THE k-RAINBOW DOMATIC NUMBER OF A GRAPH

SEYYED MAHMOUD SHEIKHOLESLAMI

Department of Mathematics
Azarbaijan University of Tarbiat Moallem
Tarbriz, I.R. Iran

e-mail: s.m.sheikholeslami@azaruniv.edu

AND

LUTZ VOLKMANN

Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

For a positive integer k, a k-rainbow dominating function of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set \{1, 2, \ldots, k\} such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition \(\bigcup_{u \in N(v)} f(u) = \{1, 2, \ldots, k\} \) is fulfilled, where $N(v)$ is the neighborhood of v. The 1-rainbow domination is the same as the ordinary domination. A set \(\{f_1, f_2, \ldots, f_d\} \) of k-rainbow dominating functions on G with the property that \(\sum_{i=1}^{d} |f_i(v)| \leq k \) for each $v \in V(G)$, is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family on G is the k-rainbow domatic number of G, denoted by $d_{rk}(G)$. Note that $d_{r1}(G)$ is the classical domatic number $d(G)$. In this paper we initiate the study of the k-rainbow domatic number in graphs and we present some bounds for $d_{rk}(G)$. Many of the known bounds of $d(G)$ are immediate consequences of our results.

Keywords: k-rainbow dominating function, k-rainbow domination number, k-rainbow domatic number.

2010 Mathematics Subject Classification: 05C69.
1. Introduction

In this paper, G is a simple graph with vertex set $V = V(G)$ and edge set $E = E(G)$. The order $|V|$ of G is denoted by $n = n(G)$. For every vertex $v \in V$, the open neighborhood $N(v)$ is the set $\{u \in V(G) \mid uv \in E(G)\}$ and the closed neighborhood of v is the set $N[v] = N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is $d(v) = |N(v)|$. The minimum and maximum degree of a graph G are denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$, and the closed neighborhood of S is the set $N[S] = N(S) \cup S$. The complement of a graph G is denoted by \overline{G}. We write K_n for the complete graph of order n, C_n for a cycle of length n and P_n for a path of order n.

A subset S of vertices of G is a dominating set if $N[S] = V$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G. A domatic partition is a partition of V into dominating sets, and the domatic number $d(G)$ is the largest number of sets in a domatic partition. The domatic number was introduced by Cockayne and Hedetniemi [7]. In their paper, they showed that

\begin{equation}
\gamma(G) \cdot d(G) \leq n.
\end{equation}

For a positive integer k, a k-rainbow dominating function (kRDF) of a graph G is a function f from the vertex set $V(G)$ to the set of all subsets of the set $\{1, 2, \ldots, k\}$ such that for any vertex $v \in V(G)$ with $f(v) = \emptyset$ the condition $\bigcup_{u \in N(v)} f(u) = \{1, 2, \ldots, k\}$ is fulfilled. The weight of a kRDF f is the value $\omega(f) = \sum_{v \in V} |f(v)|$. The k-rainbow domination number of a graph G, denoted by $\gamma_{rk}(G)$, is the minimum weight of a kRDF of G. A $\gamma_{rk}(G)$-function is a k-rainbow dominating function of G with weight $\gamma_{rk}(G)$. Note that $\gamma_{r1}(G)$ is the classical domination number $\gamma(G)$. The k-rainbow domination number was introduced by Brešar, Henning, and Rall [2] and has been studied by several authors (see for example [3, 4, 5, 12]). Rainbow domination of a graph G coincides with ordinary domination of the Cartesian product of G with the complete graph, in particular, $\gamma_{rk}(G) = \gamma(G \Box K_k)$ for any graph G [2]. This implies (cf. [4]) that

\begin{equation}
\gamma_{r1}(G) \leq \gamma_{r2}(G) \leq \cdots \leq \gamma_{rk}(G) \leq n \text{ for any graph } G \text{ of order } n.
\end{equation}

Furthermore, it was proved in [8] that

\[
\min\{|V(G)|, \gamma(G) + k - 2\} \leq \gamma_{rk}(G) \leq k\gamma(G) \text{ for any } k \geq 2 \text{ and any graph } G.
\]

A set $\{f_1, f_2, \ldots, f_d\}$ of k-rainbow dominating functions of G with the property that $\sum_{i=1}^{d} |f_i(v)| \leq k$ for each $v \in V(G)$, is called a k-rainbow dominating family (of functions) on G. The maximum number of functions in a k-rainbow dominating family (kRDF family) on G is the k-rainbow domatic number of G, denoted by
The \(d_{rk}(G) \). The \(k \)-rainbow domatic number is well-defined and

\[
d_{rk}(G) \geq k, \text{ for all graphs } G
\]

since the set consisting of the function \(f_i : V(G) \rightarrow \mathcal{P}\{1,2,\ldots,k\} \) defined by \(f_i(v) = \{i\} \) for each \(v \in V(G) \) and each \(i \in \{1,2,\ldots,k\} \), forms a kRD family on \(G \).

