) is odd. These observations imply that

1. \(2 \leq d_{D_k}(u_{k+i}, v_i) \leq k \) and \(2 \leq d_{D_k}(v_i, w_i) \leq k \) for \(1 \leq i \leq k \),
(2) \(d_{D^k}(u_{k+i}, v_i) \neq d_{D^k}(v_i, w_i)\) for \(1 \leq i \leq k\).

Similarly, consider the \(k\) directed paths \(Q_i = (w_{k+i}, x_i), 1 \leq i \leq k\), of order 3 in \(D^k\). By symmetry, we have

(3) \(2 \leq d_{D^k}(w_{k+i}, x_i) \leq k\) and \(2 \leq d_{D^k}(x_i, u_i) \leq k\) for \(1 \leq i \leq k\),

(4) \(d_{D^k}(w_{k+i}, x_i) \neq d_{D^k}(x_i, u_i)\) for \(1 \leq i \leq k\).

Since \(d_{D^k}(u_i, u_{k+i}) = 1\) for \(1 \leq i \leq k - 1\), \(d_{D^k}(w_i, w_{k+i}) = 1\) for \(1 \leq i \leq k\) and \(d_{D^k}(u_k, u_{k+1}) = 1\), it follows by (1)–(4) that \((P_1, Q_1, P_2, Q_2, \ldots, P_k, Q_k, u_{k+1})\) is a properly colored Hamiltonian cycle in \(D^k\).

It remains to show that every properly colored Hamiltonian cycle in the \(k\)th power of \(D^k\) must use all colors 1, 2, \ldots, \(k\). Let \(C\) be any properly colored Hamiltonian cycle in \(D^k\). As we saw, at most two vertices of \(H_3\) can appear consecutively on \(C\). Thus \(C\) must encounter \(H_3\) at least \(k\) times. On the other hand, since \(v_1, v_2, \ldots, v_k\) are the only vertices that are adjacent to vertices of \(H_3\) in \(D^k\), it follows that \(C\) encounters \(H_3\) exactly \(k\) times. Moreover, \(C\) enters \(H_3\) immediately after encountering a vertex \(v_i\) for some \(i\) with \(1 \leq i \leq k\). Hence, \(C\) contains an arc \((v_i, w)\) for each \(i\) with \(1 \leq i \leq k\) and for some \(w \in V(H_3)\). Since \(d_{D^k}(v_1, w_j) > k\) for \(2 \leq j \leq k\), it follows that \((v_1, w_1)\) is an arc of \(C\). Also, we saw that \(d_{D^k}(v_i, w_j) = k + 2 - i\) for all \(i, j\) with \(2 \leq i \leq k\) and \(2 \leq j \leq k\). This implies that \(C\) contains at least one arc colored by each of the colors 2, 3, \ldots, \(k\). Furthermore, the order of \(H_3\) is 2\(k\) and so two vertices of \(H_3\) must appear consecutively on \(C\), which implies that \(C\) contains at least one arc colored 1.

Case 2. \(k\) is odd. We construct a strong oriented graph \(D_k\) in the same fashion as the one in Case 1. First, we define four oriented graphs \(H_1, H_2, H_3\) and \(H_4\) as follows:

- \(H_1\) is a transitive tournament of order 2\(k\) with the Hamiltonian path \((u_1, u_2, \ldots, u_{2k})\),
- \(H_2 = (v_1, v_2, \ldots, v_{k-1})\) is a directed path of order \(k - 1\),
- \(H_3\) is a transitive tournament of order 2\(k\) with the Hamiltonian path \((w_1, w_2, \ldots, w_{2k})\),
- \(H_4 = (x_1, x_2, \ldots, x_{k-1})\) is a directed path of order \(k - 1\).

The oriented graph \(D_k\) is then constructed from \(H_1, H_2, H_3\) and \(H_4\) by adding the arcs \((u_{2k}, v_1), (v_{k-1}, w_1), (w_{2k}, u_1),\) and \((x_{k-1}, u_1)\). (See Figure 9, where we replace \(v_k\) by \(v_{k-1}\) and replace \(x_k\) by \(x_{k-1}\).) Since \((u_1, u_2, \ldots, u_{2k}, v_1, v_2, \ldots, v_{k-1}, w_1, w_2, \ldots, w_{2k}, x_1, x_2, \ldots, x_{k-1}, u_1)\) is a Hamiltonian cycle in \(D^k\), it follows that \(D_k\) is a strong oriented graph.