Our purpose in this paper is to initiate the study of the \(k \)-rainbow domatic number in graphs. We first study basic properties and bounds for the \(k \)-rainbow domatic number of a graph. In addition, we determine the 2-rainbow domatic number of some classes of graphs.

2. Properties of the \(k \)-rainbow Domatic Number

In this section we mainly present basic properties of \(d_{rk}(G) \) and bounds on the \(k \)-rainbow domatic number of a graph. However, we start with a lower and an upper bound on the \(k \)-rainbow domination number.

Observation 1. If \(G \) is a graph of order \(n \), then \(\gamma_{rk}(G) \leq n - \Delta(G) + k - 1 \).

Proof. Let \(v \) be a vertex of maximum degree \(\Delta(G) \). Define \(f : V(G) \rightarrow \mathcal{P}\{1,2,\ldots,k\} \) by \(f(v) = \{1,2,\ldots,k\} \) and

\[
f(x) = \begin{cases}
\emptyset & \text{if } x \in N(v), \\
\{1\} & \text{if } x \in V(G) - N[v].
\end{cases}
\]

It is easy to see that \(f \) is a \(k \)-rainbow dominating function on \(G \) and so \(\gamma_{rk}(G) \leq n - \Delta(G) + k - 1 \).

Let \(k \geq 1 \) be an integer, and let \(G \) be a graph of order \(n \geq k \) and maximum degree \(\Delta(G) = n - 1 \). Since \(n \geq k \), we observe that \(\gamma_{rk}(G) \geq k \). If \(v \) is a vertex of maximum degree \(\Delta(G) \), then define \(f : V(G) \rightarrow \mathcal{P}\{1,2,\ldots,k\} \) by \(f(v) = \{1,2,\ldots,k\} \), \(f(x) = \emptyset \) if \(x \in V(G) \setminus \{v\} \). Because of \(d(v) = \Delta(G) = n - 1 \), \(f \) is a \(k \)-rainbow dominating function on \(G \) and thus \(\gamma_{rk}(G) \leq k \). It follows that \(\gamma_{rk}(G) = k = n - \Delta(G) + k - 1 \). This example shows that Observation 1 is sharp. The case \(k = 1 \) in Observation 1 is attributed to Berge [1]. In 1979, Walikar, Acharya and Sampathkumar [10] proved \(\gamma(G) \geq \lceil n/(\Delta(G) + 1) \rceil \) for each graph of order \(n \). Next we will give an analogous lower bound for \(\gamma_{rk}(G) \) when \(k \geq 2 \).

Theorem 2. If \(G \) is a graph of order \(n \) and maximum degree \(\Delta \), then

\[
\gamma_{r2}(G) \geq \left\lceil \frac{2n}{\Delta + 2} \right\rceil.
\]
Proof. Let f be a $\gamma_{r_2}(G)$-function and let $V_i = \{v \mid |f(v)| = i\}$ for $i = 0, 1, 2$. Then $\gamma_{r_2}(G) = |V_1| + 2|V_2|$ and $n = |V_0| + |V_1| + |V_2|$. Since each vertex of V_0 is adjacent to at least one vertex of V_2 or at least two vertices of V_1, we deduce that $|V_0| \leq \Delta|V_2| + \frac{1}{2}\Delta|V_1|$. This implies that

$$(\Delta + 2)\gamma_{r_2}(G) = 2\gamma_{r_2}(G) + \Delta(|V_1| + 2|V_2|) \geq 2\gamma_{r_2}(G) + 2|V_0|$$

$$= 2|V_1| + 4|V_2| + 2|V_0| = 2n + 2|V_2| \geq 2n,$$

and this leads to the desired bound. \blacksquare

Using inequality (2) and Theorem 2, we obtain the next result immediately.

Theorem 3. If $k \geq 2$ is an integer, and G is a graph of order n and maximum degree Δ, then

$$\gamma_{rk}(G) \geq \left\lceil \frac{2n}{\Delta + 2} \right\rceil.$$

Theorem 4. If G is a graph of order n, then $\gamma_{rk}(G) \cdot d_{rk}(G) \leq kn$. Moreover, if $\gamma_{rk}(G) \cdot d_{rk}(G) = kn$, then for each kRD family $\{f_1, f_2, \ldots, f_d\}$ on G with $d = d_{rk}(G)$, each function f_i is a $\gamma_{rk}(G)$-function and $\sum_{i=1}^{d} |f_i(v)| = k$ for all $v \in V$.

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a kRD family on G such that $d = d_{rk}(G)$. Then

$$d \cdot \gamma_{rk}(G) = \sum_{i=1}^{d} \gamma_{rk}(G) \leq \sum_{i=1}^{d} \sum_{v \in V} |f_i(v)|$$

$$= \sum_{v \in V} \sum_{i=1}^{d} |f_i(v)| \leq \sum_{v \in V} k = kn.$$

If $\gamma_{rk}(G) \cdot d_{rk}(G) = kn$, then the two inequalities occurring in the proof become equalities. Hence for the kRD family $\{f_1, f_2, \ldots, f_d\}$ on G and for each i, $\sum_{v \in V} |f_i(v)| = \gamma_{rk}(G)$. Thus each function f_i is a $\gamma_{rk}(G)$-function, and $\sum_{i=1}^{d} |f_i(v)| = k$ for all $v \in V$. \blacksquare

The case $k = 1$ in Theorem 4 leads to the well-known inequality $\gamma(G) \cdot d(G) \leq n$, given by Cockayne and Hedetniemi [7] in 1977.

Corollary 5. If k is a positive integer, and G is a graph of order $n \geq k$, then

$$d_{rk}(G) \leq n.$$

Proof. The hypothesis $n \geq k$ leads to $\gamma_{rk}(G) \geq k$. Therefore it follows from Theorem 4 that

$$d_{rk}(G) \leq \frac{kn}{\gamma_{rk}(G)} \leq \frac{kn}{k} = n,$$

and this is the desired inequality. \blacksquare
Corollary 6. If \(k \) is a positive integer, and \(G \) is isomorphic to the complete graph \(K_n \) of order \(n \geq k \), then \(d_{rk}(G) = n \).

Proof. In view of Corollary 5, we have \(d_{rk}(G) \leq n \). If \(\{v_1, v_2, \ldots, v_n\} \) is the vertex set of \(G \), then we define the function \(f_i : V(G) \to P(\{1, 2, \ldots, k\}) \) by \(f_i(v_j) = \{1, 2, \ldots, k\} \) for \(i = j \) and \(f_i(v_j) = \emptyset \) for \(i \neq j \), where \(i, j \in \{1, 2, \ldots, n\} \). Then \(\{f_1, f_2, \ldots, f_n\} \) is a kRD family on \(G \) and thus \(d_{rk}(G) = n \).

Theorem 7. If \(G \) is a graph of order \(n \geq k \), then

\[
\gamma_{rk}(G) + d_{rk}(G) \leq n + k.
\]

Proof. Applying Theorem 4, we obtain

\[
\gamma_{rk}(G) + d_{rk}(G) \leq \frac{kn}{d_{rk}(G)} + d_{rk}(G).
\]

Note that \(d_{rk}(G) \geq k \), by inequality (3), and that Corollary 5 implies that \(d_{rk}(G) \leq n \). Using these inequalities, and the fact that the function \(g(x) = x + (kn)/x \) is decreasing for \(k \leq x \leq \sqrt{kn} \) and increasing for \(\sqrt{kn} \leq x \leq n \), we obtain

\[
\gamma_{rk}(G) + d_{rk}(G) \leq \max \left\{ \frac{kn}{k} + k, \frac{kn}{n} + n \right\} = n + k,
\]

and this is the desired bound.

If \(G \) is isomorphic to the complete graph of order \(n \geq k \), then \(\gamma_{rk}(G) = k \) and \(d_{rk}(G) = n \) by Corollary 6. Thus \(\gamma_{rk}(K_n) \cdot d_{rk}(K_n) = nk \) and \(\gamma_{rk}(K_n) + d_{rk}(K_n) = n + k \) when \(n \geq k \). This example shows that Theorems 4 and 7 are sharp.