We first show that \(hcc(D_k) \geq k\). Assume, to the contrary, that the distance-colored digraph \(D^{k-1}_k\) contains a properly colored Hamiltonian cycle \(C^*\). Since
\(v_1, v_3, \ldots, v_{k-1} \) are the only vertices of \(D_k \) that are adjacent to vertices of \(H_3 \) in \(D_k^{k-1} \), it follows that that \(C^* \) encounters \(H_3 \) at most \(k-1 \) times and so \(C^* \) contains at most \(2(k-1) \) vertices of \(H_3 \), which is a contradiction. Next, we show that \(\text{hce}(D_k) \leq k \) by constructing a properly colored Hamiltonian cycle in \(D_k^k \). Consider the \(k \) directed paths \(P_i = (u_{k+i}, v_i, w_i) \), \(1 \leq i \leq k-1 \), and \(P_k = (u_{2k}, w_1) \) of order 3 in \(D_k^k \). Observe that \(d_{D_k}(u_{k+i}, v_i) = 1 + i \) for \(1 \leq i \leq k-1 \), \(d_{D_k}(v_i, w_i) = k + 1 - i \) for \(1 \leq i \leq k-1 \) and \(d_{D_k}(u_{2k}, w_1) = k \). Furthermore, \(k \geq 3 \) is odd and \(k+1 \) is even. Thus

\[
(1) \quad 2 \leq d_{D_k}(u_{k+i}, v_i) \leq k \quad \text{and} \quad 2 \leq d_{D_k}(v_i, w_i) \leq k \quad \text{for} \quad 1 \leq i \leq k,
\]

\[
(2) \quad d_{D_k}(u_{k+i}, v_i) \neq d_{D_k}(v_i, w_i) \quad \text{for} \quad 1 \leq i \leq k-1.
\]

Similarly, consider the \(k \) directed paths \(Q_i = (w_{k+i}, u_i, i) \) \((1 \leq i \leq k-1)\) and \(Q_k = (u_{2k}, u_1) \) of order 3 in \(D_k^k \). By symmetry, we have

\[
(3) \quad 2 \leq d_{D_k}(w_{k+i}, u_i) \leq k \quad \text{and} \quad 2 \leq d_{D_k}(x_i, u_i) \leq k-1 \quad \text{for} \quad 1 \leq i \leq k-1,
\]

\[
(4) \quad d_{D_k}(w_{k+i}, u_i) \neq d_{D_k}(x_i, u_i) \quad \text{for} \quad 1 \leq i \leq k-1.
\]

Since \(d_{D_k}(u_i, u_{k+i+1}) = 1 \) for \(1 \leq i \leq k-1 \), \(d_{D_k}(w_i, w_{k+i}) = 1 \) for \(1 \leq i \leq k \) and \(d_{D_k}(u_k, u_{k+1}) = 1 \), it follows by (1)–(4) that \((P_1, Q_1, P_2, Q_2, \ldots, P_k, Q_k, u_{k+1}) \) is a properly colored Hamiltonian cycle in \(D_k^k \).

It remains to show that every properly colored Hamiltonian cycle in the \(k \)th power of \(D_k \) must use all colors \(1, 2, \ldots, k \). Let \(C \) be any properly colored Hamiltonian cycle in \(D_k^k \). An argument similar to the one in Case 1 shows that \(C \) must enter \(H_3 \) exactly \(k \) times. Since \(u_{2k}, v_1, v_3, \ldots, v_{k-1} \) are the only vertices of \(D_k \) that are adjacent to vertices of \(H_3 \) in \(D_k^k \), each of the vertices \(u_{2k}, v_1, v_3, \ldots, v_{k-1} \) is immediately followed by a vertex of \(H_3 \) on \(C \). This, however, requires that \(C \) contains \((u_{2k}, w_1)\) and an arc \((v_i, w)\) for each \(i \) with \(1 \leq i \leq k-1 \) and for some \(w \in V(H_3) \). Since \(d_{D_k}(u_{2k}, w_1) = k \) and \(d_{D_k}(v_i, w) = k + 1 - i \) for \(1 \leq i \leq k-1 \) and \(2 \leq j \leq k \), it follows that \(C \) contains at least one arc colored by each of the colors \(2, 3, \ldots, k \). Furthermore, the order of \(H_3 \) is \(2k \) and so two vertices of \(H_3 \) must appear consecutively on \(C \). Hence \(C \) contains an arc colored 1.

6. On the Existence of Graphs Having Distinct Strong Orientations with Different Hamiltonian Coloring Exponents

By Theorem 5.1, there exists for each integer \(k \geq 2 \) a strong oriented graph \(D \) such that \(\text{hce}(D) = k \). Equivalently, there exists a connected graph \(G \) possessing a strong orientation \(D \) such that \(\text{hce}(D) = k \). It is possible, however, that there may be another strong orientation of \(G \), resulting in a digraph \(D' \) whose Hamiltonian coloring exponent is far differ from that of \(D \). In fact, for two different strong
orientations D and D' of a connected graph, the difference between $\text{hce}(D)$ and $\text{hce}(D')$ can be arbitrarily large.

Theorem 6.1. For every positive integer p there exists a connected graph G with strong orientations D and D' such that $\text{hce}(D) - \text{hce}(D') \geq p$.