Corollary 8 (Cockayne and Hedetniemi, [7], 1977). If \(G \) is a graph of order \(n \geq 1 \), then \(\gamma(G) + d(G) \leq n + 1 \)

Theorem 9. For every graph \(G \),

\[
d_{rk}(G) \leq \delta(G) + k.
\]

Proof. Let \(\{f_1, f_2, \ldots, f_d\} \) be a kRD family on \(G \) such that \(d = d_{rk}(G) \), and let \(v \) be a vertex of minimum degree \(\delta(G) \). Since \(\sum_{u \in N[v]} |f_i(u)| \geq 1 \) for all \(i \in \{1, 2, \ldots, d\} \) and \(\sum_{u \in N[v]} |f_i(u)| < k \) for at most \(k \) indices \(i \in \{1, 2, \ldots, d\} \), we obtain

\[
k d - k(k - 1) \leq \sum_{i=1}^{d} \sum_{u \in N[v]} |f_i(u)| = \sum_{u \in N[v]} \sum_{i=1}^{d} |f_i(u)| \leq \sum_{u \in N[v]} k = k(\delta(G) + 1),
\]

and this leads to the desired bound.
To prove sharpness of Theorem 9, let \(p \geq 2 \) be an integer, and let \(G_i \) be a copy of \(K_{p+k+1} \) with vertex set \(V(G_i) = \{ v_1^i, v_2^i, \ldots, v_{p+k+1}^i \} \) for \(1 \leq i \leq p \). Now let \(G \) be the graph obtained from \(\bigcup_{i=1}^p G_i \) by adding a new vertex \(v \) and joining \(v \) to each \(v_1^i \). Define the \(k \)-rainbow dominating functions \(f_1, f_2, \ldots, f_{p+k} \) as follows: for \(1 \leq i \leq p \) and \(1 \leq s \leq k \),

- \(f_i(v_1^i) = \{ 1, 2, \ldots, k \} \),
- \(f_i(v_{j+1}^i) = \{ 1, 2, \ldots, k \} \) if \(j \in \{ 1, 2, \ldots, p \} - \{ i \} \) and \(f(x) = \emptyset \) otherwise,
- \(f_{p+s}(v) = \{ 1 \} \),
- \(f_{p+s}(v_{j+1}^i) = \{ 1, 2, \ldots, k \} \) if \(j \in \{ 1, 2, \ldots, p \} \) and \(f(x) = \emptyset \) otherwise.

It is straightforward to verify that \(f_i \) is a \(k \)-rainbow dominating function on \(G \) for each \(i \) and \(\{ f_1, f_2, \ldots, f_{p+k} \} \) is a \(k \)-rainbow dominating family on \(G \). Since \(\delta(G) = p \), we have \(d_{r_k}(G) = \delta(G) + k \).

The special case \(k = 1 \) in Theorem 9 was done by Cockayne and Hedetniemi [7]. As an application of Theorem 9, we will prove the following Nordhaus-Gaddum type result.

Theorem 10. For every graph \(G \) of order \(n \),

\[
d_{rk}(G) + d_{rk}(\overline{G}) \leq n + 2k - 1.
\]

If \(d_{rk}(G) + d_{rk}(\overline{G}) = n + 2k - 1 \), then \(G \) is regular.

Proof. It follows from Theorem 9 that

\[
d_{rk}(G) + d_{rk}(\overline{G}) \leq (\delta(G) + k) + (\delta(\overline{G}) + k)
= (\delta(G) + k) + (n - \Delta(G) - 1 + k) \leq n + 2k - 1.
\]

If \(G \) is not regular, then \(\Delta(G) - \delta(G) \geq 1 \), and this inequality chain leads to the better bound \(d_{rk}(G) + d_{rk}(\overline{G}) \leq n + 2k - 2 \), and the proof is complete. \(\square \)

Corollary 11 (Cockayne and Hedetniemi [7] 1977). If \(G \) is a graph of order \(n \geq 1 \), then \(d(G) + d(\overline{G}) \leq n + 1 \).

3. Properties of the 2-rainbow Domatic Number

Let \(A_1 \cup A_2 \cup \cdots \cup A_d \) be a domatic partition of \(V(G) \) into dominating sets such that \(d = d(G) \). Then the set of functions \(\{ f_1, f_2, \ldots, f_d \} \) with \(f_i(v) = \{ 1, 2 \} \) if \(v \in A_i \) and \(f_i(v) = \emptyset \), otherwise for \(1 \leq i \leq d \) is a 2RD family on \(G \). This shows that \(d(G) \leq d_{r2}(G) \) for every graph \(G \).

Observation 12. Let \(G \) be a graph of order \(n \geq 2 \). Then \(\gamma_{r2}(G) = n \) and \(d_{r2}(G) = 2 \) if and only if \(\Delta(G) \leq 1 \).
If $\gamma_{r2}(G) = n$, then, by Theorem 1, $\Delta(G) \leq 1$.

Conversely, let $\Delta(G) \leq 1$. If $\Delta(G) = 0$, then obviously $\gamma_{r2}(G) = n$ and $d_{r2}(G) = 2$. Let $\Delta(G) = 1$. Then $G = rK_1 \cup \frac{n-r}{2}K_2$ with $n-r \geq 2$ even, and we have

$$\gamma_{r2}(G) = r\gamma_{r2}(K_1) + \frac{n-r}{2}\gamma_{r2}(K_2) = r + (n-r) = n.$$

By (3) and Theorem 4, we obtain $d_{r2}(G) = 2$. This completes the proof.

Using Theorem 9 and the following proposition, we determine the 2-rainbow domatic number of paths.

Proposition A [3]. For $n \geq 2$,

$$\gamma_{r2}(P_n) = \left\lfloor \frac{n}{2} \right\rfloor + 1.$$

Proposition 13. For $n \geq 3$,

$$d_{r2}(P_n) = \begin{cases} 2 & \text{if } n = 4, \\ 3 & \text{otherwise}. \end{cases}$$

Proof. Let $G = P_n$. If $n = 4$, then Proposition 3 implies $\gamma_{r2}(G) = 3$, and the result follows from Theorem 4 and (3). Assume now that $n \neq 4$. By Theorem 4 and Proposition 3, we have $d_{r2}(G) \leq 3$. Consider four cases.

Case 1. $n \equiv 3 \pmod{4}$. Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

$f_1(v_{4i+1}) = \{1\}, f_1(v_{4i+3}) = \{2\}$ for $0 \leq i \leq (n-3)/4$, and $f_1(x) = \emptyset$ otherwise,

$f_2(v_{4i+1}) = \{2\}, f_2(v_{4i+3}) = \{1\}$ for $0 \leq i \leq (n-3)/4$, and $f_2(x) = \emptyset$ otherwise,

$f_3(v_{2i+2}) = \{1, 2\}$ for $0 \leq i \leq (n-3)/2$, and $f_3(x) = \emptyset$ otherwise.

It is easy to see that f_i is a 2-rainbow dominating function on G for each i and $\{f_1, f_2, f_3\}$ is a 2-rainbow dominating family on G.

Case 2. $n \equiv 1 \pmod{4}$. Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

$f_1(v_n) = \{1\}, f_1(v_{4i+1}) = \{1\}, f_1(v_{4i+3}) = \{2\}$ for $0 \leq i \leq (n-1)/4 - 1$ and $f_1(x) = \emptyset$ otherwise,

$f_2(v_n) = \{2\}, f_2(v_{4i+1}) = \{2\}, f_2(v_{4i+3}) = \{1\}$ for $0 \leq i \leq (n-1)/4 - 1$ and $f_2(x) = \emptyset$ otherwise,

$f_3(v_{2i}) = \{1, 2\}$ for $1 \leq i \leq (n-1)/2$, and $f_3(x) = \emptyset$ otherwise.

Clearly, f_i is a 2-rainbow dominating function on G for each i and $\{f_1, f_2, f_3\}$ is a 2-rainbow dominating family on G.

Case 3. $n \equiv 0 \pmod{4}$. Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

- $f_1(v_1) = f_1(v_n) = f_1(v_{4i+6}) = \{1\}$, $f_1(v_3) = f_1(v_4) = f_1(v_{4i+8}) = \{2\}$ for $0 \leq i \leq n/4 - 2$, and $f_1(x) = \emptyset$ otherwise,
- $f_2(v_1) = f_2(v_n) = f_2(v_{4i+6}) = \{2\}$, $f_2(v_3) = f_2(v_4) = f_2(v_{4i+8}) = \{1\}$ for $0 \leq i \leq n/4 - 2$, and $f_2(x) = \emptyset$ otherwise,
- $f_3(v_2) = f_3(v_{2i+1}) = \{1, 2\}$ for $2 \leq i \leq n/2 - 1$, and $f_3(x) = \emptyset$ otherwise.