Proof. For a positive integer p, let k be an integer such that $k \geq p + 3$ and $k \equiv 0 \pmod{4}$. Now let G be the underlying graph of the strong oriented graph D_k in the proof of Theorem 5.1 when k is even. Following the same vertex labeling for D_k and the same notation for the subdigraphs H_1, H_2, H_3 and H_4 in D_k (as described in the proof of Theorem 5.1), let D'_k be the orientation of G obtained from D by replacing the two arcs (u_1, u_2k) and (u_1, u_2k) by (u_2k, u_1) and (u_2k, u_1). Now let $D = D_k$ and $D' = D'_k$. By Theorem 5.1, $\text{hce}(D) = k$. In fact, $\text{hce}(D') = 3$ as we show next.

First, we show that the cube of D' is Hamiltonian-colored. To construct a properly colored Hamiltonian cycle in the cube of D', we first define eight vertex-disjoint properly colored subpaths $A_1, A_2, B_1, B_2, C_1, C_2, D_1, D_2$ in the cubes of the subdigraphs H_1, H_2, H_3 and H_4 of D', respectively, as follows:

- In the cube of H_1, define two vertex-disjoint properly colored paths P_{u_1} and P_{u_2} of order $k - 2$ as $P_{u_1} = (u_k, u_{k-1}, u_4, \ldots, u_{k-2}, u_{k-3}), P_{u_2} = (u_2k-2, u_{k+1}, u_{2k-3}, u_{k+2}, \ldots, u_{k+2}, u_{k+1}).$ Let $A_1 = (u_2, P_{u_1}, u_2k-1)$ and $A_2 = (u_1, P_{u_2}, u_2k)$ be the subpaths of order k in the cube of H_1. Then $V(A_1) \cup V(A_2) = V(H_1)$, each of the initial and terminal arcs of A_1 and A_2 is colored 1 and A_1 and A_2 are properly colored.

- In the cube of H_2, define two vertex-disjoint paths B_1 and B_2 of order $k/2$ as $B_1 = (v_1, v_2, v_5, v_6, v_9, v_{10}, v_{13}, \ldots, v_{k-6}, v_{k-3}, v_{k-2}), B_2 = (v_3, v_4, v_7, v_8, v_{11}, v_{12}, v_{15}, \ldots, v_{k-4}, v_{k-1}, v_k).$ Observe that $V(B_1) \cup V(B_2) = V(H_2)$ and each of the initial and terminal arcs of B_1 and B_2 is colored 1. The arcs of B_1 and B_2 are colored 1 and 3 alternatively.

- In the cube of H_3, define two vertex-disjoint properly colored paths P_{w_1} and P_{w_2} of order $k - 2$ as $P_{w_1} = (w_k, w_{k-1}, w_4, \ldots, w_{k-2}, w_{k-3}), P_{w_2} = (w_2k-2, w_{k+1}, w_{2k-3}, w_{k+2}, \ldots, w_{k+2}, w_{k+1}).$ Let $C_1 = (w_1, P_{w_1}, w_{2k-1})$ and $C_2 = (w_2, P_{w_2}, w_{2k})$ be the subpaths of order k in the cube of H_3. Then $V(C_1) \cup V(C_2) = V(H_3)$, each of the initial and terminal arcs of C_1 and C_2 is colored 1 and C_1 and C_2 are properly colored.

- In the cube of H_4, define two vertex-disjoint paths D_1 and D_2 of order $k/2$ as $D_1 = (x_1, x_2, x_5, x_6, x_9, x_{10}, x_{13}, \ldots, x_{k-6}, x_{k-3}, x_{k-2}), D_2 = (x_3, x_4, x_7, x_8, x_{11}, x_{12}, x_{15}, \ldots, x_{k-4}, x_{k-1}, x_k).$ Observe that $V(D_1) \cup V(D_2) = V(H_3)$ and each of the initial and terminal arcs of D_1 and D_2 is colored 1. The arcs of D_1 and D_2 are colored 1 and 3 alternatively.
Then \((A_1, B_1, C_1, D_1, A_2, B_2, C_2, D_2, u_2)\) is a properly colored Hamiltonian cycle in the cube of \(D'\) and so \(hce(D') \leq 3\). On the other hand, \(D'\) contains an induced path \(P_3\) and so it can be shown that the square of \(D'\) is not Hamiltonian-colored. Thus \(hce(D') = 3\).

Consequently, \(hce(D) - hce(D') = k - 3 \geq p\) as desired.

\[\text{Acknowledgments}\]

We are grateful to Professor Gary Chartrand for suggesting the concept of Hamiltonian-colored digraphs to us and kindly providing useful information on this topic. Furthermore, we thank the anonymous referees whose valuable suggestions resulted in an improved paper.

\[\text{References}\]

Received 7 July 2011
Revised 10 December 2011
Accepted 21 December 2011