It is easy to see that f_i is a 2-rainbow dominating function on G for each i and \{f_1, f_2, f_3\} is a 2-rainbow dominating family on G.

Case 4. $n \equiv 2 \pmod{4}$. Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

- $f_1(v_1) = f_1(v_n) = f_1(v_{4i+6}) = \{1\}$, $f_1(v_3) = f_1(v_4) = f_1(v_{4i+8}) = \{2\}$ for $0 \leq i \leq (n-2)/4-2$, and $f_1(x) = \emptyset$ otherwise,
- $f_2(v_1) = f_2(v_n) = f_2(v_{4i+6}) = \{2\}$, $f_2(v_3) = f_2(v_4) = f_2(v_{4i+8}) = \{1\}$ for $0 \leq i \leq (n-2)/4-2$, and $f_2(x) = \emptyset$ otherwise,
- $f_3(v_2) = f_3(v_{2i+1}) = \{1, 2\}$ for $2 \leq i \leq n/2 - 1$, and $f_3(x) = \emptyset$ otherwise.

Clearly f_i is a 2-rainbow dominating function on G for each i and \{f_1, f_2, f_3\} is a 2-rainbow dominating family on G. This completes the proof. ■

Using Theorem 4 and the following proposition, we determine the 2-rainbow dominant number of cycles.

Proposition B [3]. For $n \geq 3$,

$$\gamma_{r2}(C_n) = \left\lfloor \frac{n}{2} \right\rfloor + \left\lceil \frac{n}{4} \right\rceil - \left\lfloor \frac{n}{4} \right\rfloor.$$

Proposition 14. If C_n is the cycle on $n \geq 4$ vertices, then

$$d_{r2}(C_n) = \begin{cases} 4 & n \equiv 0 \pmod{4}, \\ 3 & \text{otherwise}. \end{cases}$$

Proof. Let $C_n = (v_1, v_2, \ldots, v_n)$. Consider four cases.

Case 1. $n \equiv 0 \pmod{4}$. Define the 2-rainbow dominating functions f_1, f_2, f_3, f_4 as follows:

- $f_1(v_{4i-1+1}) = \{1\}$, $f_1(v_{4i-1+3}) = \{2\}$ for $0 \leq i \leq n/4 - 1$, and $f_1(x) = \emptyset$ otherwise,
- $f_2(v_{4i-1+1}) = \{2\}$, $f_2(v_{4i-1+3}) = \{1\}$ for $0 \leq i \leq n/4 - 1$, and $f_2(x) = \emptyset$ otherwise,
- $f_3(v_{4i-1+2}) = \{1\}$, $f_3(v_{4i-1+4}) = \{2\}$ for $0 \leq i \leq n/4 - 1$, and $f_3(x) = \emptyset$ otherwise,
Clearly, f_i is a 2-rainbow dominating function on G for each i and \{ f_1, f_2, f_3, f_4 \} is a 2-rainbow dominating family on G. Thus $d_{r2}(C_n) = 4$.

Case 2. $n \equiv 1 \pmod{4}$. Then by Theorem 4 and Proposition 3, $d_{r2}(C_n) \leq 3$.

Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

$f_1(v_{4(i-1)+1}) = \{1\}, f_1(v_{4(i-1)+3}) = \{2\},$ for $0 \leq i \leq (n-1)/4 - 1$, and $f_1(x) = \emptyset$ otherwise,

$f_2(v_{4(i-1)+1}) = \{2\}, f_2(v_{4(i-1)+3}) = \{1\},$ for $0 \leq i \leq (n-1)/4 - 1$, and $f_2(x) = \emptyset$ otherwise,

$f_3(v_{4(i-1)+2}) = f_3(v_{4(i-1)+4}) = \{1, 2\}$ for $0 \leq i \leq (n-1)/4 - 1$, and $f_3(x) = 0$ otherwise.

Clearly, f_i is a 2-rainbow dominating function on G for each i and \{ f_1, f_2, f_3 \} is a 2-rainbow dominating family on G. Thus $d_{r2}(C_n) = 3$.

Case 3. $n \equiv 3 \pmod{4}$. Then by Theorem 4 and Proposition 3, $d_{r2}(C_n) \leq 3$.

Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

$f_1(v_{4(i-1)+1}) = \{1\}, f_1(v_{4(i-1)+3}) = \{2\},$ for $0 \leq i \leq (n+1)/4 - 1$, and $f_1(x) = \emptyset$ otherwise,

$f_2(v_{4(i-1)+1}) = \{2\}, f_2(v_{4(i-1)+3}) = \{1\},$ for $0 \leq i \leq (n+1)/4 - 1$, and $f_2(x) = \emptyset$ otherwise,

$f_3(v_{4(i-1)+2}) = f_3(v_{4(i-1)+4}) = \{1, 2\}$ for $0 \leq i \leq (n-3)/4 - 1$, $f_3(x) = 1$ and $f_3(x) = 0$ otherwise.

Clearly, f_i is a 2-rainbow dominating function on G for each i and \{ f_1, f_2, f_3 \} is a 2-rainbow dominating family on G. Thus $d_{r2}(C_n) = 3$.

Case 4. $n \equiv 2 \pmod{4}$. Then by Theorem 4 and Proposition 3, $d_{r2}(C_n) \leq 3$.

Define the 2-rainbow dominating functions f_1, f_2, f_3 as follows:

$f_1(v_1) = f_1(v_2) = f_1(v_{4i+3}) = \{1\}, f_1(v_4) = f_1(v_5) = f_1(v_{4i+5}) = \{2\}$ for $1 \leq i \leq \frac{n-6}{4}$ and $f_1(x) = \emptyset$ otherwise,

$f_2(v_1) = f_2(v_2) = f_2(v_{4i+3}) = \{2\}, f_2(v_4) = f_2(v_5) = f_2(v_{4i+5}) = \{1\}$ for $1 \leq i \leq \frac{n-6}{4}$ and $f_2(x) = \emptyset$ otherwise,

$f_3(v_3) = f_3(v_{4i+2}) = \{1, 2\}$ for $1 \leq i \leq \frac{n-2}{4}$ and $f_3(x) = \emptyset$ otherwise.

Clearly, f_i is a 2-rainbow dominating function on G for each i and \{ f_1, f_2, f_3 \} is a 2-rainbow dominating family on G. Thus $d_{r2}(C_n) = 3$.

Theorem 2 and its proof lead immediately to the next result.
Corollary 15. Let G be a graph of order n and maximum degree Δ. Then

$$ \gamma_r(G) \geq \begin{cases} \left\lceil \frac{2n+2}{\Delta+2} \right\rceil & \text{if there is a } \gamma_r(G) \text{-function } f \text{ with } V_2 \neq \emptyset, \\ \left\lceil \frac{2n+2}{\Delta+2} \right\rceil & \text{otherwise.} \end{cases} $$

Using Corollary 15, we will improve the upper bound on $d_r(G)$ given in Theorem 9 for some regular graphs.

Theorem 16. If G is a δ-regular graph of order n with $\delta \geq 1$ and a $\gamma_r(G)$-function f such that $V_2 \neq \emptyset$ or $2n \not\equiv 0 \pmod{\delta+2}$, then

$$ d_r(G) \leq \delta + 1. $$

Proof. Let $\{f_1, f_2, \ldots, f_d\}$ be a 2RD family on G such that $d = d_r(G)$. It follows that

$$ \sum_{i=1}^{d} \omega(f_i) = \sum_{i=1}^{d} \sum_{v \in V} |f_i(v)| = \sum_{v \in V} \sum_{i=1}^{d} |f_i(v)| \leq \sum_{v \in V} 2 = 2n. \quad (4) $$

Suppose to the contrary that $d \geq \delta + 2$. If $V_2 \neq \emptyset$, then Corollary 15 leads to

$$ \sum_{i=1}^{d} \omega(f_i) \geq \sum_{i=1}^{d} \gamma_r(G) \geq d \left\lceil \frac{2n+2}{\delta+2} \right\rceil \geq (\delta + 2) \left(\frac{2n+2}{\delta+2} \right) > 2n, $$

a contradiction to the inequality (4). If $2n \not\equiv 0 \pmod{\delta+2}$, then it follows from Corollary 15 that

$$ \sum_{i=1}^{d} \omega(f_i) \geq \sum_{i=1}^{d} \gamma_r(G) \geq d \left\lceil \frac{2n}{\delta+2} \right\rceil > (\delta + 2) \left(\frac{2n}{\delta+2} \right) = 2n, $$

a contradiction to (4) again. Therefore $d \leq \delta + 1$ and the proof is complete. \(\blacksquare\)

By Theorem 14, $d_r(C_4) = 4$ and therefore $d_r(C_4) = \delta(C_4) + 2$. This 2-regular graph demonstrates that the bound in Theorem 16 is not valid in general in the case that $2n \equiv 0 \pmod{\delta+2}$.

Using Theorems 9, 10 and 16, we will improve the upper bound given in Theorem 10 in the case that $k = 2$.

Theorem 17. If G is a graph of order n, then

$$ d_r(G) + d_r(G) \leq n + 2. $$
Proof. If G is not regular, then Theorem 10 implies the desired result. Now let G be δ-regular.

Assume that G has a $\gamma_{r2}(G)$-function f such that $V_2 \neq \emptyset$ or $V_2 = \emptyset$ and $2|V_0| < \delta|V_1|$. Then we deduce from Theorem 16 that $d_{r2}(G) \leq \delta + 1$. Using Theorem 9, we obtain the desired result as follows

$$d_{r2}(G) + d_{r2}(\overline{G}) \leq (\delta(G) + 1) + (\delta(\overline{G}) + 2)$$

$$= (\delta(G) + 1) + (n - \delta(G) - 1 + 2) = n + 2.$$

It remains the case that G has a $\gamma_{r2}(G)$-function f such $V_2 = \emptyset$ and $2|V_0| = \delta|V_1|$. Note that $n = |V_0| + |V_1|$ and $|V_1| \geq 2$. Since $\delta(G) + \delta(G) = n - 1$, it follows that $\delta(G) \geq (n - 1)/2$ or $\delta(\overline{G}) \geq (n - 1)/2$. We assume, without loss of generality, that $\delta(G) \geq (n - 1)/2$.

If $|V_1| \geq 4$, then $2|V_0| = \delta|V_1| \geq 4\delta$ and thus $|V_0| \geq 2\delta$. This leads to the contradiction

$$n = |V_0| + |V_1| \geq 2\delta + 4 \geq n - 1 + 4 = n + 3.$$

In the case $|V_1| = 3$, we define $V_1' = \{v \mid f(v) = \{1\}\}$ and $V_1'' = \{v \mid f(v) = \{2\}\}$. We assume, without loss of generality, that $|V_1' = 1 < 2 = |V_1''|$. Since each vertex of V_0 is adjacent to at least one vertex of V_1', we deduce that $|V_0| \leq \delta < 2\delta$. This implies that

$$2|V_0| = |V_0| + |V_0| < \delta + 2\delta = \delta|V_1'| + \delta|V_1''| = \delta|V_1|,$$

a contradiction to the assumption $2|V_0| = \delta|V_1|$.

If $|V_1| = 2$, then $|V_0| = \delta$ and so $n = \delta + 2$. Hence $\delta(\overline{G}) = n - \delta - 1 = 1$ and so $d_{r2}(\overline{G}) = 2$. Now Theorem 9 implies that

$$d_{r2}(G) + d_{r2}(\overline{G}) \leq (\delta(G) + 2) + 2 = n + 2,$$

the desired bound. Since we have discussed all possible cases, the proof is complete.

If G is isomorphic to the complete graph K_n with $n \geq 2$, then Corollary 6 implies $d_{r2}(G) = n$. Since $d_{r2}(\overline{G}) = 2$, we obtain $d_{r2}(G) + d_{r2}(\overline{G}) = n + 2$. This example demonstrates that Theorem 17 is sharp.

We conclude this paper with a conjecture.

Conjecture 18. For every integer $k \geq 2$ and every graph G of order n,

$$d_{r_k}(G) + d_{r_k}(\overline{G}) \leq n + 2k - 2.$$

Note that Theorem 17 shows that this conjecture is valid for $k = 2$. In addition, the complete graph K_n demonstrates that Conjecture 1 does not hold for $k = 1$.

References

Received 10 September 2010
Revised 10 March 2011
Accepted 15 March 2011